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Abstract—Penetration testing is widely used for vulnerability 

assessment of web applications.  Usually, it is performed by 

specialized security experts after development is completed and 

the application deployed into production, but recent research has 

proposed a model based penetration test framework for web 

applications which provides a repeatable, systematic and cost-

efficient approach fully integrated into a security-oriented 

software development life cycle. In this context, we evaluate the 

test specification language TTCN-3 as a modeling language for 

web penetration testing and show how its inherent abstraction 

features make the process of generating web penetration test 

campaigns easier. In particular, we demonstrate the advantages 

of combining separate models for the relevant web vulnerabilities 

and web application functionalities, with a generic web 

abstraction model and a TTCN-3 test framework model. 

 
Index Terms—Modeling, Penetration Testing, Security, 

Software Engineering, Web Security, TTCN-3 

I. INTRODUCTION 

Penetration testing is widely used in industry as a method for 

security assessment [18] to identify vulnerabilities in web 

applications [19]. It is often performed by security experts as a 

post-deployment, isolated test task to measure an application’s 

security posture. It has been proposed by many researchers 

that penetration testing should be leveraged for security 

assurance when an application is still under development, and 

it is well recognized that the testing should be performed early 

in the software development life cycle so that any security 

defects can be fixed with less cost [27], [28]. This is especially 

true for those vulnerabilities that are introduced by deficient 

analysis [25], [26].   

 

Unfortunately, penetration testing is usually performed very 

late in the lifecycle of a web application by security experts in 

an ad hoc manner with limited tool support [5].  A model-

driven penetration test framework for penetration testing web 

applications has been proposed in [15] that integrates 

penetration testing into a security-oriented software 

development lifecycle by deriving test scripts from 

development artifacts.  In this paper, we present an approach 

that leverages the inherent abstraction features of the test 

specification language TTCN-3 to make the process of 

generating web penetration test campaigns easier. In 

particular, we demonstrate the advantages of combining 

separate models of web vulnerabilities and web application 

functionalities, with a generic web abstraction model and 

TTCN-3 test framework model. 

II. BACKGROUND 

Model–based web testing has been widely studied. It is a 

software testing approach based on generating test cases from 

models.  It provides an oracle to determine test results based 

on models that describe an application’s expected behaviors 

[20].  A taxonomy of model-based testing can be found in 

[13]. It considers model-based testing as an exercise in 

abstraction at the following levels: 

•   function abstraction 

•   data abstraction 

•   communication abstraction 

 

The characteristics of a test system are also important: 

deterministic or non-deterministic, timing issues, continuous 

or event discrete models and the use of separate models for 

different testing purposes. 

 

We propose an approach that uses a high-level language, 

TTCN-3 [6] that was specifically designed for specifying and 

executing test suites at an abstract level and which gives full 

control of all these aspects. 

 

Other approaches include: 

• Finite State Machines. 

• state-based (or pre-post) notations 

• transition-based notations 

• history-based notations 

• functional notations 

• operational notations 

• stochastic notations 

• data-flow notations 

 

A model consists in describing the sequences and nature of 

inputs and outputs of a system under test (SUT) that constitute 

the test behavior. Such behaviors are specified using some 

formal languages that can be executed to produce test cases 

automatically. The most common paradigm is to use some 

finite state machine (FSM) from which all possible sequences 

of events (input or outputs) can be automatically generated. 

The major problem to solve is the one of state explosion when 

FSMs are not finite. This problem is most commonly solved 

by constraining the test case generation to particular test 
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purposes that describe how to reach a given state possibly 

using specific paths or way points. Many different formal and 

informal languages have been used to describe models. 

Telecommunications engineers used early formal languages 

such as LOTOS [8] or SDL [9]. With the arrival of object 

oriented languages, UML [10] became one the specification 

languages of choice, although it lacks a consistent, operational 

semantics [24]. 

III. WEB PENETRATION TESTING USING TTCN-3 

A. Differences between functional testing and penetration 

testing of web applications 

Before defining models to support web penetration testing we 

need to note the main differences between model-based 

functional testing of web applications and model-based 

penetration testing. Testing of non-functional requirements 

such as security and usability presents challenges not always 

encountered in functional testing.  There is still some question 

as to the advantages of model-based testing for non-functional 

requirements (including security) [17]. 

 

Functional testing of web applications starts from scratch. A 

full web application functional model must be coded using a 

formal language and test cases are generated from it. 

