
Journal of Intelligent Information Systems manuscript No.
(will be inserted by the editor)

Specifying Active Databases as Non-Markovian
Theories of Actions?

Iluju Kiringa

School of Information Technology and Engineering
Faculty of Engineering, University of Ottawa, Ottawa, Canada
kiringa@site.uottawa.ca

Received: / Revised version:

Abstract Over the last fifteen years, database management systems (DBMSs)
have been enhanced by the addition of rule-based programming to obtain active
DBMSs. One of the greatest challenges in this area is to formally account for all
the aspects of active behavior using a uniform formalism. In this paper, we formal-
ize active relational databases within the framework of the situation calculus by
uniformly accounting for them using theories embodying non-Markovian control
in the situation calculus. We call these theories active relational theories and use
them to capture the dynamics of active databases. Transaction processing and rule
execution is modelled as a theorem proving task using active relational theories as
background axioms. We show that the major components of an ADBMS, namely
the rule sets and the execution models, may be given a clear semantics using active
relational theories. More precisely: we represent the rule set as a program writ-
ten in a suitable version of the situation calculus based language ConGolog; then
we extend an existing situation calculus based framework for modelling advanced
transaction models to one for modelling the execution models of active behaviors.

1 Introduction

1.1 The Problem: A Formal Account of Active Databases

Active databases unify traditional database technology with rule-based program-
ming to express reactive capabilities. Until the late 1980’s, traditional database
management systems (DBMSs) were passive in the sense that only users or appli-
cation programs can activate definition and manipulation operations on stored data.
An important and useful enhancement of the early 1990’s has been the addition of

? An early version of this paper appeared in [26,24]

2 Iluju Kiringa

active behavior to them to obtain active DBMSs (ADBMSs). Here, the system it-
self performs some definition and manipulation operations automatically, based on
a suitable representation of the (re)active behavior of the application domain and
the operations performed during a database transaction.

The concept of rule and its execution are essential to ADBMSs. An ADBMS
has two major components, a representational component called a rule language,
and an executional component called an execution model. The rule language is
used to specify the active behavior of an application. Typical rules used here are
the so-called EVENT-CONDITION-ACTION (ECA) rules which are a syntactical
construct representing the notion that an action must be performed upon detection
of a specified event, provided that some specified condition holds. The execution
model is best explained in conjunction with the notion of database transaction.
A database transaction is a (sometimes nested or detached) sequence of database
update operations such as insert, delete, and update, used to insert tuples into,
delete them from, or update them in a database. The execution model comes in
three flavors: immediate execution, deferred execution, and detached execution,
meaning that the execution of rules is interleaved with the execution of database
update operations, is done at the end of transactions, and is done in a separate
transaction, respectively. An active database is essentially made of an underlying
(relational) database, plus the two aforementioned components, which we will call
them the active behavior [37] of the corresponding active database.

There is a large body of literature on active databases. In particular, most re-
searchers in the area have worked on prototypes; several active database systems
have been developed [15,54,38,37].

It has been recognized in the literature that the question of giving a formal
foundation to active databases is particularly difficult [57,38,15,5,11,5]. Different
formalisms have been proposed for modelling parts of the concept of rule and its
execution (See, e.g., [38,15,11]).

In this paper, we give a formalization of the concept of active database within
the framework of the situation calculus. Building on [27] and [46], this paper aims
to account formally for active databases as a further extension of the relational
databases formalized as relational theories to accommodate new world knowledge,
in this case representational issues associated with rules, the execution semantics,
and database transactions.

Including dynamic aspects into database formalization has emerged as an ac-
tive area of research. In particular, a variety of logic-based formalization attempts
have been made [55,19,9,46,8]. Among these, we find model theoretic approaches
(e.g. [55]), as opposed to syntactic approaches taken in [19,46].

Proposals in [46], and [8] use the language of the situation calculus [33,47].
This language constitutes a framework for reasoning about actions that relies on an
important assumption: the execution preconditions of primitive actions and their
effects depend solely on the current situation. This assumption is what the control
theoreticians call the Markov property. Thus non-Markovian actions are precluded
in the situation calculus used in those proposals. However, in formalizing database
transactions, one quickly encounters settings where using non-Markovian actions
and fluents is unavoidable. For example, a transaction model may explicitly exe-

Specifying Active Databases as Non-Markovian Theories of Actions?? 3

cute a Rollback(s) to go back to a specific database state s in the past; a Commit
action is executable only if the previous database states satisfy a set of given in-
tegrity constraints and there is no other committing state between the beginning of
the transaction and the current state; and an event in an active database is said to
have occurred in the current database state if, in some database state in the past,
that event had occurred and no action changed its effect meanwhile. Thus one
clearly needs to address the issue of non-Markovian actions and fluents explicitly
when formalizing database transactions, and researchers using the situation calcu-
lus or similar languages to account for updates and active rules fail to do that. Our
framework will therefore use non-Markovian control [16].

Though several other similar logics (e.g. dynamic logic, event calculus, and
transaction logic) could have been used for our purpose, we prefer the situation
calculus, due to a set of features it offers, the most beneficial of which are: the
treatment of actions as first class citizens of the logic, thus allowing us to remain
within the language to reason about actions; the explicit addressing of the frame
problem (i.e., the problem of accounting for anything that does not change in the
domain [35]) that inevitably occurs in the context of the database updates; and
perhaps most important of all, the relational database log is a first class citizen in
the logic.

1.2 Contributions

The main contributions of the formalization reported in this paper can succinctly
be summarized as follows:

1. We extend a general theory of database transactions developed in [25] to ac-
count for active databases. In doing so, we construct logical theories called
active relational theories (ARTs) to formalize active databases along the lines
set by the framework in [25]; active relational theories are non-Markovian the-
ories in which one may explicitly refer to all past database states, and not only
to the previous one. In addition to the building blocks of the basic relational
theories corresponding to various transaction models, the new theories we in-
troduce contain building blocks that are specific to active behaviors. The new
building blocks include an event logic, a fragment of the situation calculus used
to logically capture and specify event algebras used to express complex events.
The ARTs provide the formal semantics of the corresponding active database
model; they are an extension of the classical relational theories of [45] to the
transaction and active database settings.

2. We give a logical tool that can be used to classify various execution models,
and demonstrate its usefulness by classifying execution models of active rules
that are executed in the context of flat database transactions.

3. We capture ECA-rules as programs written in ConGolog, a situation calculus
based language for reasoning about actions [12]. We show how to use the se-
mantics of these programs in simulating the relational database transactions
with the active relational theories corresponding to various transaction models
as background axioms.

4 Iluju Kiringa

1.3 Outline

The paper is organized as follows. Section 2 introduces the situation calculus, and
the basic relational theories used for formalizing database transactions as non-
Markovian theories of this calculus. Section 3 extends the basic relational theories
to active relational theories, which are theories of actions used for modelling the
representational component of active behaviors. In Section 4, we give the seman-
tics of execution models of active behaviors by compiling ECA-rules into Con-
Golog programs. Section 5 is devoted to related work. Finally, we conclude in
Section 6 where we also discuss some possible future work.

2 Background: Situation Calculus, Relational Theories, and Active
Databases

2.1 The Situation Calculus and non-Markovian Theories

The situation calculus [35,47] is a many-sorted second order language for ax-
iomatizing dynamic worlds. Its basic ingredients consist of actions, situations and
fluents; its universe of discourse is partitioned into sorts for actions, situations, and
objects other than actions and situations.

Actions are first order terms consisting of an action function symbol and its ar-
guments. In modelling databases, these correspond to the elementary operations
of inserting, deleting and updating relational tuples. For example, in the stock
database (Example 1, adapted from [54]) that we shall use below, the function
price insert(stock id, price, time, trans) denotes the operation of inserting the
tuple (stock id, price, time) into the database relation price by the transaction
trans.

A situation is a first order term denoting a sequence of actions. These se-
quences are represented using a binary function symbol do: do(α, s) denotes the
sequence resulting from adding the action α to the sequence s. So do(α, s) is like
LISP’s cons(α, s), or Prolog’s [α | s]. The special constant S0 denotes the initial
situation, namely the empty action sequence, so S0 is like LISP’s () or Prolog’s
[]. In modelling databases, situations will correspond to the database log.

Relations and functions whose values vary from state to state are called fluents,
and are denoted by predicate or function symbols with last argument a situation
term. In Example 1 below, price(stock id, price, time, trans, s) is a relational
fluent, meaning that in that database state that would be reached by performing the
sequence of operations in the database log s, (stock id, price, time) is a tuple in
the price relation, inserted there by the transaction trans.

Example 1 Consider a stock database, whose schema has the following relations:
price(stock id, price, time, trans, s), stock(stock id, price, closingprice, trans, s),
and customer(cust id, balance, stock id, trans, s), which are relational fluents.
The explanation of the attributes is as follows: stock id is the identification num-
ber of a stock, price the current price of a stock, time the pricing time, closingprice

Specifying Active Databases as Non-Markovian Theories of Actions?? 5

the closing price of the previous day, cust id the identification number of a cus-
tomer, balance the balance of a customer, and trans is a transaction identifier.
�

In addition to the function do, the language also includes special predicates
Poss, and @. Poss(a(x), s) means that the action a(x) is possible in the situation
s; and s @ s′ states that the situation s′ is reachable from s by performing some
sequence of actions — s is said to be a subhistory of s′. For instance,

Poss(price delete(ST1, $100, 4PM, 1), S0)

and

S0 @ do(price delete(ST1, $100, 4PM, 2), S0)

are ground atoms of Poss and @, respectively. Let us call the given language
Lsitcalc.

The set W of well formed formulas (wffs) of Lsitcalc, together with terms,
atomic formulas, and sentences are defined in the standard way of second order
languages. Additional logical constants are introduced in the usual way.

