
 1

Abstract—Penetration testing is widely used for vulnerability

assessment of web applications. Usually, it is performed by

specialized security experts after development is completed and

the application deployed into production, but recent research has

proposed a model based penetration test framework for web

applications which provides a repeatable, systematic and cost-

efficient approach fully integrated into a security-oriented

software development life cycle. In this context, we evaluate the

test specification language TTCN-3 as a modeling language for

web penetration testing and show how its inherent abstraction

features make the process of generating web penetration test

campaigns easier. In particular, we demonstrate the advantages

of combining separate models for the relevant web vulnerabilities

and web application functionalities, with a generic web

abstraction model and a TTCN-3 test framework model.

Index Terms—Modeling, Penetration Testing, Security,

Software Engineering, Web Security, TTCN-3

I. INTRODUCTION

Penetration testing is widely used in industry as a method for

security assessment [18] to identify vulnerabilities in web

applications [19]. It is often performed by security experts as a

post-deployment, isolated test task to measure an application’s

security posture. It has been proposed by many researchers

that penetration testing should be leveraged for security

assurance when an application is still under development, and

it is well recognized that the testing should be performed early

in the software development life cycle so that any security

defects can be fixed with less cost [27], [28]. This is especially

true for those vulnerabilities that are introduced by deficient

analysis [25], [26].

Unfortunately, penetration testing is usually performed very

late in the lifecycle of a web application by security experts in

an ad hoc manner with limited tool support [5]. A model-

driven penetration test framework for penetration testing web

applications has been proposed in [15] that integrates

penetration testing into a security-oriented software

development lifecycle by deriving test scripts from

development artifacts. In this paper, we present an approach

that leverages the inherent abstraction features of the test

specification language TTCN-3 to make the process of

generating web penetration test campaigns easier. In

particular, we demonstrate the advantages of combining

separate models of web vulnerabilities and web application

functionalities, with a generic web abstraction model and

TTCN-3 test framework model.

II. BACKGROUND

Model–based web testing has been widely studied. It is a

software testing approach based on generating test cases from

models. It provides an oracle to determine test results based

on models that describe an application’s expected behaviors

[20]. A taxonomy of model-based testing can be found in

[13]. It considers model-based testing as an exercise in

abstraction at the following levels:

• function abstraction

• data abstraction

• communication abstraction

The characteristics of a test system are also important:

deterministic or non-deterministic, timing issues, continuous

or event discrete models and the use of separate models for

different testing purposes.

We propose an approach that uses a high-level language,

TTCN-3 [6] that was specifically designed for specifying and

executing test suites at an abstract level and which gives full

control of all these aspects.

Other approaches include:

• Finite State Machines.

• state-based (or pre-post) notations

• transition-based notations

• history-based notations

• functional notations

• operational notations

• stochastic notations

• data-flow notations

A model consists in describing the sequences and nature of

inputs and outputs of a system under test (SUT) that constitute

the test behavior. Such behaviors are specified using some

formal languages that can be executed to produce test cases

automatically. The most common paradigm is to use some

finite state machine (FSM) from which all possible sequences

of events (input or outputs) can be automatically generated.

The major problem to solve is the one of state explosion when

FSMs are not finite. This problem is most commonly solved

by constraining the test case generation to particular test

Using TTCN-3 as a Modeling Language for

Web Penetration Testing

Bernard Stepien, Liam Peyton, Pulei Xiong

SITE, University of Ottawa, {bernard, lpeyton, xiong}@site.uottawa.ca

685 ICIT 2012978-1-4673-0342-2/12/$31.00 ©2012 IEEE

 2

purposes that describe how to reach a given state possibly

using specific paths or way points. Many different formal and

informal languages have been used to describe models.

Telecommunications engineers used early formal languages

such as LOTOS [8] or SDL [9]. With the arrival of object

oriented languages, UML [10] became one the specification

languages of choice, although it lacks a consistent, operational

semantics [24].

III. WEB PENETRATION TESTING USING TTCN-3

A. Differences between functional testing and penetration

testing of web applications

Before defining models to support web penetration testing we

need to note the main differences between model-based

functional testing of web applications and model-based

penetration testing. Testing of non-functional requirements

such as security and usability presents challenges not always

encountered in functional testing. There is still some question

as to the advantages of model-based testing for non-functional

requirements (including security) [17].