 

Web penetration testing, on the other hand, is usually achieved 

in two steps. The first step consists in using a fully functional 

web system for which a web application functional model 

already exists, and for which functional test cases have already 

been generated and executed. The test execution traces are 

usually saved into log files. The web application does not need 

to be deployed and even can be in various stages of 

completion at various stages of the web application 

development cycle [12]. 

 

The second step consists in specifying a web penetration test 

model in order to determine where in an existing sequence of 

web events obtained from the first step of functional testing, 

specific penetration testing events must be inserted or the 

original test suite must be modified for the purpose of 

penetration testing. 

 

Thus, web penetration testing does not need to be achieved 

from a complete model that describes both web application 

functionality and security requirements but instead is derived 

from a combination of the observed behavior of a fully 

functioning web application and a model of web 

vulnerabilities. Thus, in this paper, we assume that the web 

application functional model that has been used to generate 

web functional test cases has already been established using 

one of the numerous methods found in literature and that 

testing traces in form of log files also already exist and can be 

used for the second step of penetration testing.  

B. Combined models 

Consequently, there needs to be two separate models available 

in order to generate web penetration test suites, one for the 

functional aspect of the web application and one for the web 

penetration aspect. However, we have determined that when 

using TTCN-3, the problem can be further divided into test 

software components that each has its own model. Thus, in 

this project, we have determined that there are two additional 

models that are important as shown on figure 1. First, the 

TTCN-3 language as a testing language has its own model that 

is based on the concepts of separation of concerns between an 

abstract and concrete layer and within the abstract layer there 

is also a separation of concern between behavior and 

conditions governing behavior revolving around the TTCN-3 

concept of template. This model addresses one of the 

abstraction requirements of any class of models. Second, we 

have constructed a specific abstraction model using the 

TTCN-3 language itself to describe web testing using abstract 

data types that separate application data at an abstract level 

from HTML implementation and encoding details [16].  

 

The interesting aspect of these four overlapping models is that 

two of them are specified using model specification languages 

while the two others are inherent to the test implementation 

language, in this case TTCN-3 but also that TTCN-3 enables 

us to shift some elements of the functional and penetration 

models to the test case implementation itself. 

 
Figure 1: Models leveraged in web penetration testing 

 

It was also established in [11] that it is an advantage to break 

down models into sub-models or views. They use the 

following architecture viewpoints: functional, logical, 

technical and topological views in modeling automotive 

systems.  Since the penetration test campaigns are conducted 

upon a well-structured model, automation of major steps in the 

test process becomes possible. 

IV. PRELIMINARY EXPERIMENTS 

We have made two sets of preliminary experiments involving 

different case studies in our previous work. The first one used 

general purpose languages combined with web testing 

frameworks [15] and the second one used the TTCN-3 

language also combined with web testing frameworks [16]. 

A. Generating test cases from vulnerabilities databases 

In our first experiment [15], a knowledge base of known web 

vulnerabilities was created based on a model of vulnerabilities, 

attack vectors (types of entry points) and fuzz vectors 

(variations on parameters that can be used in the attack).  It 

was populated from widely used Internet sources [1][2][3][4]. 

Then, a single penetration test campaign model, shown in 

figure 2, was used to model how a specific web application 

should be tested for web vulnerabilities by modeling how the 
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application footprint, entry points, and check points mapped to 

known vulnerabilities and test cases (defined in terms of attack 

vectors and fuzz vectors). An entry point is an interface point 

(usually identified by an URL) where requests can be 

formulated and sent to the web application, thus serving as 

potential “doors” to web application attacks. Check points 

define where expected results can be used to verify that 

appropriate protection has been provided in the web 

application.  An application footprint consists of the elements 

of the running environment elements such as platform, 

backend database, OS and encoding schema.  The application 

footprint is used to filter out those attack vectors and fuzz 

vectors that are not applicable to the specific running 

environment of a web application under test.  

 

To evaluate the approach, in that first experiment, a web 

application penetration test model was created for the 

WebGoat reference application [23] and test cases were 

generated from the model and a test campaign was run. The 

test cases were generated as HTTP request scripts that were 

run by a hard-coded test runner tool built specifically for our 

experiment. Similar test campaigns were also run against two 

healthcare web applications [21] [22] while they were under 

development before being deployed as pilot systems.   