In [46], it is shown how to formalize a dynamic relational database setting in
the situation calculus with axioms that capture change which are: action precon-
dition axioms stating when database updates are possible, successor state axioms
stating how change occurs, unique name axioms that state the uniqueness of up-
date names, and axioms describing the initial situation. These axioms constitute
a basic action theory, in which control over the effect of the actions in the next
situation depends solely on the current situation. This was achieved by precluding
the use of the predicate @ in the axioms. We extend these theories to capture active
databases by incorporating non-Markovian control. We achieve this by using the
predicate @ in the axioms.

For simplicity, we consider only primitive update operations corresponding
to insertion or deletion of tuples into relations. For each such relation F (x, t, s),
where x is a tuple of objects, t is a transaction argument, and s is a situation
argument, a primitive internal action is a parameterized primitive action of the
situation calculus of the form F insert(x, t) or F delete(x, t).

We distinguish the primitive internal actions from primitive external actions
which are Begin(t), Commit(t), End(t), and Rollback(t), whose meaning will
be clear in the sequel of this paper; these are external as they do not specifically af-
fect the content of the database.1 The argument t is a unique transaction identifier.
Finally, the set of fluents of a relational language is partitioned into two disjoint
sets, namely a set of database fluents and a set of system fluents. Intuitively, the
database fluents represent the relations of the database domain, while the system
fluents are used to formalize the processing of the domain. Usually, any functional
fluent in a relational language will always be a system fluent.

Now, in order to represent relational databases, we need some appropriate re-
strictions on Lsitcalc.

1 The terminology internal versus external action is also used in [30], though with a
different meaning.

6 Iluju Kiringa

Definition 1 A basic relational language is a subset of Lsitcalc whose alphabet A is
restricted to (1) a finite number of constants, but at least one, (2) a finite number of
action functions, (3) a finite number of functional fluents, and (4) a finite number
of relational fluents.

2.2 Database Transaction Models as non-Markovian Theories of Actions

This section summarizes a characterization of flat transactions in terms of theories
of the situation calculus given in [23]. These theories give axioms of flat trans-
action models that constrain database logs in such a way that these logs satisfy
important correctness properties of database transaction, including the so-called
ACID properties.

Definition 2 (Flat Transaction) A sequence of database actions is a flat transac-
tion iff it is one of the following:

1. Atomic transaction: [a1, . . . , an], where the a1 must beBegin(t), and an must
be either Commit(t), or Rollback(t); ai, i = 2, · · · , n−1, may be any of the
primitive actions, except Begin(t), Rollback(t), and Commit(t); here, the
argument t is a unique identifier for the atomic transaction.

2. Transaction: at1•. . .•atm, where the ati, 1 ≤ i ≤ m, are atomic transactions.2

Notice that we do not introduce a term of a new sort for transactions, as is the case
in [8]; we treat transactions as run-time activities — execution traces — whose
design-time counterparts will be ConGolog programs introduced later in this pa-
per. We refer to transactions by their names that are of sort object. Notice also that,
on this definition, a transaction is a semantical construct which will be denotations
of situations of a special kind called legal logs in the next section.

The axiomatization of a dynamic relational database with flat transaction prop-
erties comprises the following classes of axioms:

Foundational Axioms. These are constraints imposed on the structure of database
logs [42]. They characterize database logs as finite sequences of updates and can
be proved to be valid sentences.

Integrity Constraints. These are constraints imposed on the data in the database
at a given situation s; their set is denoted by ICe for constraints that must be en-
forced at each update execution, and by ICv for those that must be verified at the
end of the flat transaction.

Update Precondition Axioms. There is one for each internal action A(x, t), with
syntactic form

Poss(A(x, t), s) ≡ (∃t′)ΠA(x, t′, s)∧

ICe(do(A(x, t), s)) ∧ running(t, s).
(1)

2 Given two atomic transactions A = [A1, · · · , An] and B = [B1, · · · , Bm], A • B is
an abbreviation for [A1, · · · , An, B1, · · · , Bm].

Specifying Active Databases as Non-Markovian Theories of Actions?? 7

Here, ΠA(x, t, s) is a first order formula with free variables among x, t, and s.
Moreover, the formula on the right hand side of (1) is uniform in s.3 These ax-
ioms characterize the preconditions of the update A; ICe(s) and running(t, s)
are defined as follows:

ICe(s) =df

∧

IC∈ICe

IC(s).

running(t, s) =df (∃s′).do(Begin(t), s′) v s∧

(∀a, s′′)[do(Begin(t), s′) @ do(a, s′′) @ s ⊃

a 6= Rollback(t) ∧ a 6= End(t)].

In the stock example, the following states the condition under which a tuple may
be deleted from the customer relation:

Poss(customer delete(cid, bal, sid, t), s) ≡

(∃t′)customer(cid, bal, sid, t′, s)∧

ICe(do(customer delete(cid, bal, sid, t), s))∧

running(t, s).

(2)

Successor State Axioms. These have the syntactic form

F (x, t, do(a, s)) ≡

(∃t1)ΦF (x, a, t1, s) ∧ ¬(∃t′′)a =Rollback(t′′)∨

(∃t′′)a = Rollback(t′′) ∧ restoreBeginPoint(F,x, t′′, s).

(3)

There is one such axiom for each database relational fluent F . The formula on
the right hand side of (3) is uniform in s, and ΦF (x, a, t, s) is a formula with free
variables among x, a, t, s; ΦF (x, a, t, s) specifies how changes occur with respect
to internal actions and has the following canonical form [47]:

γ
+

F
(x, a, t, s) ∨ F (x, s) ∧ ¬γ

−

F
(x, a, t, s), (4)

where γ+
F

(x, a, t, s) (γ−
F

(x, a, t, s)) denotes a first order formula specifying the
conditions that make a fluent F true (false) in the situation following the execution
of a.

The formal definition of restoreBeginPoint(F,x, t, s) is as follows:

3 A formula φ(s) is uniform in a situation term s if s is the only situation term that all
the fluents occurring in φ(s) mention as their last argument.

8 Iluju Kiringa

Abbreviation 1

restoreBeginPoint(F,x, t, s) =df

{(∃a1, a2, s
′, s1, s2, t

′).

do(Begin(t), s′) @ do(a2, s2) @ do(a1, s1) v s∧

writes(a1, F,x, t) ∧ writes(a2, F,x, t
′)∧

[(∀a′′, s′′).do(a2, s2)@do(a
′′, s′′)@do(a1, s1)⊃

¬writes(a′′, F,x, t)]∧

[(∀a′′, s′′).do(a1, s1)vdo(a
′′, s′′)@ s ⊃

¬(∃t′′)writes(a′′, F,x, t′′)]∧(∃t′′)F (x, t′′, s1)]}∨

{(∀a∗, s∗, s′).do(Begin(t), s′) @ do(a∗, s∗) v s ⊃

¬writes(a∗, F,x, t)] ∧ (∃t′)F (x, t′, s)}.

Notice that system fluents have successor state axioms that have to be specified
on a case by case basis and do not necessarily have the form (3). Intuitively,
restoreBeginPoint(F,x, t, s) means that the system restores the value of the
database fluent F with arguments x in a particular way that captures the semantics
of Rollback:

– The first disjunct in Abbreviation 1 captures the scenario where the transac-
tions t and t′ running in parallel, and writing into and reading from F are such
that t overwrites whatever t′ writes before it (t) rolls back. Suppose that t and
t′ are such that t begins, and eventually writes into F before rolling back; t′

begins after t has begun, writes into F before the last write action of t, and
commits before t rolls back. Now the second disjunct in 1 says that the value
of F must be set to the ”before image” [7] of the first w(t), that is, the value
the F had just before the first w(t) was executed.

– The second disjunct in Abbreviation 1 captures the case where the value F had
at the beginning of the transaction that rolls back is kept.

Given the actual situation s, the successor state axiom characterizes the truth val-
ues of the fluent F in the next situation do(a, s) in terms of all the past situations.
Notice that Abbreviation 1 captures the intuition thatRollback(t) affects all tuples
within a table.

The following is a successor state axiom for customer(cid, bal, stid, tr, s).

customer(cid, bal, stid, t, do(a, s)) ≡

((∃t1)a = customer insert(cid, bal, stid, t1)∨

(∃t2)customer(cid, bal, stid, t2, s)∧

¬(∃t3)a = customer delete(cid, bal, stid, t3))∧

¬(∃t′)a = Rollback(t′)∨

(∃t′).a = Rollback(t′)∧

restoreBeginPoint(customer, (cid, bal, stid), t′, s).

Specifying Active Databases as Non-Markovian Theories of Actions?? 9

In this successor state axiom, the formula

(∃t1)a = customer insert(cid, bal, stid, t1)∨

(∃t2)customer(cid, bal, stid, t2, s)∧

¬(∃t3)a = customer delete(cid, bal, stid, t3)

corresponds to the canonical form (4).

Precondition Axioms for External Actions. This is a set of action precondition
axioms for the transaction specific actions Begin(t), End(t), Commit(t), and
Rollback(t). The external actions of flat transactions have the following precon-
dition axioms:4

Poss(Begin(t), s) ≡ ¬(∃s′)do(Begin(t), s′) v s, (5)

Poss(End(t), s) ≡ running(t, s), (6)

Poss(Commit(t), s) ≡ (∃s′).s = do(End(t), s′)∧
∧

IC∈ICv

IC(s) ∧ (∀t′)[sc dep(t, t′, s) ⊃ (∃s′′)do(Commit(t′), s′′) v s], (7)

Poss(Rollback(t), s) ≡ (∃s′)[s = do(End(t), s′) ∧ ¬
∧

IC∈ICv

IC(s)]∨

(∃t′, s′′)[r dep(t, t′, s) ∧ do(Rollback(t′), s′′) v s].

(8)

Notice that our axioms (5)–(8) assume that the user will only use internal ac-
tions Begin(t) and End(t) and the system will execute either Commit(t) or
Rollback(t).

