Integration Testing of Web Applications and Databass
using TTCN-3

Bernard Stepien, Liam Peyton

School of Information Technology and Engineering,
University of Ottawa, Canada
{bernard, Ipeyton}@site.uottawa.ca

Abstract. Traditional approaches to integration testingagfly use a variety of
different test tools (such as HTTPUnit, Junit, DBfymand manage data in a
variety of formats (HTML, Java, SQL) in order tori¥e web application state
at different points in the architecture of a welplayation. Managing test
campaigns across these different tools and coimglamtermediate results in
different formats is a difficult problem which weldress in this paper. In
particular, the major contribution of this paper t® demonstrate that a
specification-based approach to integration testamgbles one to define
integration test campaigns more succinctly and cieffitly in a single
language/tool and correlate intermediate resulta single data format. We
also evaluate the effectiveness of TTCN-3 (a stafzdbased test specification
language and framework) in supporting such an amtro

Keywords: web applications, integration testing, databas&§N-3

1 Introduction

Complex web applications in a service-oriented i&cture may have to integrate
data from several data sources and may have tdaimastate in a distributed fashion
across many components of the web application. @fnthe aims of integration
testing is to verify intermediate results at keteraction points within the architecture
of the web application. This can be done by tegstime web application state as
captured either in persistent data stored in a statece, or as session data maintained
in memory by the web application or any of its digited components. This can be a
complex and challenging task even under the mesil icircumstances.

Traditional approaches to integration testing wotygically use a variety of
different test tools (such as HTTPUnit, Junit, DBYyand manage data in a variety of
formats (HTML, Java, SQL) in order to verify webpdipation state at different points
in the architecture of a web application. Managiegt campaigns across these
different tools and correlating intermediate result different formats is a difficult
problem which we address in this paper. In padicuhe major contribution of this
paper is to demonstrate that a specification-baggutoach to integration testing
enables one to define integration test campaign® reaccinctly and efficiently in a
single language/tool and correlate intermediateltgsn a single data format. We

also evaluate the effectiveness of TTCN-3 (a stalsdhased test specification
language and framework [1]) in supporting such gpreach.

Using the TTCN-3 specification language, we defimeabstract data layer which
can maintain web application state across a vaoktgst tools and formats and verify
intermediate results based on tests which transfiwah abstract data layer. The
approach is implemented in a TTCN-3 test framewshich uses a collection of test
adaptors to mediate between the abstract test layehich test specifications are
defined and the concrete test layer which interdoesctly with the web application
and its components. Specific examples based cdrdine Book Store and sample
TTCN-3 specifications are used to verify and cateldatabase behavior and web
application component behavior as they relate to agplication state.

TTCN-3 is a test specification and test implemeotatlanguage for testing
distributed systems developed by the European ®elgwnications Standards
Institute (ETSI). It provides powerful abstractionechanisms for interfacing to
different data and presentation formats and foindef test cases at different levels of
abstraction, much as developers use modeling lggguto specify the design of a
system at different levels of abstraction. Thiskd@es reuse across different levels of
test activities [2] and the coordination and sywodization of test activities with
development activities throughout the developmiéatclycle.

The need for a systematic test framework refleadfvereb application architecture
rather than a patchwork of tools and test scripts heen pointed out as well in other
work [3] outside of the TTCN-3 community. Otherpapaches to integration testing
have focused on ensuring formal conformance to wetvice protocols in web
applications that leverage web services as compgsrigh TTCN-3 has also been
used in this manner [5].

An alternative approach taken to address the lesl lef detail at which current
tools operate is to do model-based testing whese deripts are generated from
models. This was done in the AGEDIS case stud@swhere HTTPUnit and
HTMLUnit scripts were generated from UML models. [l User Requirements
Notation (URN), an ITU standard for requirementsdeling in telecommunications
was used to test web applications. And in [8] eatituns done with JML-JUnit used
JUnit scripts generated from JML models of Javasda. Such approaches do link
test script generation to an abstract view of tystesn being tested, but they do not
give the same power and flexibility as a test dpEion approach to verify
application logic and information management indejat of volatile
implementation and presentation details.