 

 
Figure 2: Web application penetration test security model 

This experiment enabled us to determine how to correlate 

information in vulnerabilities knowledge bases such as 

OWASP [1] to test case requirements and application 

functionalities. It also showed that the approach was 

successful in finding vulnerabilities that existed in the three 

web applications.  While most of the process could be 

automated, some areas still needed to be hand coded. The 

most important finding of this experiment was that there was 

little need for finite state machines to specify penetration tests. 

In this approach, most of the effort to determine where to 

apply knowledgebase of known web vulnerabilities was either 

spent gathering information from the web application 

developers or it was spent performing web-crawling to 

determine the entry points and implementing the attack 

vectors. This is mostly due to the fact that web penetration is 

deterministic, thus, it can be represented by a simple sequence 

of test events. 

B. Generating TTCN-3 test cases 

In our second experiment, we took the test scripts generated in 

the first experiment and evaluated the use of TTCN-3 as a 

specification language for those test scripts.  This experiment 

enabled us to determine the mapping between vulnerabilities 

knowledge bases information and TTCN-3 artifacts such as 

templates, parallel test components (PTCs) and test behavior 

paradigms like sequences and alternatives of test events.  Four 

main findings came out of this process: 

• how to abstract data via TTCN-3 templates 

• how to structure the architecture of parallel test 

components required for various attack scenarios 

• how to specify behavior of attacker and victim 

• how to coordinate the behaviors of the attacker and 

the victim 

 

1) Deriving penetration tests from functional web test cases 

and vulnerabilities data bases 

For a given application footprint, the fundamental element of a 

vulnerability is its entry point in a sequence of web events. 

Thus, in the simplest case, one needs to determine such a test 

event and to modify it according to the fuzz vector provided 

by the vulnerabilities data base. The attack vector enables us 

to determine what other test events, either performed by the 

victim or the attacker, must be inserted in the existing 

functional test event sequence; how they will be distributed 

among parallel test components (PTCs); and how they will be 

coordinated. We have used message sequence charts (MSC) to 

specify the test events related to a specific vulnerability as 

shown in figure 3 for the case of the persistent cross-site 

scripting (XSS) attacks. The vulnerability data base is written 

in an informal language. Our first task was to manually 

translate these into a more formal expression using the TTCN-

3 language itself.  

 
Figure 3: XSS attack MSC 

 

2) Using TTCN-3 test logs to generate web penetration tests 

One of the characteristics of TTCN-3 tools is that they 

produce log files in various form, one of them, in the case of 

TTworkBench [7] is a textual log file that displays the content 

of sent and received messages in a TTCN-3 template format. 

This enables one to extract these templates either manually or 
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automatically since the log has clearly defined keywords, 

assign names to them and use them for replay, including 

replay modified with fuzz vector data. In addition to replay, 

these templates can be used to determine which events 

constitute the target of attack vectors, such as login pages and 

which responses constitute check points such as viewing a 

bank statement web page in an online banking application.  

 

One of the main advantages to working with a trace log 

represented using TTCN-3 templates is that it is already an 

abstract representation of the content and consequently it is 

easier to automate the search using the entry point criteria 

from the penetration model. For example, in our case, both 

SQL injections and XSS attacks use manipulations of 

passwords to penetrate a web application. Thus, the entry 

point is a test event that consists in submitting a form that 

contains a password element type. This entry point however is 

subject to two different kinds of manipulations depending on 

the attack vector:  

• for SQL injection, it merely consists in creating a 

new form submit template where the password is 

replaced by the SQL injection fuzz vector using a test 

behavior identical to the victim’s normal behavior  

• for XSS, the password is obtained through stealing 

cookies from the victims session and using it to 

submit the login form. In this second case, the login 

test sequence is executed twice, once by the victim 

and once by the attacker, thus resulting in a more 

complex test behavior. In this case also, as shown on 

figure 3, there are a number of other attack vector 

events to perform 

 

Thus, in the sequence of web penetration events, some events 

must be marked as entry points. This will result in any 

penetration web events preceding the entry point to be 

executed before the entry point event itself.  It will also result 

in any penetration web events after the entry point to be 

executed after the entry point execution in the functional test 

sequence. For example, in figure 3, the entry point is the user 

login event. Thus, the web penetration events of posting a 

malicious message on a billboard would be executed before 

the victim’s login event. All the remaining events of the 

victim, including reading the malicious message results, the 

attacker reading the malicious site to steal the victim’s identity 

information via the cookie and finally the login to the victim’s 

online banking service would be executed after the entry 

point. Also, the victim’s login event following the entry point 

is used as a check point to confirm the attacker’s successful 

web application penetration. 