Dependency axioms. These are the following transaction model-dependent ax-
ioms:

r dep(t, t′, s)≡ transConflict(t, t′, s), (9)

sc dep(t, t′, s)≡readsFrom(t, t′, s). (10)

The defined predicates r dep(t, t′, s), sc dep(t, t′, s) are called dependency pred-
icates. The first axiom says that a transaction conflicting with another transaction
generates a rollback dependency, and the second says that a transaction reading
from another transaction generates a strong commit dependency.5

Unique Names Axioms. These state that the primitive updates and the objects of
the domain are pairwise unequal.

4 It must be noted that, in reality, a part of rolling back and committing lies with
the user and another part lies with the system. So, we could in fact have something
like Rollbacksys(t) and Commitsys(t) on the one hand, and Rollbackusr(t) and
Commitusr(t) on the other hand. However, the discussion is simplified by considering
only the system’s role in executing these actions.

5 A transaction t is rollback depend on transaction t′ iff, whenever t′ rolls back in a log,
then t must also roll back in that log; t is strong commit depend on t′ iff, whenever t′

commits in s, then t must also commit in s

10 Iluju Kiringa

Initial Database. This is a set of first order sentences specifying the initial database
state. They are completion axioms of the form

(∀x, t).F (x, t, S0) ≡ x=C(1)∨. . .∨x=C(r), (11)

one for each (database or system) fluent F . Here, the Ci are tuples of constants.
Also, DS0

includes unique name axioms for constants of the database. Axioms
of the form (11) say that our theories accommodate a complete initial database
state, which is commonly the case in relational databases as unveiled in [45]. This
requirement is made to keep the theory simple and to reflect the standard practice
in databases. It has the theoretical advantage of simplifying the establishment of
logical entailments in the initial database.

Definition 3 (Basic Relational Theory) Suppose R = (A,W) is a basic rela-
tional language. Then a theory D ⊆ W that comprises the axioms of the form
described above is a basic relational theory.

TheRollback(t) andCommit(t) actions are coercive actions that must always
be executed whenever they are possible; we call them system actions:

Abbreviation 2

systemAct(a, t)=df a=Commit(t) ∨ a=Rollback(t).

We define legal database logs by taking these system actions into account as
follows:

Abbreviation 3

legal(s) =df (∀a, s∗)[do(a, s∗) v s ⊃ Poss(a, s∗)]∧

(∀a′, a′′, s′, t)[systemAct(a′, t) ∧ responsible(t, a′, s′)∧

responsible(t, a′′, s′) ∧ Poss(a′, s′) ∧ do(a′′, s′) @ s ⊃ a′ = a′′].

(12)

Here, responsible(t, a, s) intuitively means that each transaction t is responsible
for the execution of the action a in the log s. Abbreviation (12) says that a log s is
legal iff all the actions mentioned in s are possible, and any system action that is
responsible for a possible action must have been executed in the log s.

2.3 Active Databases

An active database is a (relational) database augmented with an active behavior
[37]. An ADBMS captures the (re)active behavior of application domains. A sys-
tem embodies reactive behavior if it offers the possibility of automatic actions in
response to relevant happenings called events. A reactive behavior involves an as-
sociation of events with actions that should be performed automatically by the
system once these events occur; it also involves a way of detecting the occurrences
of events; it finally involves a specification of how the system should perform the
actions associated with the events that may have occurred.

To be an ADBMS, a DBMS should support the following [37]:

Specifying Active Databases as Non-Markovian Theories of Actions?? 11

– a reactive model, also considered as a knowledge model, for defining events
and associating them with actions; and

– an execution model for monitoring events and reacting to detected events.

2.3.1 Knowledge Model The knowledge model is expressed in ECA-rules. An
ECA-rule has three parts, each one giving the events, conditions, and actions of
the rule. Other terms used synonymously for ECA-rules in ADBMSs are: triggers,
monitors, alerters, or production rules. Each of the parts of a rule is specified us-
ing a specific language: an event language for events, a condition language for
conditions, and an action language for actions.

An event is a “happening of interest” [54] that occurs instantaneously at spe-
cific time points; it is to be distinguished from an event occurrence which indicates
that the event indeed happened. An event may be primitive or composite, that is, a
combination of primitive events or other composite events by means of appropriate
operators such as logical junctors, sequences, or temporal qualifications. A rule is
triggered if its event part matches an event occurrence.

Generally, conditions of ECA-rules are expressed as database predicates such
as conditions written in a SQL where clause, restricted predicates, database queries,
and application-defined conditions like procedures.

Actions of ECA-rules involve a task to be performed. They include: update
operations; transactions commands like rollback and commit; actions to inform
users of specific database situations of interest; application procedures that may
involve external calls; and alternative actions to do instead of the actual action
associated with the event part of the rule.

2.3.2 Execution Model The execution model specifies the run-time behavior of a
set of ECA-rules. Although the details vary from system to system, the general pat-
tern of the execution model is the following: The defined set of rules is monitored
by the system for relevant events; then, for any given rule that is triggered by some
event and before its action can be executed, its condition is checked, and if true,
its action is finally executed. A triggered rule whose condition part is evaluated to
true is said to be activated.

In [32], the notion of coupling modes is introduced to describe the synchro-
nization of rule triggering, condition evaluation, and action execution; it also de-
scribes the relationship between rules and transactions. Generally, the concept of
“coupling mode” is now used in the former sense.

There are two kinds of coupling modes: the Event-Condition and the Condition-
Action coupling modes. They describe the temporal relationship between trigger-
ing events and condition evaluation, and between condition evaluation and action
execution, respectively. Two possible modes are: immediate coupling and delayed
coupling. In the former setting, the condition is immediately evaluated upon ter-
mination of the triggering events; in the later one, it is delayed until some defined
time point. There are two sub-cases of the later setting: deferred and detached. In
deferred mode, conditions are evaluated within the same transaction, whereas in
detached mode they are evaluated in a separate transaction.

12 Iluju Kiringa

The treatment that the event triggering a rule may undergo is called event con-
sumption mode. Here, two issues that are relevant are the scope and the time of
event consumption. The first issue amounts to the question of how far the pro-
cessed events retain their triggering capabilities, and the second one amounts to
when events are consumed. Three scopes of event consumption are possible: no
consumption (meaning that processed events remain capable of triggering further
rules), local consumption (meaning that they no longer can trigger the processed
rule), and global consumption (meaning that they no longer can trigger any other
rule). Two kinds of time consumption are possible: either before condition evalua-
tion (rule consideration time), or after condition evaluation (rule execution time).

The net effect policy indicates whether and how the net effects of events should
be taken into account rather than their individual occurrence. Such net effects are
accumulating only changes that really affect the database; sample policies are: (i)
if a record is first updated and then deleted, only the deletion is retained; (ii) if
a record is first inserted and then updated, an insertion of the updated record is
retained; (iii) if a record is updated many times, the composition of all updates is
retained as a single update; (iv) finally, if a record is deleted after being inserted,
this amounts to nothing having happened.

3 Specifying Knowledge Models

In Section 2.2, we have specified relational database transactions models as ba-
sic relational theories, which are non-Markovian theories formulated in a finite
fragment of the situation calculus. The present section is devoted to extending the
basic relational theories to model the representational component of active behav-
iors.6 The new theories we will introduce in this section are called active relational
theories. As active databases are intimately related to transactions, a substantial
building block of these new theories is made of basic relational theories. As we
shall see, an active relational theory precisely encompasses a basic relational the-
ory capturing a specific transaction model and axioms for typical active database
fluents that are induced by the original database fluents of the domain.

Events are traditionally described using an event algebra. Virtually every pro-
posed ADBMS brings about a different event algebra. This makes it very difficult
to analyze these proposals in a uniform way by spelling out what they may have
in common, or how they may differ. Typically, logic might act as a framework for
dealing with these issues. This section treats events as (somewhat constrained) for-
mulas of the situation calculus. We provide a framework for devising the semantics
of complex events in the situation calculus. Such semantics, formulated as a class
of axioms of active relational theories, are used for reasoning about the occurrence
and consumption modes of events.

6 Readers from Knowledge Representation might get confused by the qualification
“Knowledge” in the title of this section. It seems that a title like “Specifying Events” or
”Specifying Active Relational Theories” would be a more appropriate title of the section.
However, due to [37], “Knowledge model” is now prevalent in active databases to denote
all aspects of active behavior related to events.

Specifying Active Databases as Non-Markovian Theories of Actions?? 13

3.1 ECA-Rules

An ECA-rule is a construct of the following form:

<t : R : τ : ζ(x) → α(y)> . (13)

In this construct, t specifies the transaction that fires the rule, τ specifies events
that trigger the rule, and R is a constant giving the rule’s identification number (or
name). A rule is triggered if the event specified in its event part occurrs. The re-
lationship between the event occurrence and the triggering of a rule is dictated by
consumption modes. In its simplest form, the semantics of event consumption is
that a rule is triggered if the event specified in its event part occurred since the be-
ginning of the open transaction in which that event part is evaluated. Events are one
of the predicates F inserted(r, t, s) and F deleted(r, t, s), called event fluents,
or a combination thereof using logical connectives. The ζ part specifies the rule’s
condition; it mentions predicates F inserted(r,x, t, s) and F deleted(r,x, t, s)
called transition fluents, which denote the transition tables ([54]) corresponding
to insertions into and deletions from the relation F . In (13), arguments t, R, and
s are suppressed from all the fluents; the two first ones are restored when (13) is
translated to a ConGolog program, and s is restored at run time. Finally, α gives a
ConGolog program which will be executed upon the triggering of the rule once the
specified condition holds. Actions also may mention transition fluents. Notice that
x are free variables mentioned by ζ and contain all the free variables y mentioned
by α. Details of ConGolog programs will be introduced in the next section.