Functional testing of web applications starts from scratch. A

full web application functional model must be coded using a

formal language and test cases are generated from it.

Web penetration testing, on the other hand, is usually achieved

in two steps. The first step consists in using a fully functional

web system for which a web application functional model

already exists, and for which functional test cases have already

been generated and executed. The test execution traces are

usually saved into log files. The web application does not need

to be deployed and even can be in various stages of

completion at various stages of the web application

development cycle [12].

The second step consists in specifying a web penetration test

model in order to determine where in an existing sequence of

web events obtained from the first step of functional testing,

specific penetration testing events must be inserted or the

original test suite must be modified for the purpose of

penetration testing.

Thus, web penetration testing does not need to be achieved

from a complete model that describes both web application

functionality and security requirements but instead is derived

from a combination of the observed behavior of a fully

functioning web application and a model of web

vulnerabilities. Thus, in this paper, we assume that the web

application functional model that has been used to generate

web functional test cases has already been established using

one of the numerous methods found in literature and that

testing traces in form of log files also already exist and can be

used for the second step of penetration testing.

B. Combined models

Consequently, there needs to be two separate models available

in order to generate web penetration test suites, one for the

functional aspect of the web application and one for the web

penetration aspect. However, we have determined that when

using TTCN-3, the problem can be further divided into test

software components that each has its own model. Thus, in

this project, we have determined that there are two additional

models that are important as shown on figure 1. First, the

TTCN-3 language as a testing language has its own model that

is based on the concepts of separation of concerns between an

abstract and concrete layer and within the abstract layer there

is also a separation of concern between behavior and

conditions governing behavior revolving around the TTCN-3

concept of template. This model addresses one of the

abstraction requirements of any class of models. Second, we

have constructed a specific abstraction model using the

TTCN-3 language itself to describe web testing using abstract

data types that separate application data at an abstract level

from HTML implementation and encoding details [16].

The interesting aspect of these four overlapping models is that

two of them are specified using model specification languages

while the two others are inherent to the test implementation

language, in this case TTCN-3 but also that TTCN-3 enables

us to shift some elements of the functional and penetration

models to the test case implementation itself.

Figure 1: Models leveraged in web penetration testing

It was also established in [11] that it is an advantage to break

down models into sub-models or views. They use the

following architecture viewpoints: functional, logical,

technical and topological views in modeling automotive

systems. Since the penetration test campaigns are conducted

upon a well-structured model, automation of major steps in the

test process becomes possible.

IV. PRELIMINARY EXPERIMENTS

We have made two sets of preliminary experiments involving

different case studies in our previous work. The first one used

general purpose languages combined with web testing

frameworks [15] and the second one used the TTCN-3

language also combined with web testing frameworks [16].

A. Generating test cases from vulnerabilities databases

In our first experiment [15], a knowledge base of known web

vulnerabilities was created based on a model of vulnerabilities,

attack vectors (types of entry points) and fuzz vectors

(variations on parameters that can be used in the attack). It

was populated from widely used Internet sources [1][2][3][4].

Then, a single penetration test campaign model, shown in

figure 2, was used to model how a specific web application

should be tested for web vulnerabilities by modeling how the

686

 3

application footprint, entry points, and check points mapped to

known vulnerabilities and test cases (defined in terms of attack

vectors and fuzz vectors). An entry point is an interface point

(usually identified by an URL) where requests can be

formulated and sent to the web application, thus serving as

potential “doors” to web application attacks. Check points

define where expected results can be used to verify that

appropriate protection has been provided in the web

application. An application footprint consists of the elements

of the running environment elements such as platform,

backend database, OS and encoding schema. The application

footprint is used to filter out those attack vectors and fuzz

vectors that are not applicable to the specific running

environment of a web application under test.

To evaluate the approach, in that first experiment, a web

application penetration test model was created for the

WebGoat reference application [23] and test cases were

generated from the model and a test campaign was run. The

test cases were generated as HTTP request scripts that were

run by a hard-coded test runner tool built specifically for our

experiment. Similar test campaigns were also run against two

healthcare web applications [21] [22] while they were under

development before being deployed as pilot systems.

Figure 2: Web application penetration test security model

This experiment enabled us to determine how to correlate

information in vulnerabilities knowledge bases such as

OWASP [1] to test case requirements and application

functionalities. It also showed that the approach was

successful in finding vulnerabilities that existed in the three

web applications. While most of the process could be

automated, some areas still needed to be hand coded. The

most important finding of this experiment was that there was

little need for finite state machines to specify penetration tests.

