
Integration Testing of Web Applications and Databases
using TTCN-3

Bernard Stepien, Liam Peyton

School of Information Technology and Engineering,

University of Ottawa, Canada
{bernard, lpeyton}@site.uottawa.ca

Abstract. Traditional approaches to integration testing typically use a variety of
different test tools (such as HTTPUnit, Junit, DBUnit) and manage data in a
variety of formats (HTML, Java, SQL) in order to verify web application state
at different points in the architecture of a web application. Managing test
campaigns across these different tools and correlating intermediate results in
different formats is a difficult problem which we address in this paper. In
particular, the major contribution of this paper is to demonstrate that a
specification-based approach to integration testing enables one to define
integration test campaigns more succinctly and efficiently in a single
language/tool and correlate intermediate results in a single data format. We
also evaluate the effectiveness of TTCN-3 (a standards-based test specification
language and framework) in supporting such an approach.

Keywords: web applications, integration testing, databases, TTCN-3

1 Introduction

Complex web applications in a service-oriented architecture may have to integrate
data from several data sources and may have to maintain state in a distributed fashion
across many components of the web application. One of the aims of integration
testing is to verify intermediate results at key interaction points within the architecture
of the web application. This can be done by testing the web application state as
captured either in persistent data stored in a data source, or as session data maintained
in memory by the web application or any of its distributed components. This can be a
complex and challenging task even under the most ideal circumstances.

Traditional approaches to integration testing would typically use a variety of
different test tools (such as HTTPUnit, Junit, DBUnit) and manage data in a variety of
formats (HTML, Java, SQL) in order to verify web application state at different points
in the architecture of a web application. Managing test campaigns across these
different tools and correlating intermediate results in different formats is a difficult
problem which we address in this paper. In particular, the major contribution of this
paper is to demonstrate that a specification-based approach to integration testing
enables one to define integration test campaigns more succinctly and efficiently in a
single language/tool and correlate intermediate results in a single data format. We

also evaluate the effectiveness of TTCN-3 (a standards-based test specification
language and framework [1]) in supporting such an approach.

Using the TTCN-3 specification language, we define an abstract data layer which
can maintain web application state across a variety of test tools and formats and verify
intermediate results based on tests which transform that abstract data layer. The
approach is implemented in a TTCN-3 test framework which uses a collection of test
adaptors to mediate between the abstract test layer in which test specifications are
defined and the concrete test layer which interacts directly with the web application
and its components. Specific examples based on an Online Book Store and sample
TTCN-3 specifications are used to verify and correlate database behavior and web
application component behavior as they relate to web application state.

TTCN-3 is a test specification and test implementation language for testing
distributed systems developed by the European Telecommunications Standards
Institute (ETSI). It provides powerful abstraction mechanisms for interfacing to
different data and presentation formats and for defining test cases at different levels of
abstraction, much as developers use modeling languages to specify the design of a
system at different levels of abstraction. This enables reuse across different levels of
test activities [2] and the coordination and synchronization of test activities with
development activities throughout the development life cycle.

The need for a systematic test framework reflective of web application architecture
rather than a patchwork of tools and test scripts has been pointed out as well in other
work [3] outside of the TTCN-3 community. Other approaches to integration testing
have focused on ensuring formal conformance to web service protocols in web
applications that leverage web services as components [4]. TTCN-3 has also been
used in this manner [5].

An alternative approach taken to address the low level of detail at which current
tools operate is to do model-based testing where test scripts are generated from
models. This was done in the AGEDIS case studies [6] where HTTPUnit and
HTMLUnit scripts were generated from UML models. In [7] User Requirements
Notation (URN), an ITU standard for requirements modeling in telecommunications
was used to test web applications. And in [8] evaluations done with JML-JUnit used
JUnit scripts generated from JML models of Java classes. Such approaches do link
test script generation to an abstract view of the system being tested, but they do not
give the same power and flexibility as a test specification approach to verify
application logic and information management independent of volatile
implementation and presentation details.

2 Book Store Web Application Example

Figure 1 gives a simple example of a typical J2EE web application that supports an
on-line book store. We will use this example, throughout the paper to illustrate our
approach. The browser interface contains a rich set of HTML, XML, JavaScript,
images, stylesheets, etc, that it receives from the web application in response to HTTP
requests. The web application, in return, interacts with a variety of components
within a service-oriented architecture. It interacts with the book order database via

JDBC to keep track of available books and purchases. It interacts with a shopping
cart enterprise java bean via RMI while the customer is shopping online and it
interacts with an order processing service via SOAP to let the warehouse know when
there is an order of books to ship.