Example 2 Consider the following active behavior for the stock trading database
of Example 1. For each customer, his stock is updated whenever new prices are
notified. When current prices are being updated, the closing price is also updated
if the current notification is the last of the day; moreover, suitable trade actions are
initiated if some conditions become true of the stock prices, under the constraint
that balances cannot drop below a certain amount of money. Two rules for our
example are shown in Figure 1. �

3.2 Transition Fluents and Net Effect Policy

To characterize the notion of transition tables and events, we introduce the fluent
considered(r, t, s) which intuitively means that the rule r can be considered for
execution in situation s with respect to the transaction t. The following gives an
abbreviation for considered(r, t, s):

considered(r, t, s) =df (∃t′).running(t′, s). (14)

Intuitively, this means that, as long as transaction t is running, any rule r may be
considered for execution. In actual systems this concept is more sophisticated than
this scheme.7

7 For example, in Starburst [54], r will be considered in the future course of actions only
from the time point where it last stopped being considered.

14 Iluju Kiringa

<trans : Update stocks : price inserted :

(∃c, time, bal, price
′)[price inserted(s id, price, time)∧

customer(c, bal, s id) ∧ stock(s id, price
′

, clos pr)]

→

stock insert(s id, price, clos pr) >

<trans : Buy 100shares : price inserted :

(∃ new price, time, bal, pr, clos pr)[price inserted(s id, new price, time)∧

customer(c, bal, s id) ∧ stock(s id, pr, clos pr) ∧ new price < 50 ∧ clos pr > 70]

→

buy(c, s id, 100) >

Fig. 1 Rules for updating stocks and buying shares

For each database fluent F (x, t, s), we introduce the following two transition
fluents: F inserted(r,x, t, s), and F deleted(r,x, t, s). The following successor
state axioms characterizes them: F inserted(r,x, t, s) :

F inserted(r,x, t, do(a, s)) ≡

considered(r, t, s) ∧ (∃t′)a = F insert(x, t′)∨

F inserted(r,x, t, s) ∧ ¬(∃t′′)a = F delete(x, t′′).

(15)

F deleted(r,x, t, do(a, s)) ≡

considered(r, t, s) ∧ (∃t′)a = F delete(x, t′)∨

F deleted(r,x, t, s) ∧ ¬(∃t′′)a = F insert(x, t′′).

(16)

Axiom (15) means that a tuple x is considered inserted in situation do(a, s) iff the
internal action F insert(x, t′) was executed in the situation s while the rule r was
considered, or it was already inserted and a is not the internal actionF delete(x, t′);
here, t′ is transaction that can be different than t. This captures the notion of net
effects ([54]) of a sequence of actions. Such net effects are accumulating only
changes that really affect the database; in this case, if a record is deleted after be-
ing inserted, this amounts to nothing having happened. Further net effect policies
can be captured in this axiom.

3.3 Event Logics

3.3.1 Primitive and Complex Event Fluents Events that trigger ECA-rules are
generally associated with the data manipulation language of the underlying database.
In the situation calculus, for each database fluent F (x, t, s), we introduce the prim-
itive event fluents F inserted(r, t, s) and F deleted(r, t, s).

Specifying Active Databases as Non-Markovian Theories of Actions?? 15

The primitive event fluent F inserted(r, t, s) corresponding to an insertion
into the relation F has the following successor state axiom:

F inserted(r,t, do(a, s)) ≡

(∃x, t′)a = F insert(x, t′) ∧ considered(r, t, s)∨

F inserted(r, t, s).

(17)

The primitive event fluent F deleted(r, t, s) corresponding to a deletion from the
relation F has a similar successor state axiom:

F deleted(r,t, do(a, s)) ≡

(∃x, t′)a = F delete(x, t′) ∧ considered(r, t, s)∨

F deleted(r, t, s).

(18)

Definition 4 (Primitive Event Occurrence) A primitive event e occurs in situa-
tion s with respect to a rule r and a transaction t iff D |= e[r, t, s]. Here D is a
relational theory incorporating the successsor state axioms for the primitive event
fluents.

So, on this definition, an event occurrence (or, equivalently, event detection) is a
situation calculus query. Following [3], we call this an event query.

In many ADBMSs, complex events are built from simpler, and ultimately, the
primitive ones using some event algebra [3,58]. Using logical means, we now
specify the semantics of complex events that accounts for the active dimension of
consumption mode. This development will ultimately lead to a logic for events,
instead of an algebra.

That complex events are built from simpler ones is just one of intuitive as-
sumptions one can make about events. In [58], Zimmer and Unland make five
basic assumptions about events, which we adopt in the context of the situation
calculus as follows:

– Events are interpreted over a set of situations (logs).
– Primitive events are detected at situations, in the order at which they occurred.
– Complex events are built from primitive ones (components) using logical con-

nectives, and many complex events can independently be built from the same
set of simpler ones.

– The situation at which a complex action is considered to have occurred is the
situation at which the very last of its components occurs; here, “last” means
the ordering of situations mentioned above.

– Many events may occur at the same situation, that is, simultaneously.

In order to build complex events, the usual logical connectives and symbols
∧, ∨, ¬, ∀, as well as the ordering predicate @. These logical symbols and pred-
icates will be used to introduce complex events in the form of abbreviations. The
following fluents are used to express some basic constructs for building complex
events: seq ev(r, t, e1, e2, s), simult ev(r, t, e1, e2, s), conj ev(r, t, e1, e2, s),
disj ev(r, t, e1, e2, s), and neg ev(r, t, e, s). Table 1 gives the informal semantics
of these fluents.

16 Iluju Kiringa

Fluent Informal semantics

seq ev(r, t, e1, e2, s) event e1 occurs before event e2 in s

simult ev(r, t, e1, e2, s) events e1 and e2 occur simultaneously in s

conj ev(r, t, e1, e2, s) events e1 and e2 occur together in any order in s

disj ev(r, t, e1, e2, s) either event e1 or event e2 occurs in s

neg ev(r, t, e, s) event e does not occur in s

Table 1 Informal semantics of basic complex events

In what follows concerning execution semantics, it is appropriate to define
what counts as a term or a formula whose rule and transaction arguments have
been either suppressed or restored. To this end, we introduce the concepts of rule
id and transaction id suppressed terms and formulas, and rule id and transaction
id restored terms and formulas, respectively.

Definition 5 (Rid and Tid-Suppressed Terms and Formulas) Suppose R is a re-
lational language. Then the rid and tid suppressed-terms (rts-terms) and formulas
(rts-formulas) of R are inductively given by a procedure similar to Definition 13
whose details we omit here. So we omit these.

Definition 6 (Rid and Tid-Restored Terms and Formulas) Suppose R is a re-
lational language. Then the rid and tid restored-terms (rtr-terms) and formulas
(rtr-formulas) of R are inductively given by a procedure similar to Definition 17.
Again, details of such a procedure will be clear later in that definition. When-
ever t and φ are rts-term and rts-formula, respectively, and r and t are rule and
transaction names, respectively, we use the notation t[r, t] and φ[r, t] to denote the
corresponding rtr-term and rtr-formula, respectively.

With reference to the syntax of an ECA-rule (see (13)), the notation τ(x)[r, t]
means the result of restoring the arguments r and t to all event fluents mentioned
by τ , ζ(x)[r, t] means the result of restoring the arguments r and t to all transition
fluents mentioned by ζ, and α(x)[r, t] means the result of restoring the arguments r
and t to all transition fluents and passing t to actions mentioned by α. For example,
if τ is the complex event

price inserted ∧ customer inserted,

then τ [r, t] is

price inserted(r, t) ∧ customer inserted(r, t).

Specifying Active Databases as Non-Markovian Theories of Actions?? 17

In the absence of consumption modes, the formal situation calculus based-
semantics of complex events in terms of simpler ones is as follows:

neg ev(r, t, e, s) =df (∃r′)¬e[r′, t, s], (19)

seq ev(r, t, e1, e2, s) =df (∃r′)e2[r
′, t, s] ∧ (∃r′′, s′).s′ @ s ∧ e1[r

′′, t, s′], (20)

simult ev(r, t, e1, e2, s) =df (∃r′)e1[r
′, t, s] ∧ (∃r′′)e2[r

′′, t, s], (21)

conj ev(r, t, e1, e2, s) =df (∃r1)seq ev(r1, t, e1, e2, s)∨

(∃r2)seq ev(r2, t, e2, e1, s) ∨ (∃r3)simult ev(r3, t, e1, e2, s),
(22)

disj ev(r, t, e1, e2, s) =df (∃r′)e1[r
′, t, s] ∨ (∃r′′)e2[r

′′, t, s]. (23)

Definition 7 (Complex Event Occurrence) A complex event e occurs in situa-
tion s with respect to a rule r and a transaction t iff D |= e[r, t, s]. Here D is a
relational theory incorporating the abbreviations (19–(23) above for the complex
event fluents.

In spirit of [58], the following good language design principles are emphasized
with respect to complex events of any logic for events:

– Minimality: the logic must provide a very small minimal core of constructs
that are such that different constructs express different semantics.

– Symmetry: The semantics of the constructs is context free.
– Orthogonality: The core language must allow every meaningful complex event

to be expressible.

From the basic constructs (19–23) above, the set {seq ev(r, t, e1, e2, s), e1, · · · , en}
is the minimal core from which all the others complex events are built, where the
ei, i = 1, · · · , n, are primitive event fluents. More precisely, all the other complex
events can be defined using this set. Any other construct not belonging to that core
must satisfy the good language design principles of symmetry and orthogonality
listed above.

3.3.2 Event Fluents and Consumption Modes Once we have specified a way of
building a complex event e from simpler ones, we still have to specify which oc-
currences of the component of e must be selected in order for e to occur (event
occurrence selection), and what to do with those occurrences once they have been
used in the occurrence of e (occurrence consumption). Consumption modes are
used to determine the event occurrence selection and consumption of the events.

Presumably, it suffices to assign consumption modes to the minimal core set
{seq ev(r, t, e1, e2, s), e1, · · · , en} of the logic for events.