2 Book Store Web Application Example

Figure 1 gives a simple example of a typical J2Eb application that supports an
on-line book store. We will use this example, tlgioout the paper to illustrate our
approach. The browser interface contains a ri¢choBéHTML, XML, JavaScript,
images, stylesheets, etc, that it receives fronwiie application in response to HTTP
requests. The web application, in return, interagith a variety of components
within a service-oriented architecture. It intésawith the book order database via

JDBC to keep track of available books and purchadednteracts with a shopping
cart enterprise java bean via RMI while the custonseshopping online and it
interacts with an order processing service via S@ARt the warehouse know when
there is an order of books to ship.

There is also a test framework (implemented in T¥&Nvhich can communicate
directly via concrete test adaptors with either theb application or any of the
components used by the web application. It perfoimtegration testing that verifies
intermediate results in terms of application welatestbased on abstract test
specifications which define an abstract data lageterms of data types, and uses
templates for expected responses.

| Browser Interface

[Test I.:r.am!ewnrk HTTP & HTTR
specifications Reguest Response
templates
data types Weh Application
adaptors -books

-shopping carts
HTTPadaptor [~ ™ -orders
JDEC adaptor IDBC i Y08p
RN adaptor .\'i
SOAP adaptor Book Shopping Order
Crder Cart Process
DB EJE Service

Figure 1 — Book Store and Test Agent

For the purposes of explaining the specificatioadobapproach to integration testing,
we will focus on first verifying intermediate retiin the Book Order DB, and then
on how to correlate and integrate those resultsvatification of intermediate results
within the web application itself.

3. Database Integration Testing

Specifying test suites for testing database integramostly consists of specifying
test oracles for results of queries or test orategerify the state of a database after
some update operation. In both cases, testing stensi performing a query and
verifying the result set. The central TTCN-3 cortceprepresent test oracles is the
template. In sharp contrast with traditional tegtmethodologies, a TTCN-3 template
performs the checking of all the data involved iresult set in a single operation. The
setting of an oracle is organized in three steps:

* The definition of a data type to represent thelteset

» The definition of a template of values for eachradat of the data type to be

matched.

e The definition of a test events sequence with fbssilternative paths.

In contrast to unit testing approaches, TTCN-3 wrenbehavior oriented. This
includes the results of several consecutive eveifisre the current state of the
database is dependent on all previous steps.

3.1 Data typing

Abstract data types to represent database resaltdefined in terms of results sets as
sets of rows where each row is an individual datebracord and columns correspond
to fields. Union in TTCN-3 can be used to defmesults that join elements from
different tables. For example, below we definecml&Table, PublisherTable and the
join between them to create a CatalogEntry restlt s

type record DBBooksTableType {
charstring author,
charstring title,
float price

}

type record DBPublisherTableType {
charstring pubName,
charstring street,
charstring city

type record BooksPublisherResultType {
charstring pubName,
charstring author,
charstring title

}

The three above basic types are merged into a T¥@QNion type as follows:

type union CatalogEntry {
DBBooksTableType booksTable,
DBPublisherTableType publisherTable,
BooksPublisherResultType bookspubResult

}

Finally, rows are represented using the TTCN-3 skttype construct on the
previously defined union.

type set of CatalogEntry CatalogEntryResultSet;

3.2 Specifying test oracles using TTCN-3 templade

The TTCN-3 template is more than an instance dfdeta for a given data type. It
looks like a plain assignment of values but isantfcapable of complex matching
mechanism. Values can instead be list of altermabees, ranges for numeric values

or pattern matching specifications for strings. §hau TTCN-3 template is more like a
hybrid between a data assignment and some potgntiainplex logical expression.
Since it can be parametric it actually serves the of a function. The most important
concept however remains that the actual matchingham@sm is built-in and thus
needs zero coding effort from the tester. An atoel@ment of a test oracle can be
represented by the following template where thkl fieoksTable indicates the type
among the types of the union used and the assigakgks indicate the orcale’s
criteria.