V. SPECIFYING THE MODELS FOR WEB PENETRATION TESTING 

One question to consider is whether the TTCN-3 language is 

to be used only as a test case implementation language or 

whether it can also be used as a model language for web 

penetration testing. In [17], the general purpose C# 

programming language was used as a model language. Their 

models are compiled in an intermediary language. In our case, 

we specify the models for web penetration testing in TTCN-3 

directly and do not need to compile it into an intermediary 

language like in [17]. This is mostly because templates in 

combination with the TTCN-3 matching mechanism can be 

used in order to search the test behaviors of existing functional 

testing test cases that have already been generated from web 

functional models in a very efficient and more intuitive 

manner.  This is easier to use than C# which has no matching 

mechanism and a more cumbersome approach to templates. 

The TTCN-3 matching mechanism combined with templates 

naturally hides any complex logic that is represented in C# 

using if-then-else constructs as shown in the examples 

provided in [17] and thus enables the reader to focus on 

behaviour. 

 

One advantage of using TTCN-3 is that the models are by 

definition abstract. Consequently, this consists in using 

TTCN-3 for describing the web vulnerabilities model of figure 

1. Thus, three out of the four models shown on figure 1 are 

now using TTCN-3. However, the remaining fourth model, the 

web application functional model is somewhat related to 

TTCN-3 as well since it can be used itself to generate test 

cases expressed in TTCN-3. These TTCN-3 test cases can be 

executed and the execution logs will be one of our central data 

to generate the web penetration test cases. 

 

The test case generation process is achieved in three steps: 

• Transform TTCN-3 test case execution log files into 

ordered lists of structured templates consisting of an 

event kind field, a test component identifier and the 

actual event data transformed into a template. We call 

this the functional test log events list. 

• Specify the web penetration attack vector in a similar 

way using a similar structured data type but first 

augmented with a field indicating whether the event 

is an entry point or a check point and also by setting 

most of the information of templates to the any value 

or the any or omitted value values. 

• Process the functional test log events list using the 

TTCN-3 match construct to attempt to match the 

functional test log events against one of the entry 

points of the web penetration model events. When a 

match is found, insert the web penetration events in 

appropriate test component behaviors and generate 

the coordination messages between the master test 

component (MTC) and the various PTCs (victim and 

attacker PTC). 

 

A. Using the TTCN-3 language as a model language 

The above procedure implies that we in fact are using the 

TTCN-3 language as the model language for web penetration 

testing. There are several advantages in this approach: 

• Test events specified as TTCN-3 templates can be 

modified to transform functional test events into 

penetration test events. For example, for SQL 

injections, one simply replaces the password value in 

the form submitting event for the login with the SQL 

injection value taken from the fuzz vector. 

• Searching and merging functional test events and 

penetration test events takes full advantage of the 

TTCN-3 match() built-in function to compare a 
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template and a value, one for the functional test event 

(FT_event_i below) and the other for the penetration 

test event (PT_event_j) as follows:  

 
match(FT_event_i, PT_event_j) 

 

Also, using TTCN-3 as a model language meets at least one of 

the fundamental requirements of a model language and this is 

to be abstract. The test generation architecture using TTCN-3 

is summarized in figure 4. 

 

 

Figure 4: Penetration testing architecture 

B. Implementation details 

1) Abstract data typing requirements 

As we have already mentioned previously, we use the log files 

of the TTworkbench tool in order to create TTCN-3 templates 

to portray the functional test events. These log files describe 

the test events structured in a number of fields but more 

important in an abstract way making it easy to manipulate. 