As for primitive event fluents, occurrence selection is trivial: from axioms (17)
and (18) we see clearly that the first occurrence of a primitive event fluent may
trigger any considered ECA-rule. From axioms (17) and (18), we also see that a
primitive event fluent remains unconsumed for any later considered rule. So this
way we achieve a no-consumption scope. To achieve a local consumption scope,

18 Iluju Kiringa

we change (17) and (18) respectively to

F inserted(r, t, do(a, s)) ≡

(∃x, t′).a = F insert(x, t′) ∧ considered(r, t, s)∨

F inserted(r, t, s) ∧ ¬(∃y, t′′)(a = F insert(y, t′) ∧ t′ = t′′),

(24)

and

F deleted(r, t, do(a, s)) ≡

(∃x, t′)a = F delete(x, t′) ∧ considered(r, t, s)∨

F deleted(r, t, s) ∧ ¬(∃y, t′′)(a = F delete(y, t′) ∧ t′ = t′′).

(25)

Finally, we achieve a global consumption scope by changing (17) and (18) respec-
tively to

F inserted(r, t, do(a, s)) ≡

(∃x, t′)a = F insert(x, t′) ∧ considered(r, t, s)∨

F inserted(r, t, s) ∧ ¬(∃r′)(F inserted(r′, t, s) ∧ r 6= r′),

(26)

and

F deleted(r, t, do(a, s)) ≡

(∃x, t′)a = F delete(x, t′) ∧ considered(r, t, s)∨

F deleted(r, t, s) ∧ ¬(∃r′)(F deleted(r′, t, s) ∧ r 6= r′).

(27)

In general. one imposes a specific consumption mode upon the sequence fluent
seq ev(r, t, e1, e2, s) by defining a conjunct ΨCM (t, s) such that

seq ev(r, t, e1, e2, s
′) =df (∃s)Ψseq(t, s, s

′) ∧ ΨCM (t, s), (28)

where Ψseq(t, s, s
′) is a situation calculus formula specifying the semantics of

seq ev(r, t, e1, e2, s) (i.e, the right-hand side of (20)); ΨCM (t, s) is a situation
calculus formula that specifies the consumption mode used.

If L is a distinguished fragment of the situation calculus such that ΨCM (t, s) ∈
L, then this induces the consumption mode class CML. In general, L can be any
fragment of the situation calculus. However, as we shall see in the sequel of this
section, formulas ΨCM (t, s) used in practice belong to logics L that enjoy particu-
larly desirable properties (e.g., decidability) with respect to specific problems such
as the equivalence of two given complex events ([3]).

To deal with consumption modes for sequences, we introduce further termi-
nology adapted from [58]. Suppose e = seq ev(r, t, e1, e2, s); then e1 is called
the initiator and e2 the terminator of e. A component e′ of a sequence e is said to
be consumed iff it no longer can contribute to the detection of e.

By virtue of the Zimmer-Unland assumptions about events, the sequence de-
noted by the fluent seq ev(r, t, e1, e2, s) occurs when its terminator e2 occurs,
provided that its initiator occurred according to a given consumption mode.

Some possible consumption modes for event sequences are (many of these can
be found in [58] and [3]):

Specifying Active Databases as Non-Markovian Theories of Actions?? 19

– First: Selects the oldest occurrence of the initiator, after which this occurrence
is consumed.

– Consumed Last: Selects the most recent occurrence of the initiator, after
which this occurrence is consumed.

– Non-Consumed Last: Selects the most recent occurrence of the initiator, which
remains unconsumed as long as there is no occurrence of the initiator.

– Cumulative: Selects all occurrences of the initiator up to the situation where
the terminator occurs, after which all these occurrences of the initiator are
consumed.

– FIFO: Selects the earliest occurrence of the initiator that has not yet been
consumed, after which this occurrence is consumed.

– LIFO: Selects the latest occurrence of the initiator that has not yet been con-
sumed, after which this occurrence is consumed.

Example 3 Suppose we have 18 situations and the following occurrences of events
E1 and E2:

E1 : S0, S1, S2, S3, S4, S8, S9, S11, S15, S16

E2 : S5, S6, S7, S10, S12, S13, S14, S17

The six consumption modes considered in this section can now be illustrated as
in Figure 2. An arrow E1 → E2 means that E1 is selected as initiator when E2

occurs in order for seq ev(r, t, E1, E2, s) to occur.

Now we spell out details of these consumption modes.

First. We express this by taking ΨCM (t, s) in (28) as

(∀s∗).s′ @ s∗ @ s ⊃ ((∃r1)e1[r1, t, s
∗] ∨ ¬(∃r2)e2[r2, t, s

∗]). (29)

So to detect the sequence under this mode, we have to establish the entailment

D |=(∃r′)e2[r
′, t, s] ∧ (∃s′, r′′)[s′ @ s ∧ e1[r

′′, t, s′]∧

(∀s∗).s′ @ s∗ @ s ⊃ ((∃r1)e1[r1, t, s
∗] ∨ ¬(∃r2)e2[r2, t, s

∗])].
(30)

Consumed Last. We express this by taking ΨCM (t, s) in (28) as

(∀s∗).s′ @ s∗ @ s ⊃ ¬(∃r1)e1[r1, t, s
∗] ∧ ¬(∃r2)e2[r2, t, s

∗]. (31)

So to detect the sequence under this mode, we have to establish the entailment

D |=(∃r′)e2[r
′, t, s] ∧ (∃s′, r′′)[s′ @ s ∧ e1[r

′′, t, s′]∧

(∀s∗).s′ @ s∗ @ s ⊃ ¬(∃r1)e1[r1, t, s
∗] ∧ ¬(∃r2)e2[r2, t, s

∗]].
(32)

Non-Consumed Last. We express this by taking ΨCM (t, s) in (28) as

(∀s∗).s′ @ s∗ @ s ⊃ ¬(∃r1)e1[r1, t, s
∗]. (33)

So to detect the sequence under this mode, we have to establish the entailment

D |=(∃r′)e2[r
′, t, s] ∧ (∃s′, r′′)[s′ @ s ∧ e1[r

′′, t, s′]∧

(∀s∗).s′ @ s∗ @ s ⊃ ¬(∃r1)e1[r1, t, s
∗]].

(34)

20 Iluju Kiringa

| | | | | | | | | | | | | | | | | |

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17
E1 E1 E1 E1 E1 E2 E2 E2 E1 E1 E2 E1 E2 E2 E2 E1 E1 E2

| | | | | | | | | | | | | | | | | |

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17
E1 E1 E1 E1 E1 E2 E2 E2 E1 E1 E2 E1 E2 E2 E2 E1 E1 E2

| | | | | | | | | | | | | | | | | |

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17
E1 E1 E1 E1 E1 E2 E2 E2 E1 E1 E2 E1 E2 E2 E2 E1 E1 E2

| | | | | | | | | | | | | | | | | |

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17
E1 E1 E1 E1 E1 E2 E2 E2 E1 E1 E2 E1 E2 E2 E2 E1 E1 E2

| | | | | | | | | | | | | | | | | |

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17
E1 E1 E1 E1 E1 E2 E2 E2 E1 E1 E2 E1 E2 E2 E2 E1 E1 E2

| | | | | | | | | | | | | | | | | |

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17
E1 E1 E1 E1 E1 E2 E2 E2 E1 E1 E2 E1 E2 E2 E2 E1 E1 E2

First

Consumed Last

Non-Consumed Last

Cumulative

FIFO

LIFO

Fig. 2 Informal semantics of basic complex events

Cumulative. Here, we take ΨCM (t, s) in (28) as

(∀s∗).s′ @ s∗ @ s ⊃ ¬(∃r2)e2[r2, t, s
∗]. (35)

So to detect the sequence under this mode, we have to establish the entailment

D |=(∃r′)e2[r
′, t, s] ∧ (∃s′, r′′)[s′ @ s ∧ e1[r

′′, t, s′]∧

(∀s∗).s′ @ s∗ @ s ⊃ ¬(∃r2)e2[r2, t, s
∗]].

(36)

FIFO. Here, ΨCM (t, s) in (28) is

(∀s∗)[s∗ @ s ⊃ ¬((∃r1)e1[r1, t, s
∗] ∧ seq ev(r, t, e1, e2, s

∗))]∧

(∀s∗)[s∗ @ s′ ⊃ [(∃r1)e1[r1, t, s
∗] ⊃

(∃s∗∗)s∗∗ @ s ∧ seq ev(r, t, e1, e2, s
∗∗)]].

(37)

Specifying Active Databases as Non-Markovian Theories of Actions?? 21

So to detect the sequence under this mode, we must establish the entailment

D |=(∃r′)e2[r
′, t, s] ∧ (∃s′, r′′)[s′ @ s ∧ e1[r

′′, t, s′]∧

(∀s∗)[s∗ @ s ⊃ ¬(e1[r, t, s
∗] ∧ seq ev(r, t, e1, e2, s

∗))]∧

(∀s∗)[s∗ @ s′ ⊃ [(∃r1)e1[r1, t, s
∗] ⊃

(∃s∗∗)s∗∗ @ s ∧ seq ev(r, t, e1, e2, s
∗∗)]]].

(38)

LIFO. Here, ΨCM (t, s) in (28) is

(∀s∗)[s∗ @ s ⊃ ¬((∃r1)e1[r1, t, s
∗] ∧ seq ev(r, t, e1, e2, s

∗))]∧

(∀s∗)[s′ @ s∗ @ s ⊃ [(∃r1)e1[r1, t, s
∗] ⊃

(∃s∗∗)s∗∗ @ s ∧ seq ev(r, t, e1, e2, s
∗∗)]].

(39)

So to detect the sequence under this mode, we must establish the entailment

D |=(∃r′)e2[r
′, t, s] ∧ (∃s′, r′′)[s′ @ s ∧ e1[r

′′, t, s′]∧

(∀s∗)[s∗ @ s ⊃ ¬(e1[r, t, s
∗] ∧ seq ev(r, t, e1, e2, s

∗))]∧

(∀s∗)[s′ @ s∗ @ s ⊃ [(∃r1)e1[r1, t, s
∗] ⊃

(∃s∗∗)s∗∗ @ s ∧ seq ev(r, t, e1, e2, s
∗∗)]]].