There is also a test framework (implemented in TTCN-3) which can communicate
directly via concrete test adaptors with either the web application or any of the
components used by the web application. It performs integration testing that verifies
intermediate results in terms of application web state based on abstract test
specifications which define an abstract data layer in terms of data types, and uses
templates for expected responses.

Figure 1 – Book Store and Test Agent

For the purposes of explaining the specification-based approach to integration testing,
we will focus on first verifying intermediate results in the Book Order DB, and then
on how to correlate and integrate those results into verification of intermediate results
within the web application itself.

3. Database Integration Testing

Specifying test suites for testing database integration mostly consists of specifying
test oracles for results of queries or test oracles to verify the state of a database after
some update operation. In both cases, testing consists in performing a query and
verifying the result set. The central TTCN-3 concept to represent test oracles is the
template. In sharp contrast with traditional testing methodologies, a TTCN-3 template
performs the checking of all the data involved in a result set in a single operation. The
setting of an oracle is organized in three steps:

• The definition of a data type to represent the results set
• The definition of a template of values for each element of the data type to be

matched.

• The definition of a test events sequence with possible alternative paths.

In contrast to unit testing approaches, TTCN-3 is more behavior oriented. This
includes the results of several consecutive events where the current state of the
database is dependent on all previous steps.

3.1 Data typing

Abstract data types to represent database results are defined in terms of results sets as
sets of rows where each row is an individual database record and columns correspond
to fields. Union in TTCN-3 can be used to define results that join elements from
different tables. For example, below we define a BooksTable, PublisherTable and the
join between them to create a CatalogEntry result set.

type record DBBooksTableType {
 charstring author,
 charstring title,
 float price
}

type record DBPublisherTableType {
 charstring pubName,
 charstring street,
 charstring city
}

type record BooksPublisherResultType {
 charstring pubName,
 charstring author,
 charstring title
}

The three above basic types are merged into a TTCN-3 union type as follows:

type union CatalogEntry {
 DBBooksTableType booksTable,
 DBPublisherTableType publisherTable,
 BooksPublisherResultType bookspubResult
}

Finally, rows are represented using the TTCN-3 set of type construct on the
previously defined union.

type set of CatalogEntry CatalogEntryResultSet;

3.2 Specifying test oracles using TTCN-3 templates

The TTCN-3 template is more than an instance of test data for a given data type. It
looks like a plain assignment of values but is in fact capable of complex matching
mechanism. Values can instead be list of alternate values, ranges for numeric values

or pattern matching specifications for strings. Thus, a TTCN-3 template is more like a
hybrid between a data assignment and some potentially complex logical expression.
Since it can be parametric it actually serves the role of a function. The most important
concept however remains that the actual matching mechanism is built-in and thus
needs zero coding effort from the tester. An atomic element of a test oracle can be
represented by the following template where the field booksTable indicates the type
among the types of the union used and the assigned values indicate the orcale’s
criteria.

template CatalogEntry amerique := {
 booksTable := {
 author := "Herge",
 title := "Tintin en Amerique",
 price := 8.20
 }
}

The template is also a powerful structuring concept since it can be re-used by other
templates. For example, a list of database items defined individually as above can be
re-used to define a list of items, thus different database rows, as follows:

template CatalogEntryResultSet myBooks := { templeS oleil, ileNoire,

amerique };

Zoio recommends to externalize assertions [9] by avoiding the scattering of hard
coded assertions throughout the test code and also to write comprehensive tests that
cover all aspects of a database state and finally use precise assertions. The TTCN-3
template concept naturally implements all of these recommendations.

3.3 Performing a test

In TTCN-3, a database test is specified by sending an SQL request over a
communication channel that is abstracted as a TTCN-3 port and by receiving a
response over that same channel. The receive statement actually serves two purposes:
to actually obtain data from the communication channel and to match this obtained
data with a template. In the following example, after sending an SQL request, we
attempt to match the result set to the template myBooks that we defined previously.

db_port.send(“select * from books”);
alt {
 [] db_port.receive(myBooks) {setverdict(pass)}
 [] db_port.receive {setverdict(fail)}
}

The above code illustrates how test verdicts are set by using the TTCN-3 alt
construct. The first case corresponds to the expected response being received and the
test verdict being set to pass. The second alternative case consists in receiving
anything else which would result in setting the test verdict to fail instead. The TTCN-
3 alt construct is a powerful concept that enables one to specify complex test

behaviors through nesting as trees that represent various possible sequences of test
events with their corresponding test verdicts in the leafs of the tree.