The Log Event Type field tells us whether the message has 

been sent or received. The msgValue field is of particular 

interest to us because this one is formatted like a TTCN-3 

template. This msgValue can be copied and pasted directly 

into a template definition by the test case generator. The log 

file for a login sequence looks as follows: 

 
Log Event Type : TLI:tliMSend_m 
msgValue : HtmlTypes.Url:  
"http://localhost:8080/ePasswordsCheck/servlet/query
_pwds" 

 
Log Event Type : TLI:tliMReceive_m 
msgValue : HtmlTypes.WebPageType: { 
    statusCode := 200, 
    title := "mycompany.com login page", 
    content := "mycompany.com login page 
Bernard's Bank 
login 
enter your user id and password 
user id: 
Password 
login", 

    links := {}, 
    forms := { 
      { name := "loginForm", 
        formAction := 
             "/ePasswordsCheck/servlet/pwd_check", 
        kindMethod := "post", 
        elements := { 
         {elementType := "text", name := "userid",                  
          elementValue := ""}} 
      } 
    }, 
    tables := {} 
} 

 
Log Event Type : TLI:tliMSend_m 
msgValue : HtmlTypes.BrowseFormType: { 
 name := "loginForm", 
 formAction 
:="http://localhost:8080/ePasswordsCheck/servlet/pwd
_check", 
 kindMethod := "POST", 
 elements := { 
    {elementType := "text", name := "userid",  
     elementValue := "bernard"}, 
    {elementType := "password", name := "pwd",  
     elementValue := "ottawa"}, 
    {elementType := "submit",name := "ignore",  
     elementValue := "login"} 
 } 
} 
 
Log Event Type : TLI:tliMReceive_m 
   msgValue : HtmlTypes.WebPageType: { 
     statusCode := 200, 
     title := "MyBank.com chequing account 
statement", 
     content := "MyBank.com chequing account 
statement 
login succeeded 
Your chequing account statement 
date  description   amount   kind 
2009-07-10 check # 235 2491.89 DB 
2009-07-02 salary ACME 5000.23 CR 
2009-06-28 transfer to savings 500.0 DB", 
  links := {}, 
  forms := {}, 
  tables := { 
   { 
    rows := { 
       {cells := {"date", "description",  
                  "amount", "kind"}}, 
       {cells := {"2009-07-10","check # 235", 
                  "2491.89","DB"}}, 
       {cells := {"2009-07-02","salary ACME", 
                  "5000.23","CR"}}, 
       {cells := {"2009-06-28", 
                "transfer to savings","500.0","DB"}} 
    } 
   } 
  } 
} 

 

Thus, in the above log, the first event is a URL submission 

event. After extracting the template expression found as the 

msgValue in the log file, we can assign a name to it such as: 
 
template UrlType event_1 := 

 "http://localhost:8080/.../query_pwds"; 

 

This template name can be reused to build new templates or to 

build elements of more complex templates. Also note that the 

data type of the event can be extracted from the log (not 

shown in the above example). 
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In our previous work [14], we have established a TTCN-3 

abstract data typing system to represent web test data. Three 

basic types were determined: a URL submission type, a form 

submission type and a web pages type. All of these abstract 

web events by eliminating any reference to the HTML 

formatting code and instead focusing on content and purpose. 

For example, the data type to represent web pages is: 

 
type record WebPageType { 

  integer statusCode, 
  charstring title, 
  charstring content, 
  LinkListType links optional,   
  FormSetType forms optional, 
  TableSetType tables optional 

} 

 

This constitutes our web abstraction model. However, for our 

test case generation purpose, we did wrap these data types into 

an test event description data type. The data type indicates 

whether the test event is sending or receiving messages, the 

name of the test component where the test event occurs, and 

finally the nature of the event message as a union between 

several possible data types. All of this data is drawn from the 

actual log file. The required data types are as follow: 

 
    type union WebEventKindType { 
        UrlType url, 
        BrowseFormType browseForm, 
        WebPageType webPage 
     } 
       
  type record WebEventType { 
     charstring action_, 
     charstring testComponent, 
     WebEventKindType event 
  } 

 

Thus, the functional test event templates depicting the URL 

submission event and the login form submitting event of the 

log file would look as follows: 

 
template WebEventType functionalTestEvent_1 := { 
  action_ := "send", 
  testComponent := "victim", 
  event := {url := event_1} 
} 

 
template WebEventType functionalTestEvent_3 := { 
  action_ := "send", 
  testComponent := "victim", 
  event := { browseForm:= event_3} 
} 

 

In the above example, note the TTCN-3 syntax that requires 

indicating the variant of the union type used for the event data. 

This is particularly important when the matching mechanism 

is in action as it will always first check the data types of the 

compared objects before even attempting to compare the 

actual values. 