template CatalogEntry amerique := {
booksTable := {
author := "Herge",
title := "Tintin en Amerique",
price :=8.20
}
}

The template is also a powerful structuring concgpte it can be re-used by other
templates. For example, a list of database iterfinatkindividually as above can be
re-used to define a list of items, thus differeattatbase rows, as follows:

template CatalogEntryResultSet myBooks := { templeS oleil, ileNoire,
amerique };

Zoio recommends to externalize assertions [9] bgiding the scattering of hard
coded assertions throughout the test code andt@lesite comprehensive tests that
cover all aspects of a database state and finakbypuecise assertions. The TTCN-3
template concept naturally implements all of thesmmmendations.

3.3 Performing a test

In TTCN-3, a database test is specified by sendiamg SQL request over a
communication channel that is abstracted as a TBQdbrt and by receiving a
response over that same channel. The receive saterotually serves two purposes:
to actually obtain data from the communication cterand to match this obtained
data with a template. In the following exampleeafsending an SQL request, we
attempt to match the result set to the temptgtoks that we defined previously.

db_port.send(“select * from books”);

alt {
[1 db_port.receive(myBooks) {setverdict(pass)}
[1 db_port.receive {setverdict(fail)}

}

The above code illustrates how test verdicts atebgeusing the TTCN-3alt
construct. The first case corresponds to the egpagsponse being received and the
test verdict being set to pass. The second aligenaiase consists in receiving
anything else which would result in setting the tesgdict to fail instead. The TTCN-

3 alt construct is a powerful concept that enaliles to specify complex test

behaviors through nesting as trees that represmius possible sequences of test
events with their corresponding test verdicts ml#afs of the tree.

3.4 Separation of concerns between abstract andrcrete layer

So far we have only defined a high level abstrest $pecification without specifying
how the data is actually obtained. This is becaliBEN-3's central concept is the
separation of concern between the abstract andretentayers. The concrete layer
called the test adapter layer is where the actwahection with a database occurs and
where the data is retrieved from results set sjgecih a general purpose language
(GPL) such as Java depending on the implement#ioguage of the TTCN-3 tool
used. However, the actual classes and member émsctor the test adapter are fully
defined in the TTCN-3 standard part 5 [10]. Thexaicorrespondence between the
abstract layesend command and the test adaptarisend method. This is where
the typical JDBC [11] database interface would tpleee and, at this point, nothing
is unusual compared to the traditional GPL testiémentation, as can be observed in
the following example of the implementation of thg&end method.

public TriStatus triSend(final TriComponentld compo nentld,
final TriPortld tsiPortld, final TriAddress a ddress,
final TriMessage sendMe ssage) {

byte [] mesg = sendMessage.getEncodedMessage();
if(tsiPortld.getPortName().equals("system_dbPort "NA{
String theSQLRequest = new String(mesg);
Connection db_connection = null;

try {
Class.forName ("com.mysql.jdbc.Driver").ne winstance ();

} catch ...

try {
String url = "jdbc:mysql://localhost/ebook store";
db_connection = DriverManager.getConnectio n (url, null, null);

} catch (SQLExceptione) { ... }

try {
Statement db_statement = db_connection.crea teStatement();
boolean status = db_statement.execute(theSQ LRequest);

} catch ...