3.4 Separation of concerns between abstract and concrete layer

So far we have only defined a high level abstract test specification without specifying
how the data is actually obtained. This is because TTCN-3’s central concept is the
separation of concern between the abstract and concrete layers. The concrete layer
called the test adapter layer is where the actual connection with a database occurs and
where the data is retrieved from results set specified in a general purpose language
(GPL) such as Java depending on the implementation language of the TTCN-3 tool
used. However, the actual classes and member functions for the test adapter are fully
defined in the TTCN-3 standard part 5 [10]. There is a correspondence between the
abstract layer send command and the test adapter’s triSend method. This is where
the typical JDBC [11] database interface would take place and, at this point, nothing
is unusual compared to the traditional GPL test implementation, as can be observed in
the following example of the implementation of the triSend method.

public TriStatus triSend(final TriComponentId compo nentId,
 final TriPortId tsiPortId, final TriAddress a ddress,
 final TriMessage sendMe ssage) {

 byte [] mesg = sendMessage.getEncodedMessage();
 if(tsiPortId.getPortName().equals("system_dbPort ")) {
 String theSQLRequest = new String(mesg);
 Connection db_connection = null;

 try {
 Class.forName ("com.mysql.jdbc.Driver").ne wInstance ();
 } catch …

 try {
 String url = "jdbc:mysql://localhost/ebook store";
 db_connection = DriverManager.getConnectio n (url, null, null);
 } catch (SQLException e) { … }

 try {
 Statement db_statement = db_connection.crea teStatement();
 boolean status = db_statement.execute(theSQ LRequest);
 } catch …

 ResultSet theCurrentResultsSet = db_statemen t.getResultSet();
} }

The results of the statement’s execution would then be retrieved and transformed into
abstract data by a codec (coder/decoder) defined in the test adaptor. For that purpose,
the result set object instance is serialized so that it can be passed as a byte[] stream to
the codec.

byte[] theByteRepresentation = ((DBCodec)
 getCodec("")).serializeObject(theCurrentResu ltsSet);

The codec can be written in different ways. Normally, there is a corresponding codec
for each abstract data type. For JDBC, we have found a more generic approach for a
codec that can handle any abstract data type without having to know what data types
are used in a test suite. Thus, this codec is a perfect framework that can be used in any
database testing application. Its full description can be found in [12]. The separation
of concerns of TTCN-3 has some additional benefits of re-usability of the abstract
layer across platforms and implementation languages.

4 Integration testing of web and database applications

So far, we have shown examples of test specifications that, despite their
abstractedness, are not too different from unit testing since they involve only the
database. The need to test databases in conjunction with the web application that uses
them has been pointed out in [13]. They report on a tool called AGENDA that
produces test paths using a cyclomatic complexity algorithm. It is based on a white
box approach and addresses three concerns: better coverage, more appropriate input
values for forms and better targeting of test efforts. However, they use plain XML
files to assemble their test specification which unfortunately adds some unnecessary
complexity to the problem.

The real value of using TTCN-3 is beyond mimicking unit testing and instead is
found in the specification of complex systems that consist of various components that
perform different services, some being database services and others being web
services or user interface services such as presenting web pages. Combining such
composite services into a single integration test can be challenging when using a
GPL. This is mostly due to the frequent tendency to mix test assertions and data
extraction functionalities. The separation of concerns that TTCN-3 supports enables
us to specify test suites strictly at the abstract level and thus enable the tester to focus
on the purpose of the test.

A frequent class of applications consists in the combination of web applications
with databases. Here, two kinds of tests can be performed:

• Check the database state after a web user submitted data through a web
application.

• Check the results after a user did a query to the database over a web
application to see if they correspond to the state of a database.

4.1 Consistency check between web data entries and database state

Web data entry is achieved by submitting web forms that have been filled with data.
Thus, in order to specify the test to check the consistency between the web data
entries and the resulting database state, we need to handle both aspects of the
integration test and first how to submit a form in an abstract way and eventually how
to translate this abstract request into a concrete web query.