In this approach, most of the effort to determine where to

apply knowledgebase of known web vulnerabilities was either

spent gathering information from the web application

developers or it was spent performing web-crawling to

determine the entry points and implementing the attack

vectors. This is mostly due to the fact that web penetration is

deterministic, thus, it can be represented by a simple sequence

of test events.

B. Generating TTCN-3 test cases

In our second experiment, we took the test scripts generated in

the first experiment and evaluated the use of TTCN-3 as a

specification language for those test scripts. This experiment

enabled us to determine the mapping between vulnerabilities

knowledge bases information and TTCN-3 artifacts such as

templates, parallel test components (PTCs) and test behavior

paradigms like sequences and alternatives of test events. Four

main findings came out of this process:

• how to abstract data via TTCN-3 templates

• how to structure the architecture of parallel test

components required for various attack scenarios

• how to specify behavior of attacker and victim

• how to coordinate the behaviors of the attacker and

the victim

1) Deriving penetration tests from functional web test cases

and vulnerabilities data bases

For a given application footprint, the fundamental element of a

vulnerability is its entry point in a sequence of web events.

Thus, in the simplest case, one needs to determine such a test

event and to modify it according to the fuzz vector provided

by the vulnerabilities data base. The attack vector enables us

to determine what other test events, either performed by the

victim or the attacker, must be inserted in the existing

functional test event sequence; how they will be distributed

among parallel test components (PTCs); and how they will be

coordinated. We have used message sequence charts (MSC) to

specify the test events related to a specific vulnerability as

shown in figure 3 for the case of the persistent cross-site

scripting (XSS) attacks. The vulnerability data base is written

in an informal language. Our first task was to manually

translate these into a more formal expression using the TTCN-

3 language itself.

Figure 3: XSS attack MSC

2) Using TTCN-3 test logs to generate web penetration tests

One of the characteristics of TTCN-3 tools is that they

produce log files in various form, one of them, in the case of

TTworkBench [7] is a textual log file that displays the content

of sent and received messages in a TTCN-3 template format.

This enables one to extract these templates either manually or

687

 4

automatically since the log has clearly defined keywords,

assign names to them and use them for replay, including

replay modified with fuzz vector data. In addition to replay,

these templates can be used to determine which events

constitute the target of attack vectors, such as login pages and

which responses constitute check points such as viewing a

bank statement web page in an online banking application.

One of the main advantages to working with a trace log

represented using TTCN-3 templates is that it is already an

abstract representation of the content and consequently it is

easier to automate the search using the entry point criteria

from the penetration model. For example, in our case, both

SQL injections and XSS attacks use manipulations of

passwords to penetrate a web application. Thus, the entry

point is a test event that consists in submitting a form that

contains a password element type. This entry point however is

subject to two different kinds of manipulations depending on

the attack vector:

• for SQL injection, it merely consists in creating a

new form submit template where the password is

replaced by the SQL injection fuzz vector using a test

behavior identical to the victim’s normal behavior

• for XSS, the password is obtained through stealing

cookies from the victims session and using it to

submit the login form. In this second case, the login

test sequence is executed twice, once by the victim

and once by the attacker, thus resulting in a more

complex test behavior. In this case also, as shown on

figure 3, there are a number of other attack vector

events to perform

Thus, in the sequence of web penetration events, some events

must be marked as entry points. This will result in any

penetration web events preceding the entry point to be

executed before the entry point event itself. It will also result

in any penetration web events after the entry point to be

executed after the entry point execution in the functional test

sequence. For example, in figure 3, the entry point is the user

login event. Thus, the web penetration events of posting a

malicious message on a billboard would be executed before

the victim’s login event. All the remaining events of the

victim, including reading the malicious message results, the

attacker reading the malicious site to steal the victim’s identity

information via the cookie and finally the login to the victim’s

online banking service would be executed after the entry

point. Also, the victim’s login event following the entry point

is used as a check point to confirm the attacker’s successful

web application penetration.