(40)

For the purpose of characterizing (some of) the consumption modes, and, later,
specifying properties of ECA-rule sets, the set of operators of first order past tem-
poral logic can be introduced using a set of appropriate abbreviations as follows:
[2]:

Definition 8 (First Order Past Temporal Logic)

previously(φ, s) =df (∃s′)(∃a).s = do(a, s′) ∧ φ(s′),

past(φ, s) =df (∃s′).S0 v s′ @ s ∧ φ(s′),

always(φ, s) =df (∀s′).S0 v s′ @ s ⊃ φ(s′),

since(φ, ψ, s) =df (∃s′)[S0 v s′ @ s ∧ ψ(s′) ∧ (∀s′′).s′ @ s′′ v s ⊃ φ(s′)].

First order past temporal formulas expressed in the situation calculus are formulas
that may include the logical connectives ¬, ∧, ∨ and ⊃, quantification over indi-
viduals of sort objects, and the predicates abbreviated above. In the abbreviations
above, φ and ψ are first order past temporal formulas.

Now we may characterize (some of) the consumption modes above by stating
the following:

Proposition 1 Each of the First, Consumed-Last, Non-Consumed-Last, and Cu-
mulative consumption modes are expressible in the the past temporal fragment of
the situation calculus.

In the context of the situation calculus, the whole development above leads to
the concept of an event logic which we now formally express as a definition.

22 Iluju Kiringa

Definition 9 (Event Logic) An event logic is a triple (E,C,L), whereE is a set of
event fluents, C is a set of event connectives, together with the predicate @, and L
is a fragment of the situation calculus specifying the consumption mode associated
with event sequences.

Definition 10 (Implication and Equivalence Problems for an Event Logic) Sup-
pose e[r, t, s] and e′[r, t, s] are two events of a given event logic E . Then the impli-
cation and equivalence problems for E are the problems of establishing whether,
for givenR and T , D |= (∀s).e[R, T, s] ⊃ e′[R, T, s], and D |= (∀s).e[R, T, s] ≡
e′[R, T, s], respectively. Here D specifies the semantics of events according to the
event logic E .

Assume the sequence fluents seq evF (r, t, e1, e2, s), seq evCL(r, t, e1, e2, s),
seq evNL(r, t, e1, e2, s), and seq evCUMUL(r, t, e1, e2, s) denote event sequence
fluents with the consumption modes First, Consumed-Last, Non-Consumed-Last,
and Cumulative, whose semantics have been given above. Then we have the fol-
lowing result:

Theorem 1 Suppose E = (E,C,L) is the event logic given by:

– E = {F inserted(r, t, s), F inserted(r, t, s), seq evCM (r, t, e1, e2, s),
simult ev(r, t, e1, e2, s), conj ev(r, t, e1, e2, s), disj ev(r, t, e1, e2, s),
neg ev(r, t, e, s)},

with CM ∈ {F,CL,NL,CUMUL};
– C = {¬,∧,@};
– L is the past temporal fragment of the situation calculus.

Then both the implication and the equivalence problems for E are PSPACE-hard.

3.4 Active Relational Theories

An active relational language is a relational language extended in the following
way: for each n+2-ary fluent F (x, t, s), we introduce two n+3-ary transition flu-
ents F inserted(r,x, t, s) and F deleted(r,x, t, s), and two 3-ary event fluents
F inserted(r, t, s) and F deleted(r, t, s).

Definition 11 (Active Relational Theory for a transaction model M) Suppose
L = (R,W) is an active relational language. Then a theory D ⊆ W is an active
relational theory for a transaction model M iff D is of the form D = Dbrt ∪Dtf ∪
Def , where

1. Dbrt is a basic relational theory for the transaction model M ;
2. Dtf is the set of axioms for transition fluents;
3. Def is the set of axioms and definitions for simple and complex event fluents

which are expressed in a given event logic.

Definition 12 (Active Relational Database) An active relational database is a
pair (R,D), where R is an active relational language andD is an active relational
theory.

Specifying Active Databases as Non-Markovian Theories of Actions?? 23

Assume the same notations seq evF (r, t, e1, e2, s), seq evCL(r, t, e1, e2, s),
seq evNL(r, t, e1, e2, s), and seq evCUMUL(r, t, e1, e2, s) with meanings as in
Theorem 1, and suppose seq evFIFO(r, t, e1, e2, s) and seq evLIFO(r, t, e1, e2, s)
denote event sequence fluents with the consumption modes FIFO and LIFO, re-
spectively. Then we have the following result:

Theorem 2 Suppose D is an active relational theory with global consumption
scope for the primitive event fluents. Then the following equivalences can be es-
tablished:

1. First, Consumed-Last and cumulative consumption modes are equivalent; i.e.,

D |= seq evF (r, t, e1, e2, s) iff D |= seq evCL(r, t, e1, e2, s) iff D |=
seq evCUMUL(r, t, e1, e2, s).

2. Non-Consumed-Last, LIFO, and FIFO consumption modes are equivalent;
i.e.,

D |= seq evNL(r, t, e1, e2, s) iff D |= seq evFIFO(r, t, e1, e2, s) iff D |=
seq evLIFO(r, t, e1, e2, s).

It is important to make clear what the equivalences above means. Intuitively,
the logical equivalence of two consumption modesM1 andM2 amounts to the fact
that any given sequence will occur at exactly the same situations under both M1

andM2. This ultimately leads to the same active behavior under bothM1 andM2.
Notice that the theorem assume global consumption scope. It still is open whether
these equivalences still hold in the case of local consumption scope.

4 Specifying Execution Models

The previous section was devoted to extending basic relational theories to model
the reactive models of active behaviors. The new theories introduced there were
called active relational theories.

Up to this point, we have uniquely dealt with transactions, informally viewed
as execution traces. It is now time to turn our attention to what kind of programs we
are supposed to execute in order to get the execution traces we have characterized
in Section 2.1, and to how we execute these programs. So we distinguish between
transactions which are sequences of database actions and transaction programs
which must be executed in order to get those sequences of database actions. In the
present section, we specify transaction programs as well formed programs written
in ConGolog, a situation calculus based programming language. Such well formed
ConGolog programs are executed using a special ternary predicate Do(P, s, s′)
which will serve as an abstract interpreter; Do(P, s, s′), introduced in [27], intu-
itively means: s is a situation reached by executing program P in the situation
s′. The predicate Do is defined such that the situations reached by executing well
formed ConGolog programs are all legal in the sense of Section 2.1.

We specify a given execution model of active behavior by compiling a set of
given ECA-rules into a ConGolog program called rule program whose structure
is constrained according to that given execution model. Now, the semantics of the

24 Iluju Kiringa

predicate Do(P, s, s′) is given in a way such that the rule program is implicitly
executed whenever a transaction program is executed. It is important to notice
that an execution model of the active behavior of transactions is concerned with
execution traces, not with programs, as we still are concerned with the situations
— thus with sequences of database actions — reached by executing transaction
programs.

4.1 Non-Markovian ConGolog

GOLOG, introduced in [27] and enhanced with parallelism in [12] and [13] to
yield ConGolog, is a situation calculus-based programming language for defining
complex actions in terms of a set of primitive actions axiomatized in the situation
calculus. It has the following Algol-like control structures:

– nil, the empty program;
– sequence ([α ; β]; do action α, followed by action β);
– test actions (φ?; test the truth value of expression φ in the current situation);
– nondeterministic action choice (α | β; do α or β);
– nondeterministic choice of arguments ((π x)α; nondeterministically pick a

value for x, and for that value of x, do action α);
– conditionals and while loops; and
– procedures, including recursion.

The following are ConGolog constructs for expressing parallelism:

– Concurrency ([α ‖ β]; do α and β in parallel);
– Concurrent iteration (α‖; do α zero or more times in parallel).

The purpose of this section is to show how ConGolog programs are used to capture
transaction programs and how the semantics of these programs is used to simulate
the transaction models.

4.1.1 Well-formed ConGolog Programs ConGolog syntax is built using constructs
that suppress any reference to situations in which test are evaluated. These will be
restored at run time by the ConGolog interpreter. The following is a restriction to
relational languages of a similar definition given in [42].

Definition 13 (Situation-Suppressed Terms and Formulas) Suppose R is a re-
lational language. Then the situation-suppressed terms (ss-terms) of R are given
by:

1. Any variable or constant of sort A, O, or S of R is an ss-term.
2. Whenever F is a functional ss-fluent of R and t1, · · · , tn are ss-terms of the

appropriate sort, then F (t1, · · · , tn) is an ss-term.
3. If a is an action function symbol of R, and t1, · · · , tn are variables or con-

stants of R, then a(t1, · · · , tn) is a ss-term.
4. For any situation term σ and any action term a, do(a, σ) is an ss-term.

The situation-suppressed formulas (ss-formulas) of R are inductively given as fol-
lows:

Specifying Active Databases as Non-Markovian Theories of Actions?? 25

1. Whenever t, t′ are ss-terms of the same sort, then t = t′ is an ss-formula. No-
tice that an ss-formula here, contrary to [42], may mention an equality between
terms of sort situations.

2. Whenever t is an ss-term of sort A, then Poss(t) is an ss-formula.
3. Whenever F is an n+ 1-ary relational fluent of R and t1, · · · , tn are ss-terms

of sort O, then F (t1, · · · , tn) is a ss-formula.
4. Whenever P is an m-ary situation independent predicate of R and t1, · · · , tn

are ss-terms of sort O, then P (t1, · · · , tn) is a ss-formula.
5. Whenever t and t′ are situation terms of R, then t @ t′ is an ss-formula.
6. Are φ and ψ ss-formulas of R, so are also ¬φ, φ ∧ ψ, and (∃x)φ for any

variable x.