A complete description of various approaches to achieve the above has been
presented elseqhere [14]. Here we will briefly show the essential abstract layer

elements required to specify an HTML form so as to be able to illustrate the concept
of test oracle transformation later.

type record ParameterValuesType {
 charstring parmName,
 charstring parmValue
}

type set of ParameterValuesType ParameterValuesSetT ype;

type record FormSubmitType {
 charstring formName,
 charstring buttonName,
 charstring actionValue,
 ParameterValuesSetType parameterValues
}

Using the above abstract data type, we can specify TTCN-3 templates for web form
submissions. First a definition of a filled web form for entering a specific book:

template ParameterValuesSetType filledFormAmerique := {
 {parmName := "author", parmValue := "Herge"},
 {parmName := "title", parmValue := "Tintin en Am erique"},
 {parmName := "price", parmValue := "8.00"}
}

Then we specify a parametric template to describe the form itself using a formal
parameter to indicate the actual form parameters values for a specific book. This
template can be re-used to submit an arbitrary number of different books.

template FormSubmitType webInsertionFormSubmit
(ParameterValuesSetType theParameters) := {

 formName := "bookAdditionForm",
 buttonName := "add",
 actionValue :=

"http://localhost:8080/eBookStore/servlet/book_inse rtion",
 parameterValues := theParameters
}

Finally, we specify the typical test behavior statement that executes this form
submission, namely a send command with the parametric template fully instantiated
with the previously defined template about the elements of the book being inserted in
the database and finally a receive statement that attempts matching the web response
to yet another template defining the expected web response.

web_port.send(webInsertionFormSubmit(filledFormAmer ique));
web_port.receive(webResponsePage);

The test adapter layer’s codec would then produce the appropriate web request as
follows:

http://localhost:8080/eBookStore/servlet/book_inser tion?&author=Herge&ti
tle= Tintin en Amerique&price=8.00

This web request would then be submitted on a TCP/IP channel using a post
command. This example also illustrates how the TTCN-3 template achieves another
separation of concern between test behavior and conditions governing behavior.

At this point we have successfully submitted the filled form and all we need to do
is to perform a test on the database to see if the data has been stored using the test
described in section 2. However, this would be a kind of double hard coded test oracle
approach. We certainly cannot avoid hard-coding the form submission since we need
some starting point; we could, however, avoid hard-coding the test oracle for the
database results by merely transforming the form submission template into a database
result set template to check the state of the database. This is possible in TTCN-3
because of its ability to specify dynamic templates that are constructed from other
tests results. The most important fact here is that with TTCN-3 we can do such
transformation without having all the data encoding or extraction that would be
required in a GPL. Thus, this transformation can be achieved relatively concisely at
the abstract level as in the following example:

function transformForms2DB(FormsParametersValuesSetType theFormParms)
return CatalogEntryResultSet {
 …
 for(i:=0; i < numOfForms; i:=i+1) {
 anItem.booksTable.author :=
 getFieldValue("author",theFormParms[i]);
 anItem.booksTable.title :=

getFieldValue("title", theFormParms[i]);
 anItem.booksTable.price :=

str2float(getFieldValue("price", theFormParms[i]));
 theItems[i] := anItem;
 }
 return theItems;
}

Thus, a complete integration test can now be specified as follows:

testcase web2DatabaseResultsTest() runs on MTCType system SystemType {
 var DBSelectResponseType theDBSelectResponse;

 map(mtc:dbPort, system:system_dbPort);
 map(mtc:webPort, system:system_webPort);

 // database re-initialization
 dbPort.send("delete from books");

 // have a user insert a book through a web page form
 webPort.send(webInsertionFormSubmit(filledFormAm erique));
 …
 // transform the list of filled forms informatio n into
 // a database query results template
 var CatalogEntryResultSet expectedDatabaseResult s :=
 transformForms2DB({filledFormOrNoir, fill edFormAmerique});

 // check if the database contains the entered bo oks
 dbPort.send(myBooksSelectRequest);

 alt {
 [] dbPort.receive(myBooksSelectResponse(expec tedDatabaseResults))

{
 setverdict(pass)
 }
 [] dbPort.receive {
 setverdict(inconc);

}
} }

4.2 Consistency check between database state and web queries

Given a specific state of the database, we define a test that consists in simulating a
user performing a query through a web page and obtaining data that is displayed on
the response page. The second step of the test consists in performing a direct SQL
database query to obtain the same data as through the web page and compare it to the
data obtained through the web page. If the two sources of data coincide, the test has
passed.