V. SPECIFYING THE MODELS FOR WEB PENETRATION TESTING

One question to consider is whether the TTCN-3 language is

to be used only as a test case implementation language or

whether it can also be used as a model language for web

penetration testing. In [17], the general purpose C#

programming language was used as a model language. Their

models are compiled in an intermediary language. In our case,

we specify the models for web penetration testing in TTCN-3

directly and do not need to compile it into an intermediary

language like in [17]. This is mostly because templates in

combination with the TTCN-3 matching mechanism can be

used in order to search the test behaviors of existing functional

testing test cases that have already been generated from web

functional models in a very efficient and more intuitive

manner. This is easier to use than C# which has no matching

mechanism and a more cumbersome approach to templates.

The TTCN-3 matching mechanism combined with templates

naturally hides any complex logic that is represented in C#

using if-then-else constructs as shown in the examples

provided in [17] and thus enables the reader to focus on

behaviour.

One advantage of using TTCN-3 is that the models are by

definition abstract. Consequently, this consists in using

TTCN-3 for describing the web vulnerabilities model of figure

1. Thus, three out of the four models shown on figure 1 are

now using TTCN-3. However, the remaining fourth model, the

web application functional model is somewhat related to

TTCN-3 as well since it can be used itself to generate test

cases expressed in TTCN-3. These TTCN-3 test cases can be

executed and the execution logs will be one of our central data

to generate the web penetration test cases.

The test case generation process is achieved in three steps:

• Transform TTCN-3 test case execution log files into

ordered lists of structured templates consisting of an

event kind field, a test component identifier and the

actual event data transformed into a template. We call

this the functional test log events list.

• Specify the web penetration attack vector in a similar

way using a similar structured data type but first

augmented with a field indicating whether the event

is an entry point or a check point and also by setting

most of the information of templates to the any value

or the any or omitted value values.

• Process the functional test log events list using the

TTCN-3 match construct to attempt to match the

functional test log events against one of the entry

points of the web penetration model events. When a

match is found, insert the web penetration events in

appropriate test component behaviors and generate

the coordination messages between the master test

component (MTC) and the various PTCs (victim and

attacker PTC).

A. Using the TTCN-3 language as a model language

The above procedure implies that we in fact are using the

TTCN-3 language as the model language for web penetration

testing. There are several advantages in this approach:

• Test events specified as TTCN-3 templates can be

modified to transform functional test events into

penetration test events. For example, for SQL

injections, one simply replaces the password value in

the form submitting event for the login with the SQL

injection value taken from the fuzz vector.

• Searching and merging functional test events and

penetration test events takes full advantage of the

TTCN-3 match() built-in function to compare a

688

 5

template and a value, one for the functional test event

(FT_event_i below) and the other for the penetration

test event (PT_event_j) as follows:

match(FT_event_i, PT_event_j)

Also, using TTCN-3 as a model language meets at least one of

the fundamental requirements of a model language and this is

to be abstract. The test generation architecture using TTCN-3

is summarized in figure 4.

Figure 4: Penetration testing architecture

B. Implementation details

1) Abstract data typing requirements

As we have already mentioned previously, we use the log files

of the TTworkbench tool in order to create TTCN-3 templates

to portray the functional test events. These log files describe

the test events structured in a number of fields but more

important in an abstract way making it easy to manipulate.

The Log Event Type field tells us whether the message has

been sent or received. The msgValue field is of particular

interest to us because this one is formatted like a TTCN-3

template. This msgValue can be copied and pasted directly

into a template definition by the test case generator. The log

file for a login sequence looks as follows:

Log Event Type : TLI:tliMSend_m
msgValue : HtmlTypes.Url:
"http://localhost:8080/ePasswordsCheck/servlet/query
_pwds"

Log Event Type : TLI:tliMReceive_m
msgValue : HtmlTypes.WebPageType: {
 statusCode := 200,
 title := "mycompany.com login page",
 content := "mycompany.com login page
Bernard's Bank
login
enter your user id and password
user id:
Password
login",

 links := {},
 forms := {
 { name := "loginForm",
 formAction :=
 "/ePasswordsCheck/servlet/pwd_check",
 kindMethod := "post",
 elements := {
 {elementType := "text", name := "userid",
 elementValue := ""}}
 }
 },
 tables := {}
}

Log Event Type : TLI:tliMSend_m
msgValue : HtmlTypes.BrowseFormType: {
 name := "loginForm",
 formAction
:="http://localhost:8080/ePasswordsCheck/servlet/pwd
_check",
 kindMethod := "POST",
 elements := {
 {elementType := "text", name := "userid",
 elementValue := "bernard"},
 {elementType := "password", name := "pwd",
 elementValue := "ottawa"},
 {elementType := "submit",name := "ignore",
 elementValue := "login"}
 }
}