 

The web penetration testing model events are specified in a 

similar way but with an additional field (modelEventKind) that 

indicates whether the event is an entry point or, check point or 

a regular event. 

 
    type record ModelEventType { 
        charstring action_, 
        charstring testComponent, 
        charstring modelEventKind optional, 
        WebEventKindType event 
    } 

 

2) Performing the entry point search 

The functional test events are real values since they come 

from a test execution log file even though we have 

transformed them into templates.  The transformation into 

templates is done mostly in order to be able to modify them 

using the full re-usability provided by TTCN-3 templates. We 

use the TTCN-3 modifies language construct for redefining 

templates. It states that a new template is a modification of an 

already existing template constitutes. It is in fact a distinct 

concept of class instance inheritance rather than the traditional 

class inheritance. We are using this language feature to 

transform functional test event templates into attack events by 

merely specifying the delta, i.e. the fields that contain the fuzz 

vector values.  

 

The penetration test model events are templates in the real 

sense, i.e. not really values but more also using matching 

rules. Effectively, when we are searching the functional test 

events for a form submission that contains a form with an 

element of type password, we do not need to know all the 

details of the form submission at that stage. Thus, the template 

to describe the entry point test event for a login form and a 

check point for a web page would be as follows: 

 
template ModelEventSequenceType  

penetrationModelTestSequence_t := { 
{ 

  action_ := "send", 
    testComponent := "victim", 

modelEventKind := "entry point", 
event := {browseForm := maliciousForm} 

  }, 
  { 

action_ := "receive", 
testComponent := "victim", 
modelEventKind := "check point", 
event := { webPage := ? }           

   } 
} 

 

Where the maliciousForm template is described as follows: 

 
template BrowseFormType maliciousForm := { 

name := ?, 
formAction := ?, 
kindMethod := "POST", 

 elements := { 
  {elementType := "text", name := ?,  

 elementValue := ?}, 
{elementType := "password", name := ?,  

   elementValue := ?}, 
{elementType := "submit", name := ?,  

   elementValue := ?} 
   } 
} 
 

The above form is constituted quasi exclusively of any value 

symbols “?” except for element types values, especially for the 

password. This template will match only against forms events 
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from the functional test events and also only forms that 

contain a password input field, i.e. for example, this means 

that it will never match against some other data submission 

form that do not contain a password field. 

 

However, the above template is used only for locating entry 

points and check points in the penetration testing behavior 

model. As a first step, once these points are determined, a 

variable of type WebEventType that we name entryPoint is 

constructed by merely eliminating the modelEventKind field 

information. Now, the search can be achieved as a list look up 

using the TTCN-3 match construct. 

 
for(i:=0; i < sizeof(functionalTestSequence_t);  

i := i +1) { 
if(match(valueof(functionalTestSequence_t[i]),  

entryPoint)) { 
       entry_point_i := i; 
   }    
 … // similar procedure for check points 
} 

 

3) Handling check points 

Since log traces are simple sequences of events, a simple 

substitution of a test event by a modified penetration test event 

is not sufficient. Effectively, the checkpoint event no longer 

can be a single event. It is now associated with various test 

verdicts depending on whether or not this test event matches 

or there is a time out. This requires the specification of 

alternative behavior using the alt construct as follows: 

 
alt { 
 [] attackerPort.receive(check_point_event) { 
    setverdict(fail); 
 } 
 [] attackerPort.receive {setverdict(pass)} 
 [] myTimer.timeout {setverdict(inconc)} 
} 

 

In the above alternative, the verdict has been set to fail when 

the attack manages to reach the check point web page. For any 

other web page, we consider the test to have passed since the 

attacker was not able to access the protected web page that 

constitutes the check point. 

 

4) Generating test behavior  

Once the position of the entry point in the functional test 

events list is determined, we can proceed to the last step that 

consists of merging the functional test events list with the web 

penetration model test events list. Two possibilities exist 

depending on the attack vector kind: 

• The functional test entry point event template is 

merely modified and the sequence as such is not 

modified. This is the case where the attacker 

substitutes itself for the victim such as for SQL 

injections attacks. 

• Both the sequence and the content (templates) of the 

functional test events sequence are modified. This is 

the case for XSS attacks where the attacker lures the 

victim onto a web site in order to steal his credentials 

and then in a later stage reproduces the normal 

behavior of the victim using the stolen credentials. 