The second step of this test is identical to the second step of the previous test (web
data insertion against database query). We can re-use the same SQL statement for that
purpose. These SQL statements can be extracted from the application under test as
suggested in [15]. They propose a testing approach that transforms the embedded
SQL statements in database applications to procedures in a general-purpose
programming language (GPL). Here we replace the GPL with TTCN-3 and gain
clarity and conciseness. The first step however is somewhat similar since we need to
submit a form with some pre-filled fields, this time with the parameters of the query
and with the different requested actions as follows:

template FormSubmitType queryBooksHerge := {
 formName := "queryForm",
 buttonName := "query",
 actionValue :=
 "http://localhost:8080/eBookStore/servlet/b ook_selection",
 parameterValues := {
 {parmName := "author", parmValue := "Herge"},
 {parmName := "maxPrice", parmValue := "10.0"}
 }
}

Again, this web query is submitted to the web application using a TTCN-3 send
command as follows:

webPort.send(queryBooksHerge);

This web query will result in a web response page that we need to specify using
TTCN-3 abstract data types and templates. A full description on how to achieve this
can be found elsewhere [14]. Here we summarize some main ideas. A web page is
modeled using the following types:

type record WebPageType {

 integer statusCode,
 charstring title,
 charstring content,
 LinkListType links optional,
 FormSetType forms optional,
 TableSetType tables optional
}

Web page data is typically displayed using HTML tables that can be modeled with the
following TTCN-3 types:

type set of charstring RowCellSetType;
type record TableRowType {
 RowCellSetType cells
}
type set of TableRowType TableRowSetType;
type record TableType {
 TableRowSetType rows
}
type set of TableType TableSetType;

Once the types are defined, we can define the parametric template for the web
response that is composed of constants such as the page title and the status and a
parameter for the actual tables containing the requested data.

template WebPageType
hergeDBQueryResultsPage(TableSetType theTables) := {

 statusCode := 200,
 title := "bookstore.com query items page results ",
 content := ?,
 links := {},
 forms := {},
 tables := theTables
}

Here again, we could have hard coded the values of the tables but, instead, in order to
avoid duplicate work we prefer to dynamically create it by deriving it from the result
set of the database query using a function as follows:

function transformDBResultsIntoHTMLTables(ItemsType theDBItems)
 r eturn TableSetType {
 …
 theTableRows[0] := { cells := {"author", "title" , "price" }};

 for(i:=0; i < numOfDBRows; i:=i+1) {
 if(ischosen(theDBItems[i].booksTable)) {
 aBook := theDBItems[i].booksTable;
 aRow := {
 cells := { aBook.author, aBook.title,

myFloat2str(aBook.price) }
 };
 theTableRows[i+1] := aRow;
 }
 }

 theTable := { rows := theTableRows };

 tables[0] := theTable;
 return tables
}

Finally the full test behavior is specified as follows:

testcase database2webResultsTest() runs on MTCType system SystemType {
 var DBSelectResponseType theDBSelectResponse;

 map(mtc:dbPort, system:system_dbPort);
 map(mtc:webPort, system:system_webPort);

 … // set the database in the desired state

 dbPort.send(myBooksSelectRequest);
 dbPort.receive(myBooksSelectResponse(myBooks))
 -> value theDBSelec tResponse {
 var CatalogEntryResultSet theReceiveDBItems :=
 theDBSelectR esponse.items;

 var TableSetType booksTables :=
 transformDBResultsIntoHTMLTables(theRecei veDBItems);

 webPort.send(queryBooksHerge);
 alt {
 [] webPort.receive(hergeDBQueryResultsPage(bo oksTables)) {
 setverdict(pass)
 }
 [] webPort.receive {
 setverdict(fail)
 }
 }
}

5 Conclusions and Future Work

In this paper, we have demonstrated two main advantages of a test specification
approach for integration testing. First, test cases can be defined much more succinctly
using a single common language. This simplifies not only the writing of test cases,
but also the reading and understanding of these test cases. It also eliminates the need
to consult and understand test cases defined and written in several different languages.
Secondly, and perhaps more importantly it enables intermediate results that are
communicated using different data formats and protocols, to be integrated, combined,
compared and verified within a single, consistent data abstract layer.

We have also demonstrated the suitability of TTCN-3 both as a test specification
language and as a framework for executing integration tests. It supports the definition
of an abstract specification layer separate from test adaptors which manage
implementation specifics. TTCN-3 templates that are used to specify test oracles are
created dynamically based on defined abstract transformations between web requests
and the virtual data layer. The virtual data layer is mapped to different database
tables or views by a universal data codec.