ResultSet theCurrentResultsSet = db_statemen t.getResultSet();

}}

The results of the statement’s execution would themetrieved and transformed into
abstract data by a codec (coder/decoder) defindueitest adaptor. For that purpose,
the result set object instance is serialized sbithan be passed ashye[] stream to
the codec.

byte[] theByteRepresentation = ((DBCodec)
getCodec("™)).serializeObject(theCurrentResu ltsSet);

The codec can be written in different ways. Norgalere is a corresponding codec
for each abstract data type. For JDBC, we haved@umore generic approach for a
codec that can handle any abstract data type witheting to know what data types
are used in a test suite. Thus, this codec isfegdramework that can be used in any
database testing application. Its full descriptam be found in [12]. The separation
of concerns of TTCN-3 has some additional benefitse-usability of the abstract
layer across platforms and implementation languages

4 Integration testing of web and database applicatns

So far, we have shown examples of test specifioatidchat, despite their
abstractedness, are not too different from unitintgssince they involve only the
database. The need to test databases in conjundtionhe web application that uses
them has been pointed out in [13]. They report otoa@ called AGENDA that
produces test paths using a cyclomatic complexggrahm. It is based on a white
box approach and addresses three concerns: betterage, more appropriate input
values for forms and better targeting of test ¢ésfoHowever, they use plain XML
files to assemble their test specification whicliowunately adds some unnecessary
complexity to the problem.

The real value of using TTCN-3 is beyond mimickingjt testing and instead is
found in the specification of complex systems ttwisist of various components that
perform different services, some being databaseicger and others being web
services or user interface services such as pirgeweb pages. Combining such
composite services into a single integration test be challenging when using a
GPL. This is mostly due to the frequent tendencymi® test assertions and data
extraction functionalities. The separation of cansethat TTCN-3 supports enables
us to specify test suites strictly at the abstlaetl and thus enable the tester to focus
on the purpose of the test.

A frequent class of applications consists in thenlbimation of web applications
with databases. Here, two kinds of tests can biempeed:

* Check the database state after a web user subnuiteed through a web
application.

* Check the results after a user did a query to thmbése over a web
application to see if they correspond to the sthee database.

4.1 Consistency check between web data entries addtabase state

Web data entry is achieved by submitting web fotheg have been filled with data.
Thus, in order to specify the test to check thesistency between the web data
entries and the resulting database state, we needshndle both aspects of the
integration test and first how to submit a formam abstract way and eventually how
to translate this abstract request into a conevetequery.

A complete description of various approaches toieaehthe above has been
presented elseghere [14]. Here we will briefly shtve essential abstract layer

elements required to specify an HTML form so abecaable to illustrate the concept
of test oracle transformation later.

type record ParameterValuesType {
charstring parmName,
charstring parmValue

type set of ParameterValuesType ParameterValuesSetT ype;

type record FormSubmitType {
charstring formName,
charstring buttonName,
charstring actionValue,
ParameterValuesSetType parameterValues

}

Using the above abstract data type, we can sp&difyN-3 templates for web form
submissions. First a definition of a filled webrfofor entering a specific book:

template ParameterValuesSetType filledFormAmerique ={
{parmName := "author", parmValue := "Herge"},
{parmName := "title", parmValue := "Tintin en Am erique"},
{parmName := "price", parmValue := "8.00"}

}

Then we specify a parametric template to desciiilgeform itself using a formal
parameter to indicate the actual form parametehgesafor a specific book. This
template can be re-used to submit an arbitrary murobdifferent books.

template FormSubmitType weblnsertionFormSubmit
(ParameterValuesSetType theParameters) := {
formName := "bookAdditionForm",
buttonName := "add",

actionValue :=
"http://localhost:8080/eBookStore/servlet/book_inse rtion",
parameterValues := theParameters

}

Finally, we specify the typical test behavior staémt that executes this form
submission, namely a send command with the parametnplate fully instantiated
with the previously defined template about the @ets of the book being inserted in
the database and finally a receive statement ttextnpts matching the web response
to yet another template defining the expected vesbanse.

web_port.send(weblnsertionFormSubmit(filledFormAmer ique));
web_port.receive(webResponsePage);

The test adapter layer's codec would then prodbueeappropriate web request as
follows:

http://localhost:8080/eBookStore/servlet/book_inser tion?&author=Herge&ti
tle= Tintin en Amerique&price=8.00

This web request would then be submitted on a TERtannel using a post
command. This example also illustrates how the N93template achieves another
separation of concern between test behavior andittams governing behavior.