Calling situation terms like S0, do(A,S0), etc “situation”-suppressed might sound
counterintuitive. However, this definition just means that ss-formulas are first or-
der and may still mention situation terms, but never as last argument of fluents;
therefore ss-formulas quantify only over those situations that are mentioned in
equalities between terms of sort situations and in @-atoms. For example, the fol-
lowing is an ss-formula:

S0 @ do(A, (do(B,S0))) ∧ (∀x, y, z, w, t)[accounts(x, y, z, w, t) ⊃ z ≥ 0],

since the fluent accounts(x, y, z, w, t, s) has its situation argument removed, whereas
the following is not:

S0 @do(A, (do(B,S0)))∧(∀x, y, z, w, t, s)[accounts(x, y, z, w, t, s)⊃z ≥ 0].

Definition 14 (Well formed ConGolog Program for Flat Transactions) A Con-
Golog program for flat transactions has the following syntax:8

〈prog〉 ::= 〈internal action〉 | 〈test action〉? | (〈prog〉; 〈prog〉) | (〈prog〉|〈prog〉) |

(〈prog〉 ‖ 〈prog〉) | 〈prog〉‖ | (πx)〈prog〉 | 〈prog〉∗ | 〈procedure call〉 |

(proc P1(x1)〈prog〉 endProc ; · · · ; proc Pn(xn)〈prog〉 endProc ; 〈prog〉)

Notice that

1. 〈internal action〉 is a situation-suppressed internal action term.
2. 〈test action〉 is an ss-formula.
3. The variable x in (πx)〈prog〉 must be of sort actions or objects, never of sort
situations.

4. 〈procedure call〉 is a predicate — a procedure name — of the formP (t1, · · · , tn)
where the ti are ss-terms whose sorts match those of the n arguments in the
declaration of P .

A well formed ConGolog program for flat transactions is syntactically defined as
follows:

〈wfprog〉 ::= (proc P1(x1)〈prog〉 endProc ; · · · ; proc Pn(xn)〈prog〉 endProc ;

Begin(t); 〈prog〉;End(t)) |

〈wfprog〉 ‖ 〈wfprog〉

8 As in [27], loops and conditionals can be defined in terms of the constructs given here.

26 Iluju Kiringa

4.1.2 Semantics of Well Formed ConGolog Programs With the ultimate goal of
handling database transactions, it is appropriate to adopt an operational seman-
tics of well formed ConGolog programs based on a single-step execution of these
programs; such a semantics is introduced in ([12]). First, two special predicates
Trans and Final are introduced. Trans(δ, s, δ′, s′) means that program δ may
perform one step in situation s, ending up in situation s′, where program δ′ remains
to be executed. Final(δ, s) means that program δ may terminate in situation s. A
single step here is either a primitive or a testing action. Then the two predicates
are characterized by appropriate axioms. These axioms contain, for example, the
following cases (See [12] and [27] for full details):

Trans(δ1; δ2, s, δ, s
′) ≡ Final(δ1, s) ∧ Trans(δ2, s, δ, s

′)∨

(∃γ).δ = (γ; δ2) ∧ Trans(δ1, s, γ, s
′),

T rans(δ1|δ2, s, δ, s
′) ≡ Trans(δ1, s, δ, s

′) ∨ Trans(δ2, s, δ, s
′)

to express the semantics of sequences and nondeterministic choice of actions, re-
spectively.

Our axioms for Trans differs from that of [12] with respect to the handling of
primitive and test actions:

Definition 15 (Semantics of Trans)

Trans(a, s, a′, s′) ≡ Poss(a, s) ∧ a′ = nil∧

{(∃a′′, s′′, t)[s′′ = do(a, s) ∧ systemAct(a′′, t)∧

Poss(a′′, s′′) ∧ s′ = do(a′′, s′′)]∨

s′=do(a, s)∧ [(∀a′′, t)systemAct(a′′, t) ⊃ ¬Poss(a′′, s′)]},

(41)

Trans(φ?, s, a′, s′) ≡ Holds(φ, s, s′) ∧ a′ = nil. (42)

In the characterization above, we take particularities of system actions into account
when processing primitive actions. These actions must occur whenever possible,
so the interpreter must test for their possibility upon each performance of a prim-
itive action. The formula (41) captures this requirement; it intuitively means that
the primitive action a may legally execute one step in the log s, ending in log s′

where a′ remains to be executed iff a is possible, the remaining action a′ is the
empty transaction, and either any possible system action a′′ is executed immedi-
ately after the primitive action a has been executed and the log s′ contains the
action a followed by the system action a′′, or no system action is possible and the
log s′ contains only the action a. The formula (42) says that the test action φ? may
legally be performed in one or more steps in the log s, ending in log s′ where a′

remains to be executed iff φ holds in s, yielding a log s′ in a way to be explained
below, and a′ is an empty program.

Given situation calculus axioms of a domain theory, an execution of a program
δ in situation s is the task of finding a situation s′ such that there is a final con-
figuration (δ′, s′), for some remaining program δ′, after performing a couple of
transitions from δ, s to δ′, s′. Program execution is captured by using the abbrevia-
tionDo(δ, s, s′) ([47]). In the single-step semantics,Do(δ, s, s′) intuitively means

Specifying Active Databases as Non-Markovian Theories of Actions?? 27

that program δ is single-stepped until the remainder of program δ may terminate
in situation s′; and s′ is one of the logs reached by single-stepping the program δ,
beginning in a given situation s. Formally, we have ([12]):

Do(δ, s, s′) =df (∃δ′).T rans∗(δ, s, δ′, s′) ∧ Final(δ′, s′), (43)

where Trans∗ denotes the transitive closure of Trans. Finally, a program execu-
tion starting in situation S0 is formally the task of finding a situation s′ such that
D |= Do(δ, S0, s

′), where D is the domain theory.

Definition 16 The notation φ[s] denotes the situation calculus formula obtained
from a given formula φ by restoring the situation argument s in all the fluents (as
their last argument) occurring in φ.

The predicate Holds(φ, s, s′) captures the revised Lloyd-Topor transforma-
tions of [47]; these are transformations in the style of Lloyd-Topor([28]), but with-
out its auxiliary predicates. The predicate Holds(φ, s, s′) takes a formula φ and
establish whether it holds in the log s or not. If φ is a fluent literal, then the next
log s′ will be do(φ, s); if it is a nonfluent literal, then s′ = s; otherwise revised
Lloyd-Topor transformations are performed on φ until we reach literals.

To formally define the Holds(φ, s, s′) predicate, we need to define concepts
of situation-restored term and situation-restored formula whose semantics are the
opposite of those of ss-terms and ss-formulas, respectively.

Definition 17 (Situation-Restored Terms and Formulas) Suppose R is a rela-
tional language. Then the situation-restored terms (sr-terms) of R are inductively
given by:9

1. Any variable or constant of sort A, O, or S of R is an sr-term.
2. Whenever F is a functional ss-fluent of R, σ is a situation term, and t1, · · · , tn

are sr-terms of the appropriate sort, then F (t1, · · · , tn, σ) is an sr-term.
3. If a is an action function symbol of R, and t1, · · · , tn are variables or con-

stants of R, then a(t1, · · · , tn) is a sr-term.
4. For any situation term σ and any action term a, do(a, σ) is an sr-term.

The situation-restored formulas (sr-formulas) of R are inductively given as fol-
lows:

1. Whenever t, t′ are sr-terms of the same sort, then t = t′ is an sr-formula.
2. Whenever t is an sr-term of sort A, then Poss(t) is an sr-formula.
3. Whenever F is an n + 1-ary relational ss-fluent of R and t1, · · · , tn are

sr-terms of sort O, and σ is a situation term, then F (t1, · · · , tn, σ) is a sr-
formula.

4. Whenever P is an m-ary situation independent predicate of R and t1, · · · , tn
are sr-terms of sort O, then P (t1, · · · , tn) is a sr-formula.

5. Whenever σ and σ′ are situation terms of R, then σ @ σ′ is an sr-formula.
6. Are φ and ψ sr-formulas of R, so are also ¬φ, φ ∧ ψ, and (∃x)φ for any

variable x.
9 Any fluents whose situation is suppressed will be called ss-fluents.

28 Iluju Kiringa

Whenever t and φ are a ss-term and a ss-formula, respectively, and σ is a situation
term, we use the notation t[σ] and φ[σ] to denote the corresponding sr-term and
sr-formula, respectively.

Definition 18 (Semantics of Holds)

Holds(φ, s, s′) =df φ[s] ∧ s′ = do(φ, s), when φ is a fluent literal,

Holds(φ, s, s′) =df φ[s] ∧ s′ = s, when φ is a nonfluent literal,

Holds((φ1 ∧ φ2), s, s
′) =df (∃s′′).Holds(φ1, s, s

′′) ∧Holds(φ2, s
′′, s′),

Holds((φ1 ∨ φ2)?, s, s
′) =df Holds(φ1, s, s

′) ∨Holds(φ2, s, s
′),

Holds((φ1 ⊃ φ2), s, s
′) =df Holds(¬φ1 ∨ φ2, s, s

′),

Holds((φ1 ≡ φ2), s, s
′) =df Holds((φ1 ⊃ φ2) ∧ (φ2 ⊃ φ1), s, s

′),

Holds((∀x)φ, s, s′) =df Holds(¬(∃x)¬φ, s, s′),

Holds((∃x)φ, s, s′) =df Holds(φ[c/x], s, s′),

Holds(¬¬φ, s, s′) =df Holds(φ, s, s
′),

Holds(¬(φ1 ∧ φ2), s, s
′) =df Holds(¬φ1, s, s

′) ∨Holds(¬φ2, s, s
′),

Holds(¬(φ1 ∨ φ2), s, s
′) =df (∃s′′).Holds(¬φ1, s, s

′′) ∧Holds(¬φ2, s
′′, s′),

Holds(¬(φ1 ⊃ φ2), s, s
′) =df Holds(¬¬(φ1 ∨ φ2), s, s

′),

Holds(¬(φ1 ≡ φ2), s, s
′) =df Holds(¬[(φ1 ⊃ φ2) ∧ (φ2 ⊃ φ1)], s, s

′),

Holds(¬(∀x)φ, s, s′) =df Holds((∃x)¬φ, s, s
′),

Holds(¬(∃x)φ, s, s′) =df ¬Holds(φ[c/x], s, s′).