While we have focused on integration testing in this paper, it can also be used for
blackbox and white box testing related to databases and session state. Black box
testing using parallel testing is proposed in [16]. They particularly recommend to
avoid the traditional approach of resetting the state of a database before each test as is
often recommended [9] because this is a time consuming process and also because it
does not reflect the realities of a multi-user application in general. In TTCN-3, we
have already shown the benefits of multi-user application testing in [17] and believe
the extension of these principles to databases should be straightforward.

Whitebox testing as described in [18] can also be implemented in a straight
forward fashion at an abstract level using TTCN-3. They state that the full behavior of
a database application program is described in terms of the manipulation of two very
different kinds of state: the program state and the database state. While, so far, we
have used a message oriented approach in our abstract test suites, TTCN-3 provides
also a procedure oriented approach. It can be used to invoke functions or methods of
the application under test directly and, thus, check the resulting state of both the
software and the database.

5 Acknowledgements

The authors would like to thank Testing Technologies IST GmbH for providing us the
necessary tool -- TTworkbench -- to carry out this research as well as NSERC for
partially funding this work.

References

1. ETSI ES 201 873-1, The Testing and Test Control Notation version 3, Part1: TTCN-3
Core notation, V3.4.1, September 2008

2. R. L. Probert, P. Xiong, B. Stepien, “Life-cycle E-Commerce Testing with OO-TTCN-3”,
FORTE'04 Workshops proceedings, September 2004

3. C.Rankin, The Software Testing Automation framework, IBM Systems Journal, Software
Testing and Verification, Vol. 41, No.1, 2002

4. A. Bertolino, L. Frantzen, A. Polini, and J. Tretmans. Audition of web services for testing
conformance to open specified protocols. In R. Reussner, J. Stafford, and C. Szyperski,
editors, Architecting Systems with Trustworthy Components, number 3938 in LNCS.
Springer-Verlag, 2006.

5. B.Stepien, I.Schieferdecker, “Automated Testing of XML/SOAP based Web Services”,
Proc. of the 13th. Fachkonferenz der Gesellschaft f¨ur Informatik (GI) Fachgruppe KiVS,
February 2003

6. Craggs I., Sardis M., and Heuillard T. AGEDIS Case Studies: Model-based Testing in
Industry. Proc. 1st European Conf. on Model Driven Softw. Eng. (Nuremberg, Germany,
Dec. 2003), imbus AG, 106—117

7. D. Amyot, J-F Roy, M. Weiss, UCM-Driven Testing of Web Applications. SDL Forum
2005

8. R.P.Tan, S.H. Edwards, Experiences Evaluating the Effectiveness of JML-JUnit Testing,
ACM SIGSOFT Software Engineering Notes, September 2004 Volume 29 Number 5

9. P. Zoio, “Testing 1,2,3…”, Oracle Magazine, July-August, 2005.
http://www.oracle.com/technology/oramag/oracle/05-jul/o45testing.html

10. ETSI ES 201 873-5 V3.3.1, The Testing and Test Control Notation version 3;
Part 5: TTCN-3 Runtime Interface (TRI), April 2008

11. JDBC, http://java.sun.com/docs/books/tutorial/jdbc/index.html
12. B.Stepien, A generic TTCN-3 codec framework for testing Database applications,

Working Paper, School of Information Technology and Engineering, University of
Ottawa, 2008.

13. Y. Deng, P. Frankl, J. Wang, Testing Web Database Applications, ACM SIGSOFT
Software Engineering Notes, Volume 29 , Issue 5, pp 1-10, 2004.

14. B. Stepien, L. Peyton, P. Xiong, “Framework Testing of Web Applications using TTCN-
3”, International Journal on Software Tools for Technology Transfer, Springer Berlin /
Heidelberg. Vol. 10, No. 4, pp 371-381, 2008

15. M.Y. Chan, S.C. Cheung, Testing Database Applications with SQL Semantics, in
Proceedings of 2nd International Symposium on Cooperative Database Systems for
Advanced Applications (CODAS'99), 1999.

16. C. Binnig, D. Kossmann, E. Lo, Testing Database Applications in Proceedings of the 2006
ACM SIGMOD international conference on Management of data, 206.

17. L. Peyton, B. Stepien, P. Seguin, "Integration Testing of Composite Applications",
Proceedings of the 41st Hawaii International Conference on System Sciences (HICSS
2008), 2008. ISSN:1530-1605.
http://csdl.computer.org/comp/proceedings/hicss/2008/3075/00/30750096.pdf

18. D. Willmor, S. M Embury, Exploring test adequacy for database systems, Proceedings of
the 3rd UK Software Testing Research Workshop, September 2005