Log Event Type : TLI:tliMReceive_m
 msgValue : HtmlTypes.WebPageType: {
 statusCode := 200,
 title := "MyBank.com chequing account
statement",
 content := "MyBank.com chequing account
statement
login succeeded
Your chequing account statement
date description amount kind
2009-07-10 check # 235 2491.89 DB
2009-07-02 salary ACME 5000.23 CR
2009-06-28 transfer to savings 500.0 DB",
 links := {},
 forms := {},
 tables := {
 {
 rows := {
 {cells := {"date", "description",
 "amount", "kind"}},
 {cells := {"2009-07-10","check # 235",
 "2491.89","DB"}},
 {cells := {"2009-07-02","salary ACME",
 "5000.23","CR"}},
 {cells := {"2009-06-28",
 "transfer to savings","500.0","DB"}}
 }
 }
 }
}

Thus, in the above log, the first event is a URL submission

event. After extracting the template expression found as the

msgValue in the log file, we can assign a name to it such as:

template UrlType event_1 :=

 "http://localhost:8080/.../query_pwds";

This template name can be reused to build new templates or to

build elements of more complex templates. Also note that the

data type of the event can be extracted from the log (not

shown in the above example).

689

 6

In our previous work [14], we have established a TTCN-3

abstract data typing system to represent web test data. Three

basic types were determined: a URL submission type, a form

submission type and a web pages type. All of these abstract

web events by eliminating any reference to the HTML

formatting code and instead focusing on content and purpose.

For example, the data type to represent web pages is:

type record WebPageType {

 integer statusCode,
 charstring title,
 charstring content,
 LinkListType links optional,
 FormSetType forms optional,
 TableSetType tables optional

}

This constitutes our web abstraction model. However, for our

test case generation purpose, we did wrap these data types into

an test event description data type. The data type indicates

whether the test event is sending or receiving messages, the

name of the test component where the test event occurs, and

finally the nature of the event message as a union between

several possible data types. All of this data is drawn from the

actual log file. The required data types are as follow:

 type union WebEventKindType {
 UrlType url,
 BrowseFormType browseForm,
 WebPageType webPage
 }

 type record WebEventType {
 charstring action_,
 charstring testComponent,
 WebEventKindType event
 }

Thus, the functional test event templates depicting the URL

submission event and the login form submitting event of the

log file would look as follows:

template WebEventType functionalTestEvent_1 := {
 action_ := "send",
 testComponent := "victim",
 event := {url := event_1}
}

template WebEventType functionalTestEvent_3 := {
 action_ := "send",
 testComponent := "victim",
 event := { browseForm:= event_3}
}

In the above example, note the TTCN-3 syntax that requires

indicating the variant of the union type used for the event data.

This is particularly important when the matching mechanism

is in action as it will always first check the data types of the

compared objects before even attempting to compare the

actual values.

The web penetration testing model events are specified in a

similar way but with an additional field (modelEventKind) that

indicates whether the event is an entry point or, check point or

a regular event.

 type record ModelEventType {
 charstring action_,
 charstring testComponent,
 charstring modelEventKind optional,
 WebEventKindType event
 }

2) Performing the entry point search

The functional test events are real values since they come

from a test execution log file even though we have

transformed them into templates. The transformation into

templates is done mostly in order to be able to modify them

using the full re-usability provided by TTCN-3 templates. We

use the TTCN-3 modifies language construct for redefining

templates. It states that a new template is a modification of an

already existing template constitutes. It is in fact a distinct

concept of class instance inheritance rather than the traditional

class inheritance. We are using this language feature to

transform functional test event templates into attack events by

merely specifying the delta, i.e. the fields that contain the fuzz

vector values.

