Probabilistic IR Model
Probabilistic Model

• An initial set of documents is retrieved (somehow)
• User inspects these docs looking for the relevant ones (only top 10-20) (we see later that we eliminate this manual step in the actual probabilistic model)
• IR system uses this info to refine description of ideal answer set
• By repeating this process, description of the ideal answer set will improve
• Description of ideal answer set is modeled in probabilistic terms
Probabilistic Ranking Principle

- Given a user query \(q \) and a document \(d_j \), the probabilistic model estimates the probability that the user will find the document \(d_j \) relevant.
- The model assumes that probability of relevance depends on the query and the document representations only.
- Ideal answer set is referred to as \(R \).
- Documents in the set \(R \) are predicted to be relevant.
 - how to compute probabilities?
 - what is the sample space?
The Ranking

- Probabilistic ranking computed as:
 \[\text{sim}(q,d_j) = \frac{P(d_j \text{ relevant-to } q)}{P(d_j \text{ non-relevant-to } q)} \]
 - How to read this? “Maximize the number of relevant documents, minimize the number of irrelevant documents”
 - This is the odds of the document \(d_j \) being relevant

- Definition:
 - \(w_{ij} \in \{0,1\} \)
 - \(P(R \mid d_j) \): probability that document \(d_j \) is relevant
 - \(P(\neg R \mid d_j) \): probability that \(d_i \) is not relevant
 - Use Bayes Rule: \(P(A \mid B) \, P(B) = P(B \mid A) \, P(A) \)
The Ranking

\[\text{sim}(d_j, q) = \frac{P(R \mid d_j)}{P(\neg R \mid d_j)} \]
\[= \frac{[P(d_j \mid R) \times P(R)]}{[P(d_j \mid \neg R) \times P(\neg R)]} \]
\[\sim \frac{P(d_j \mid R)}{P(d_j \mid \neg R)} \]

- \(P(d_j \mid R) \): probability of randomly selecting the document \(d_j \) from the set \(R \) of relevant documents
- Note that \(P(R) \) and \(P(\neg R) \) are the same for all documents in the collection for the given query
The Ranking

- \(\text{sim}(d_j, q) \sim \frac{P(d_j | R)}{P(d_j | \neg R)} \)
 \[\sim \frac{\prod P(k_i | R)}{\prod P(k_i | \neg R)} \times \frac{\prod P(\neg k_i | R)}{\prod P(\neg k_i | \neg R)} \]

- \(P(k_i | R) \): probability that the index term \(k_i \) is present in a document randomly selected from the set \(R \) of relevant documents

- Based on independence assumption
 - Strong assumption!
 - In real life, does not always hold
The Ranking

\[
\text{sim}(d_j, q) \sim \log \left[\prod P(k_i \mid R) \right] \ast \left[\prod P(\neg k_i \mid R) \right] \\
\left[\prod P(k_i \mid \neg R) \right] \ast \left[\prod P(\neg k_i \mid \neg R) \right]
\]

\[
\sim \left[\log \frac{\prod P(k_i \mid R)}{P(\neg k_i \mid R)} + \log \frac{\prod P(k_i \mid \neg R)}{P(\neg k_i \mid \neg R)} \right]
\]

\[
\sim \sum w_{iq} \ast w_{ij} \ast (\log \frac{P(k_i \mid R)}{P(\neg k_i \mid R)} + \log \frac{P(k_i \mid \neg R)}{P(\neg k_i \mid \neg R)})
\]

where

\[
P(\neg k_i \mid R) = 1 - P(k_i \mid R)
\]

\[
P(\neg k_i \mid \neg R) = 1 - P(k_i \mid \neg R)
\]
The Initial Ranking

- $\text{sim}(d_j, q) \sim$
 $$\sim \sum w_{iq} \times w_{ij} \times (\log \frac{P(k_i \mid R)}{P(\neg k_i \mid R)} + \log \frac{P(k_i \mid \neg R)}{P(\neg k_i \mid \neg R)})$$

- Probabilities $P(k_i \mid R)$ and $P(k_i \mid \neg R)$?

- Estimates based on assumptions:
 - $P(k_i \mid R) = 0.5$
 - $P(k_i \mid \neg R) = \frac{n_i}{N}$
 where n_i is the number of docs that contain k_i
 - Use this initial guess to retrieve an initial ranking
 - Improve upon this initial ranking
Improving the Initial Ranking

• \(\text{sim}(d_j, q) \sim \sum w_{iq} \times w_{ij} \times (\log \frac{P(k_i \mid R)}{P(\neg k_i \mid R)} + \log \frac{P(k_i \mid \neg R)}{P(\neg k_i \mid \neg R)}) \)

 – \(V \): set of docs initially retrieved
 – \(V_i \): subset of docs retrieved that contain \(k_i \)

• Reevaluate estimates:
 – \(P(k_i \mid R) = \frac{V_i}{V} \)
 – \(P(k_i \mid \neg R) = \frac{n_i - V_i}{N - V} \)

• Repeat recursively
Improving the Initial Ranking

• \(\text{sim}(d_j, q) \sim \sum w_{iq} \times w_{ij} \times (\log \frac{P(k_i | R)}{P(\neg k_i | R)} + \log \frac{P(k_i | \neg R)}{P(\neg k_i | \neg R)}) \)

• To avoid problems with \(V=1 \) and \(V_i=0 \):

 - \(P(k_i | R) = \frac{V_i + n_i / N}{V + 1} \)

 - \(P(k_i | \neg R) = \frac{n_i - V_i + n_i / N}{N - V + 1} \)

 - (replace \(n_i / N \) with 0.5)
Okapi Formula (BM25) (Robertson and Sparck-Jones, 1976)

$$w_{i,j} = \frac{tf_{i,j} \log \left(\frac{N - df_i + 0.5}{df_i + 0.5} \right)}{k_1 \times ((1 - b) + b \frac{dl}{avdl}) + tf_{i,j}}$$

- N = number of documents in the collection
- $tf_{i,j}$ = frequency of term i id document j
- df_i = number of documents that contain term j
- dl = length of document j
- $avdl$ = average length over documents
- k_1 and b are parameters
- Use this weight in VSM or plug in the probabilistic formula.