At this point we have successfully submitted thiedi form and all we need to do
is to perform a test on the database to see iflfia has been stored using the test
described in section 2. However, this would beral kdf double hard coded test oracle
approach. We certainly cannot avoid hard-codingfoien submission since we need
some starting point; we could, however, avoid havding the test oracle for the
database results by merely transforming the foromgssion template into a database
result set template to check the state of the datbThis is possible in TTCN-3
because of its ability to specify dynamic templatiest are constructed from other
tests results. The most important fact here is thi# TTCN-3 we can do such
transformation without having all the data encodimgextraction that would be
required in a GPL. Thus, this transformation carabbkieved relatively concisely at
the abstract level as in the following example:

function t r ansf or nfFor ns 2DB(FormsParametersValuesSetType theFormParms)
return CatalogEntryResultSet {

for(i:=0; i < numOfForms; i:=i+1) {
anltem.booksTable.author :=
getFieldValue("author",theFormParms[in;

anltem.booksTable.title :=

getFieldVvalue("title", theFormParmsli]);
anltem.booksTable.price :=

str2float(getFieldValue("price", theFormParmsli]));
theltems]i] := anltem;

return theltems;

}
Thus, a complete integration test can now be specifs follows:

testcase web2DatabaseResultsTest() runs on MTCType system SystemType {
var DBSelectResponseType theDBSelectResponse;

map(mtc:dbPort, system:system_dbPort);
map(mtc:webPort, system:system_webPort);

/I database re-initialization
dbPort.send("delete from books");

/I have a user insert a book through a web page form

webPort.send(weblnsertionFormSubmit(filledFormAm erique));

/'/”transform the list of filled forms informatio n into

/I a database query results template

var CatalogEntryResultSet expectedDatabaseResult S =
transformForms2DB({filledFormOrNoir, fill edFormAmerique});

/I check if the database contains the entered bo oks

dbPort.send(myBooksSelectRequest);

alt {
[1 dbPort.receive(myBooksSelectResponse(expec tedDatabaseResults))

setverdict(pass)

[1 dbPort.receive {
setverdict(inconc);

+}

4.2 Consistency check between database state andovegieries

Given a specific state of the database, we defitestathat consists in simulating a
user performing a query through a web page androbtpdata that is displayed on
the response page. The second step of the tesstsoims performing a direct SQL
database query to obtain the same data as thrbeghieb page and compare it to the
data obtained through the web page. If the twocasupf data coincide, the test has
passed.

The second step of this test is identical to tleosd step of the previous test (web
data insertion against database query). We caseg¢he same SQL statement for that
purpose. These SQL statements can be extractedtfrerapplication under test as
suggested in [15]. They propose a testing apprabah transforms the embedded
SQL statements in database applications to proesdim a general-purpose
programming language (GPL). Here we replace the @ith TTCN-3 and gain
clarity and conciseness. The first step howeveoisewhat similar since we need to
submit a form with some pre-filled fields, this #mvith the parameters of the query
and with the different requested actions as foltows

template FormSubmitType queryBooksHerge := {
formName := "queryForm",
buttonName := "query",
actionValue :=
"http://localhost:8080/eBookStore/serviet/b ook_selection",
parameterValues := {
{parmName := "author", parmValue := "Herge"},
{parmName := "maxPrice", parmValue := "10.0"}
}
}

Again, this web query is submitted to the web aplon using a TTCN-3 send
command as follows:

webPort.send(queryBooksHerge);

This web query will result in a web response paws# we need to specify using
TTCN-3 abstract data types and templates. A fudlcdption on how to achieve this
can be found elsewhere [14]. Here we summarize somie ideas. A web page is
modeled using the following types:

type record WebPageType {

integer statusCode,
charstring title,

charstring content,
LinkListType links optional,
FormSetType forms optional,
TableSetType tables optional