The penetration test model events are templates in the real

sense, i.e. not really values but more also using matching

rules. Effectively, when we are searching the functional test

events for a form submission that contains a form with an

element of type password, we do not need to know all the

details of the form submission at that stage. Thus, the template

to describe the entry point test event for a login form and a

check point for a web page would be as follows:

template ModelEventSequenceType

penetrationModelTestSequence_t := {
{

 action_ := "send",
 testComponent := "victim",

modelEventKind := "entry point",
event := {browseForm := maliciousForm}

 },
 {

action_ := "receive",
testComponent := "victim",
modelEventKind := "check point",
event := { webPage := ? }

 }
}

Where the maliciousForm template is described as follows:

template BrowseFormType maliciousForm := {

name := ?,
formAction := ?,
kindMethod := "POST",

 elements := {
 {elementType := "text", name := ?,

 elementValue := ?},
{elementType := "password", name := ?,

 elementValue := ?},
{elementType := "submit", name := ?,

 elementValue := ?}
 }
}

The above form is constituted quasi exclusively of any value

symbols “?” except for element types values, especially for the

password. This template will match only against forms events

690

 7

from the functional test events and also only forms that

contain a password input field, i.e. for example, this means

that it will never match against some other data submission

form that do not contain a password field.

However, the above template is used only for locating entry

points and check points in the penetration testing behavior

model. As a first step, once these points are determined, a

variable of type WebEventType that we name entryPoint is

constructed by merely eliminating the modelEventKind field

information. Now, the search can be achieved as a list look up

using the TTCN-3 match construct.

for(i:=0; i < sizeof(functionalTestSequence_t);

i := i +1) {
if(match(valueof(functionalTestSequence_t[i]),

entryPoint)) {
 entry_point_i := i;
 }
 … // similar procedure for check points
}

3) Handling check points

Since log traces are simple sequences of events, a simple

substitution of a test event by a modified penetration test event

is not sufficient. Effectively, the checkpoint event no longer

can be a single event. It is now associated with various test

verdicts depending on whether or not this test event matches

or there is a time out. This requires the specification of

alternative behavior using the alt construct as follows:

alt {
 [] attackerPort.receive(check_point_event) {
 setverdict(fail);
 }
 [] attackerPort.receive {setverdict(pass)}
 [] myTimer.timeout {setverdict(inconc)}
}

In the above alternative, the verdict has been set to fail when

the attack manages to reach the check point web page. For any

other web page, we consider the test to have passed since the

attacker was not able to access the protected web page that

constitutes the check point.

4) Generating test behavior

Once the position of the entry point in the functional test

events list is determined, we can proceed to the last step that

consists of merging the functional test events list with the web

penetration model test events list. Two possibilities exist

depending on the attack vector kind:

• The functional test entry point event template is

merely modified and the sequence as such is not

modified. This is the case where the attacker

substitutes itself for the victim such as for SQL

injections attacks.

• Both the sequence and the content (templates) of the

functional test events sequence are modified. This is

the case for XSS attacks where the attacker lures the

victim onto a web site in order to steal his credentials

and then in a later stage reproduces the normal

behavior of the victim using the stolen credentials.

In both case, the entry point events are modified by the

attacker, and we re-use the check points of the victim’s

functional test events to validate the resulting behavior of the

attacker. The TTCN-3 template modifies language construct is

particularly efficient for this purpose. In our example, for an

SQL injection, all that is needed is to modify the third

functional test event by inserting fuzz vector data “' or

1=1 --” without having to redefine all the other field values:

template BrowseFormType attack_event_3

modifies event_3 := {
 elements := {
 {elementType := "text", name := "userid",
 elementValue := "bernard"},
 {elementType := "password", name := "pwd",
 elementValue := " ' or 1=1 -- "},
 {elementType := "submit", name := "ignore",
 elementValue := "login"}

}
}

The process of generating the penetration test sequence

consists in traversing the functional test sequence and either

keeping an event as is or replace it using an attack event as

follows:

for(i:=0; i < sizeof(functionalTestSequence_t);
 i := i +1) {
 if(match(valueof(functionalTestSequence_t[i]),
 entryPoint)) {
 entry_point_i := i;
 penetrationTestSequence[j].action_ :=
 functionalTestSequence_t[i].action_;
 penetrationTestSequence[j].testComponent :=
 functionalTestSequence_t[i].testComponent;
 penetrationTestSequence[j].event :=
 substituteValues(entryPoint,
 functionalTestSequence_t[i].event);
 j := j + 1;
 }
 else {
 penetrationTestSequence[j] :=
 functionalTestSequence_t[i];
 j := j + 1;
 }
}