 

In both case, the entry point events are modified by the 

attacker, and we re-use the check points of the victim’s 

functional test events to validate the resulting behavior of the 

attacker. The TTCN-3 template modifies language construct is 

particularly efficient for this purpose. In our example, for an 

SQL injection, all that is needed is to modify the third 

functional test event by inserting fuzz vector data “' or 

1=1 --” without having to redefine all the other field values: 
 
template BrowseFormType attack_event_3  

modifies event_3 := { 
  elements := { 
    {elementType := "text", name := "userid",  
                   elementValue := "bernard"}, 
    {elementType := "password", name := "pwd",  
                   elementValue := " ' or 1=1 -- "}, 
    {elementType := "submit", name := "ignore",  
                   elementValue := "login"} 

} 
} 

 

The process of generating the penetration test sequence 

consists in traversing the functional test sequence and either 

keeping an event as is or replace it using an attack event as 

follows: 

 
for(i:=0; i < sizeof(functionalTestSequence_t); 
                                        i := i +1) {         
 if(match(valueof(functionalTestSequence_t[i]),  
                                      entryPoint)) { 
     entry_point_i := i;            
     penetrationTestSequence[j].action_ :=  
                functionalTestSequence_t[i].action_; 
     penetrationTestSequence[j].testComponent :=  
          functionalTestSequence_t[i].testComponent; 
     penetrationTestSequence[j].event :=  
         substituteValues(entryPoint,  
         functionalTestSequence_t[i].event); 
     j := j + 1;    
   }    
   else { 
     penetrationTestSequence[j] :=  
                        functionalTestSequence_t[i]; 
     j := j + 1; 
   } 
} 

 

The substituteValues() function is where the values of the fuzz 

vector are used to modify the original corresponding 

functional testing event. In our case the fuzz vector is a 

modification of the maliciousForm template where the 

password is replaced by the SQL injection value. The above 

code is used to set the template content. In the actual code 

generation step, we use the same matching mechanism against 

checkpoint events in order to generate the verdicts associated 

with a checkpoint event as shown in section 3: 

 

5) Generating test component coordination 

In [16] we have specified a precise test behavior architecture 

with two main test components, one for the victim and one for 

the attacker. Naturally, the events of both components are not 

randomly interleaved. Some attack vectors require a very 

specific order in the sequence of events drawn from the two 

components behavior. The process we have described in the 

previous section consists mainly in composing a new sequence 
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from two individual sequences of victim and attacker 

behavior. Thus, we need to apply another procedure first to 

separate this combined events sequences into separate 

sequences and have the MTC steer the individual components.  

 

This code generation is relatively trivial as the events data of 

our combined sequence has a field that specifies which 

component performs the event. Thus, a simple scan of the 

combined event sequence is used to write the appropriate 

event in a separate file. The coordination messages are 

generated for both the MTC behavior and each component 

every time the component changes in the combined sequence. 

For example, in the following combined sequence of events: 

 
{ {event_1, “attacker”}, {event_2, “victim”},  
        {event_3, “victim”}, {event_4, “attacker”} } 

 

This sequence will result in an MTC coordination messages 

sequence that sends a coordination message to the component 

that should start performing the event and then receives a 

confirmation message that the event has indeed been 

performed as follows: 

 
 function MTC_behavior() … { 
  … 
  attackerCoordPort.send(“perform event_1”); 
  attackerCoordPort.receive(“event_1 performed”); 
  victimCoordPort.send(“perform event_2”); 
  victimCoordPort.receive(“event_3 performed”); 
  attackerCoordPort.send(“perform event_4”); 
  attackerCoordPort.receive(“event_4 performed”); 

} 
 

These same coordination messages are mirrored in the 

individual components behavior in order to block the 

execution of events as long as other components have not 

performed their behavior fragments. 

VI. CONCLUSION 

In this paper, we have demonstrated how to leverage the 

advantages of TTCN-3 in a model-based approach to web 

application penetration testing by addressing two types of 

penetration test cases: SQL Injection and XSS attacks. The 

TTCN-3 testing language through its separation of concerns 

approach allows specifying both models and test cases in a 

highly abstract way. Abstraction is the key factor to reduce 

modeling efforts and test results analysis. Also, the TTCN-3 

engine and run-time environment supports the creation of 

clear and concise testing architectures that maximize re-

usability in a sound and systematic fashion. Finally, it allows a 

divide-and-conquer approach of the modeling activities by 

separating the problem into several concurrent models. 
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