}

Web page data is typically displayed using HTMUgsalthat can be modeled with the
following TTCN-3 types:

type set of charstring RowCellSetType;
type record TableRowType {
RowCellSetType cells

}
type set of TableRowType TableRowSetType;
type record TableType {

TableRowSetType rows

}
type set of TableType TableSetType;

Once the types are defined, we can define the paramtemplate for the web
response that is composed of constants such agathe title and the status and a
parameter for the actual tables containing theestpa data.

template WebPageType
hergeDBQueryResultsPage(TableSetType theTables) := {
statusCode := 200,
title := "bookstore.com query items page results
content ;= ?,
links := {},
forms :={},
tables := theTables

}

Here again, we could have hard coded the valuésediables but, instead, in order to
avoid duplicate work we prefer to dynamically ceeétby deriving it from the result
set of the database query using a function asvistio

function t ransf or nDBResul t s| nt oHTM_Tabl es(ltemsType theDBItems)
r eturn TableSetType {

t.H.eTabIeRows[O] :={ cells := {"author", "title" , "price" }};

for(i:=0; i < numOfDBRows; i:=i+1) {
if(ischosen(theDBIltems]i].booksTable)) {
aBook := theDBItems][i].booksTable;
aRow :={
cells := { aBook.author, aBook title,
myFloat2str(aBook.price) }

h
theTableRows[i+1] := aRow;
}
}

theTable := { rows := theTableRows };

tables[0] := theTable;
return tables
}

Finally the full test behavior is specified as dolis:

testcase database2webResultsTest() runs on MTCType system SystemType {
var DBSelectResponseType theDBSelectResponse;

map(mtc:dbPort, system:system_dbPort);
map(mtc:webPort, system:system_webPort);

... Il set the database in the desired state

dbPort.send(myBooksSelectRequest);
dbPort.receive(myBooksSelectResponse(myBooks))

-> value theDBSelec tResponse {
var CatalogEntryResultSet theReceiveDBltems :=
theDBSelectR esponse.items;

var TableSetType booksTables :=

transformDBResultsIntoHTMLTables(theRecei veDBItems);
webPort.send(queryBooksHerge);
alt {
[l webPort.receive(hergeDBQueryResultsPage(bo oksTables)) {

setverdict(pass)

[1 webPort.receive {
setverdict(fail)
}
}
}

5 Conclusions and Future Work

In this paper, we have demonstrated two main adgast of a test specification
approach for integration testing. First, test sasn be defined much more succinctly
using a single common language. This simplifies ardy the writing of test cases,
but also the reading and understanding of these#sgs. It also eliminates the need
to consult and understand test cases defined attdmin several different languages.
Secondly, and perhaps more importantly it enablgsrinediate results that are
communicated using different data formats and a#t) to be integrated, combined,
compared and verified within a single, consistetadbstract layer.

We have also demonstrated the suitability of TTCHNegh as a test specification
language and as a framework for executing integmatsts. It supports the definition
of an abstract specification layer separate fromst tadaptors which manage
implementation specifics. TTCN-3 templates that ased to specify test oracles are
created dynamically based on defined abstractfoemations between web requests
and the virtual data layer. The virtual data laimapped to different database
tables or views by a universal data codec.

While we have focused on integration testing iis fbéper, it can also be used for
blackbox and white box testing related to databases session state. Black box
testing using parallel testing is proposed in [IBhey particularly recommend to
avoid the traditional approach of resetting theéestd a database before each test as is
often recommended [9] because this is a time coimguprocess and also because it
does not reflect the realities of a multi-user aation in general. In TTCN-3, we
have already shown the benefits of multi-user apfilbn testing in [17] and believe
the extension of these principles to databaseddheustraightforward.

Whitebox testing as described in [18] can also ibg@lémented in a straight
forward fashion at an abstract level using TTCN43ey state that the full behavior of
a database application program is described inge@fthe manipulation of two very
different kinds of state: the program state anddambase state. While, so far, we
have used a message oriented approach in our etbistsa suites, TTCN-3 provides
also a procedure oriented approach. It can be wset/oke functions or methods of
the application under test directly and, thus, Eht#e resulting state of both the
software and the database.