The substituteValues() function is where the values of the fuzz

vector are used to modify the original corresponding

functional testing event. In our case the fuzz vector is a

modification of the maliciousForm template where the

password is replaced by the SQL injection value. The above

code is used to set the template content. In the actual code

generation step, we use the same matching mechanism against

checkpoint events in order to generate the verdicts associated

with a checkpoint event as shown in section 3:

5) Generating test component coordination

In [16] we have specified a precise test behavior architecture

with two main test components, one for the victim and one for

the attacker. Naturally, the events of both components are not

randomly interleaved. Some attack vectors require a very

specific order in the sequence of events drawn from the two

components behavior. The process we have described in the

previous section consists mainly in composing a new sequence

691

 8

from two individual sequences of victim and attacker

behavior. Thus, we need to apply another procedure first to

separate this combined events sequences into separate

sequences and have the MTC steer the individual components.

This code generation is relatively trivial as the events data of

our combined sequence has a field that specifies which

component performs the event. Thus, a simple scan of the

combined event sequence is used to write the appropriate

event in a separate file. The coordination messages are

generated for both the MTC behavior and each component

every time the component changes in the combined sequence.

For example, in the following combined sequence of events:

{ {event_1, “attacker”}, {event_2, “victim”},
 {event_3, “victim”}, {event_4, “attacker”} }

This sequence will result in an MTC coordination messages

sequence that sends a coordination message to the component

that should start performing the event and then receives a

confirmation message that the event has indeed been

performed as follows:

 function MTC_behavior() … {
 …
 attackerCoordPort.send(“perform event_1”);
 attackerCoordPort.receive(“event_1 performed”);
 victimCoordPort.send(“perform event_2”);
 victimCoordPort.receive(“event_3 performed”);
 attackerCoordPort.send(“perform event_4”);
 attackerCoordPort.receive(“event_4 performed”);

}

These same coordination messages are mirrored in the

individual components behavior in order to block the

execution of events as long as other components have not

performed their behavior fragments.

VI. CONCLUSION

In this paper, we have demonstrated how to leverage the

advantages of TTCN-3 in a model-based approach to web

application penetration testing by addressing two types of

penetration test cases: SQL Injection and XSS attacks. The

TTCN-3 testing language through its separation of concerns

approach allows specifying both models and test cases in a

highly abstract way. Abstraction is the key factor to reduce

modeling efforts and test results analysis. Also, the TTCN-3

engine and run-time environment supports the creation of

clear and concise testing architectures that maximize re-

usability in a sound and systematic fashion. Finally, it allows a

divide-and-conquer approach of the modeling activities by

separating the problem into several concurrent models.

REFERENCES

[1] OWASP TOP 10: The Ten Most Critical Web Application Security

Vulnerabilities. Retrieved December 2011 from The Open Web
Application Security Project:

http://www.owasp.org/images/e/e8/OWASP_Top_10_2007.pdf

[2] TOP 20 Internet Security Problems, Threats and Risks. Retrieved

December 2011 from The SANS Institute: http://www.sans.org/top20/
[3] The WASC Threat Classification v2.0. Retrieved December 2011 from

Web Application Security Consortium:

http://projects.webappsec.org/f/WASC-TC-v2_0.pdf
[4] OWASP Testing Guide. Retrieved December 2011 from The Open Web

Application Security Project:

https://www.owasp.org/images/8/89/OWASP_Testing_Guide_V3.pdf
[5] Palmer, S. (2007). Web Application Vulnerabilities: Detect, Exploit,

Prevent. Syngress Publishing.

[6] ETSI ES 201 873-1 (2008). The Testing and Test Control Notation
version 3, Part 1: TTCN-3 Core notation, V3.4.1, September 2008

[7] Testing Technologies, TTworkbench - an Eclipse based TTCN-3 IDE,

www.testingtech.com/products/ttworkbench.php, 2011.
[8] ISO 8807, Language Of Temporal Ordering Specification, 1990

[9] ITU-T Z.100, Specification and Description Language, 1988

[10] OMG, Unified Modeling Language, http://www.omg.org/spec/UML/
[11] G.Din, K-D. Engel, A. Rennoch, An Approach for Test Derivation from

System Architecture Models applied to Embedded Systems, in MoTiP

proceedings, 2009
[12] Arkin, B., Stender, S., & McGraw, G. (2005, Janunary-February).

Software Penetration Testing. IEEE Security & Privacy, Volume 3

(Issue 1), pp. 84-87.
[13] M. Utting, A. Pretschner, B. Legeard, A Taxonomy Of Model-Based

Testing, working paper http://www.cs.waikato.ac.nz/pubs/wp/2006/uow-

cs-wp-2006-04.pdf
[14] B. Stepien, L. Peyton, P. Xiong, Framework Testing of Web

Applications using TTCN-3, International Journal on Software Tools for
Technology Transfer, Springer Berlin / Heidelberg. Vol. 10, No. 4, pp

371-381, 2008

[15] P. Xiong, L. Peyton, “Model-Driven Penetration Test Framework for
Web Applications”, Eight International Conference on Privacy, Security

and Trust, Ottawa, Canada, August 2010.

[16] B. Stepien, P. Xiong, L.Peyton, A Systematic Approach to Web
Application Penetration Testing Using TTCN-3 in G. Babin, K.

Stanoevska-Slabeva, P. Kropf (Eds.): MCETECH 2011, LNBIP 78, pp.

1–16, Springer-Verlag Berlin Heidelberg 2011
[17] J. Ernits, R. Roo, J. Jacky, M. Veanes, Model Based Testing of Web

Applications using NModel, in TESTCOM/FATES 2009 proceedings
[18] Manzuik, S., Gold, A., & Gatford, C. ,Network Security Assessment:

From Vulnerability to Patch. Syngress Publishing, 2007

[19] Splaine, S., Testing Web Security: Assessing the Security of Web Sites

and Applications. John Wiley & Sons, 2002
[20] Jacky, J., Veanes, M., Campbell, C., & Schulte, W., Model-Based

Software Testing and Analysis with C#. Cambridge University Press,

2008
[21] A. Tegne, L. Peyton, Model-Based Engineering of a Managed Process

Application Framework in G. Babin, K. Stanoevska-Slabeva, P. Kropf

(Eds.): MCETECH 2011, LNBIP 78, pp. 173–188, Springer-Verlag
Berlin Heidelberg 2011

[22] Behnam, S.A., Amyot, D., Forster, A.J., Peyton, L., and Shamsaei, A.,

Goal-Driven Development of a Patient Surveillance Application for
Improving Patient Safety, 4th International MCeTech Conference on

eTechnologies, Ottawa, Canada, May, 2009. LNBIP 26, Springer, pp 65-

76.
[23] Webgoat Project Page, http://code.google.com/p/webgoat/

[24] Jagadish. S., Lawrence, C, Shyamasunder R.K, cmUML - A UML based

Framework for Formal Specification of Concurrent, Reactive Systems,
Journal of Object Technology (JOT), Vol. 7, No. 8, Novmeber-

December 2008, pp 188-207.

http://www.jot.fm/issues/issue_2008_11/article7.pdf
[25] Thomas, H., & Chase, S. (2005). The Software Vulnerability Guide.

Charles River Media

[26] Bishop, M. (2007, November-December). About Penetration Testing.
IEEE Security & Privacy, Volume 5(Issue 6), pp. 84-87

[27] Arkin, B., Stender, S., & McGraw, G. (2005, Janunary-February).

Software Penetration Testing. IEEE Security & Privacy, Volume 3(Issue
1), pp. 84-87.

[28] Arkin, B., Stender, S., & McGraw, G. (2005, Janunary-February).

Software Penetration Testing. IEEE Security & Privacy, Volume 3(Issue
1), pp. 84-87.

692

	MAIN
	Front Matter
	Welcome Messages
	Committees
	Technical Program
	Monday
	REPS1
	RM1
	FAII1
	ICTSG1
	SISP1
	ECSIA1
	CSCI1
	SSSSMIA1
	REPS2
	SSFDT2
	CSCI2
	SSMBTE1
	SISP2
	ECSIA2
	ICTSG2
	SSFDT1

	Tuesday
	REPS3
	RM2
	CSCI3
	SSSSMIA2
	SISP3
	ECSIA3
	CSCI4
	SSMBTE2
	REPS4
	EMD1
	FAII2

	Wednesday
	REPS5
	RM3
	CSCI5
	SSCMD1
	REPS6
	EMD2
	SISP4
	SSCMD2
	REPS7
	EMD3
	CSCI6

	Plenary Talks
	Conference at a Glance
	Author Index
	Session Chair Index
	Reviewers
	CD Help
	Search
	Zoom In
	Zoom Out
	View Full Page