5 Acknowledgements

The authors would like to thank Testing Technoled®&T GmbH for providing us the
necessary tool -- TTworkbench -- to carry out tt@search as well as NSERC for
partially funding this work.

References

1. ETSIES 201 873-1, The Testing and Test Controbban version 3, Partl: TTCN-3
Core notation, V3.4.1, September 2008

2. R.L.Probert, P. Xiong, B. Stepien, “Life-cycle@®mmerce Testing with OO-TTCN-3",
FORTE'04 Workshops proceedings, September 2004

3. C.Rankin, The Software Testing Automation framewdBM Systems Journal, Software
Testing and Verification, Vol. 41, No.1, 2002

4. A Bertolino, L. Frantzen, A. Polini, and J. Tretmsa Audition of web services for testing
conformance to open specified protocols. In R. Bees J. Stafford, and C. Szyperski,
editors, Architecting Systems with Trustworthy Campnts, number 3938 in LNCS.
Springer-Verlag, 2006.

5. B.Stepien, I.Schieferdecker, “Automated TestingKbL/SOAP based Web Services”,
Proc. of the 13th. Fachkonferenz der Gesellschafihformatik (GI) Fachgruppe KiVSs,
February 2003

6. Craggs l., Sardis M., and Heuillard T. AGEDIS C8sedies: Model-based Testing in
Industry. Proc. 1st European Conf. on Model Drigarftw. Eng. (Nuremberg, Germany,
Dec. 2003), imbus AG, 106—117

7. D. Amyot, J-F Roy, M. Weiss, UCM-Driven Testing\Wfeb Applications. SDL Forum
2005

8. R.P.Tan, S.H. Edwards, Experiences Evaluating ffecfveness of JML-JUnit Testing,
ACM SIGSOFT Software Engineering Notes, Septemib@42/olume 29 Number 5

9.

10.
11.
12.

13.

14.

15.

16.

17.

18.

P. Zoio, “Testing 1,2,3.”, Oracle Magazine, July-August, 2005.
http://www.oracle.com/technology/oramag/oracle/0Bey Stesting.html

ETSI ES 201 873-5 V3.3.1, The Testing and Test @bhtotation version 3;

Part 5: TTCN-3 Runtime Interface (TRI), April 2008

JDBC, http://java.sun.com/docs/books/tutorial/jdbc/indel

B.Stepien, A generic TTCN-3 codec framework fotitesDatabase applications,
Working Paper, School of Information Technology &rdjineering, University of
Ottawa, 2008.

Y. Deng, P. Frankl, J. Wang, Testing Web Databgsglifations, ACM SIGSOFT
Software Engineering Notes, Volume 29 , Issuep51410, 2004.

B. Stepien, L. Peyton, P. Xiong, “Framework TestifigVeb Applications using TTCN-
3", International Journal on Software Tools for firology Transfer, Springer Berlin /
Heidelberg. Vol. 10, No. 4, pp 371-381, 2008

M.Y. Chan, S.C. Cheung, Testing Database Applicatiwith SQL Semantics, in
Proceedings of 2nd International Symposium on Cadjpe Database Systems for
Advanced Applications (CODAS'99), 1999.

C. Binnig, D. Kossmann, E. Lo, Testing Databaseli&pfions in Proceedings of the 2006
ACM SIGMOD international conference on Managemdrdaia, 206.

L. Peyton, B. Stepien, P. Seguin, "Integration ihgstf Composite Applications”,
Proceedings of the 41st Hawaii International Caeriee on System Sciences (HICSS
2008), 2008. ISSN:1530-1605.
http://csdl.computer.org/comp/proceedings/hicss#28W75/00/30750096.pdf

D. Willmor, S. M Embury, Exploring test adequacy tmtabase systems, Proceedings of
the 3rd UK Software Testing Research Workshop, e3spér 2005