The notation φ[c/x] stands for formula φ with a constant c substituted for x. Def-
inition 18 expresses a particular semantics for test actions that is appropriate for
handling database transactions. It is important to notice how our test actions are
different than those of [12] and why they are needed. Our test actions differ from
those of ConGolog ([12]) in two ways. First of all, unlike in ConGolog, ours are
genuine actions and not merely tests that may be forgotten as soon as they are exe-
cuted. We record test actions in the log; i.e. performing a test changes the situation.
Second, depending on the syntactic form of the formula in the test, we may end
up executing more than just a “single step”. More precisely, more than one single
actions are added to the log whenever more than one tests of fluent literals are
involved in the formula being tested. This semantics is dictated by the very nature
of database transaction models. Here, many test actions correspond to database
reading actions. A transaction has no means of remembering which transaction it
had read from other than to record reading actions in the log. This cannot be done
with the semantics for test action found in [12]. In other words, in the absence of
test actions in the log, the semantics of [12] has no straightforward way to express
such things as transaction T1 reads data from transaction T2.

4.1.3 Simulation of Well Formed ConGolog Programs We use the ConGolog lan-
guage as a transaction language for specifying and simulating transaction models

Specifying Active Databases as Non-Markovian Theories of Actions?? 29

at the logical level. To simulate a specific transaction model, we first pick the ap-
propriate basic relational theory D corresponding to that transaction model. Then,
we write a well formed ConGolog program T expressing the desired transactional
behavior. Simulating the program T amounts to the task of establishing the entail-
ment

D |= (∃s′) Do(T, S0, s
′). (44)

To establish the entailment (44), we need to accommodate non-Markovian
tests. These are tests involving the predicate @; they allow to test whether a log
is a sublog of another log. Henceforth, the regression operator [47] must incorpo-
rate a case handling the predicate @. Such a regression operator is defined in [16].
Details on this are out of the scope of this paper.

Example 4 Consider the Debit/Credit example of Section 2.1. In addition to the
axioms given in Section 2.1, we have the following successor state axiom charac-
terizing the system fluent served(aid, s) which is used for synchronization pur-
poses:

served(aid, do(a, s)) ≡ report(aid) ∨ served(aid, s).

The action report(aid), whose precondition axiom is

Poss(report(aid), s) ≡ true,

is used to make the fluent served(aid, s) true by indicating that a request emit-
ted by the owner of the account aid has been granted. The situation independent
predicate requested(aid, req) registers such requests, where req is a positive or
negative real number corresponding to a deposit or a withdrawal of that amount of
money.

Now we give the following ConGolog procedures which are well-formed and
capture the essence of the debit/credit example:

proc a update(t, aid, amt)

(π bid, abal, abal′, tid)[accounts(aid, bid, abal, tid, t)? ;

[abal′ = abal+ amt]? ;

a del(aid, bid, abal, tid, t) ;

a ins(aid, bid, abal′, tid, t)]

endProc

proc execDebitCredit(t, bid, tid, aid, amt)

a update(aid, amt) ;

(π abal) [accounts(aid, bid, abal, tid, t)? ;

t update(t, tid, amt) ; b update(t, bid, amt)]

endProc

proc processReq(t, tid, aid, amt)

(π bid, abal)[accounts(aid, bid, abal, tid, t)? ; execDebitCredit(t, bid, tid, aid, amt)]

endProc

30 Iluju Kiringa

proc processTrans(t)

Begin(t);

[(π bid, aid, abal, tid, req).

{accounts(aid, bid, abal, tid, t)∧ requested(aid, req) ∧ ¬served(aid)}? ;

report(aid) ;Spawn(t, aid) ; processReq(t, tid, aid, req) ; End(aid)]‖ ;

¬((∃ aid, req).requested(aid, req) ∧ served(aid))? ;

End(t)

endProc

Similarly to the first procedure, we can give procedures t update(tid, amt) and
b update(bid, amt) for updating teller and branch balances, respectively. �

The ACID properties are enforced by the interpreter that either commits work
done so far or rolls it back whenever the database general ICs are violated. Thus,
well formed programs are a specification of transactions with the full scale of a
programming language at the logical level. Notice that a formula φ in a test φ?
is in fact an ss-formula whose situation argument is restored at run-time by the
interpreter. Notice also the use of the concurrent iteration in the last procedure;
this spawns a new child transaction for each account that emitted a request but has
not yet been served. For simplicity in this example, we have assumed that each
account has at most one request; this allows us to use the account identifiers aid to
denote spawn subtransactions.

Now we can simulate the program, say processTrans(T) of Example 4, by
performing the theorem proving task of establishing the entailment

D |= (∃s′) Do(processTrans(T), S0, s
′),

where S0 is the initial, empty log, and D is the basic relational theory for nested
transactions that comprises the axioms above; this exactly means that we look for
some log that is generated by the program T . We are interested in any instance of s
resulting from the proof obtained by establishing this entailment. Such an instance
is obtained as a side-effect of this proof.

In Definition 15, we take particularities of system actions into account. These
actions must occur whenever they are possible, so the interpreter must test for their
possibility upon each performance of a primitive action. Definition 15 captures this
requirement.

Definition 19 (Universal Possibility Assumption (UPA) for Test Actions) This
is the sentence

(∀F,x, t, s)Poss(F (x, t)[s], s). (45)

The UPA allows unrestricted carrying out of test actions which in the database
setting are database queries. Using the UPA and Definition 15, we can show that
Do generates only legal situations:

Theorem 3 SupposeD is a relational theory, and let T be a well formed ConGolog
program for flat transactions. Then,

D |= (∀s).Do(T, S0, s) ⊃ legal(s). (46)

Specifying Active Databases as Non-Markovian Theories of Actions?? 31

4.2 Specifying the Execution Models with Flat Transactions

In this section, we specify the execution models of active databases by assuming
that the underlying transaction model is that of flat transactions.

4.2.1 Classification The three components of the ECA-rule — i.e. Event, Condition,
and Action — are the main dimensions of the representational component of active
behavior. Normally, either an indication is given in the rule language as to how the
ECA-rules are to be processed, or a given processing model is assumed by default
for all the rules of the ADBMS. To ease our presentation, we assume the execution
models by default.

An execution model is tightly related to the coupling modes specifying the
timing constraints of the evaluation of the rule’s condition and the execution of
the rule’s action relative to the occurrence of the event that triggers the rule. We
consider the following coupling modes:10

1. EC coupling modes:

Immediate: Evaluate C immediately after the ECA-rule is triggered.
Delayed: Evaluate C at some delayed time point, usually after having per-
formed many other database operations since the time point at which the rule
has been triggered.

2. CA coupling modes:

Immediate: Execute A immediately after C has been evaluated.
Delayed: Execute A at some delayed time point, usually after having per-
formed many other database operations since the time point at which C has
been evaluated.

The execution model is also tightly related to the concept of transaction. In
fact, the question of determining when to process the different components of an
ECA-rule is also answered by determining the transactions within which – if any
– the C and A components of the ECA-rule are evaluated and executed, respec-
tively. In other words, the transaction semantics offer the means for controlling the
coupling modes by allowing one the flexibility of processing the rule components
in different, well-chosen transactions. In the sequel, the transaction triggering a
rule will be called triggering transaction and any other transaction launched by
the triggering transaction will be called triggered transaction. We assume that all
database operations are executed within the boundaries of transactions. From this
point of view, we obtain the following refinement for the delayed coupling mode:

1. Delayed EC coupling mode: EvaluateC at the end of the triggering transaction
T , after having performed all the other database operations of T , but beforeT ’s
terminal action.

10 They were first introduced in the HiPAC system [21] and have since been widely used
in most ADBMS proposals [37]. Our presentation is slightly more general than the original
one, in which the relationships between coupling modes and execution models, and those
between transactions and execution models were not conceptually separated.

32 Iluju Kiringa

2. Delayed CA coupling mode: Execute A at the end of the triggering transac-
tion T , after having performed all the other database operations of T and after
having evaluated C, but before T ’s terminal action.

In presence of flat transactions, we also obtain the following refinement of the
immediate coupling mode:

1. Immediate EC coupling mode: Evaluate C within the triggering transaction
immediately after the ECA-rule is triggered.

2. Immediate CA coupling mode: Execute A within the triggering transaction
immediately after evaluating C.

Notice that the semantics of flat transactions rules out the possibility of nested
transactions. For example, we can not process C in a flat transaction and then pro-
cess A in a further flat transaction, since we quickly encounter the necessity of
nesting transactions whenever the execution of a rule triggers further rules. Also,
we can not have a delayed CA coupling mode such as: ExecuteA at the end of the
triggering transaction T in a triggered transaction T ′, after having performed all
the other database operations of T , after T ’s terminal action, and after the evalua-
tion of C. The reason is that, in the absence of nesting of transactions, we will end
up with a large set of flat transactions which are independent from each other. This
would make it difficult to relate these independent flat transactions as belonging to
the processing of a few single rules.

The refinements above yield for each of the EC and CA coupling modes two
possibilities: (1) immediate, and (2) delayed. There are exactly 4 combinations
of these modes. We will denote these combinations by pairs (i, j) where i and j
denote an EC and a CA coupling modes, respectively. For example, (1, 2) is a cou-
pling mode meaning a combination of the immediate EC and delayed CA coupling
modes. Moreover, we will call the pairs (i, j) interchangeably coupling modes or
execution models. The context will be clear enough to determine what we are writ-
ing about. However, we have to consider these combinations with respect to the
constraint that we always execute A strictly after C is evaluated.11 The follow-
ing combinations satisfy this constraint: (1, 1), (1, 2), and (2, 2); the combination
(2, 1), on the contrary, does not satisfy the constraint.

4.2.2 Immediate Execution Model Here, we specify the execution model (1, 1).
This can be formulated as: Evaluate C immediately after the ECA-rule is trig-
gered and execute A immediately after evaluating C within the triggering
transaction.

11 This constraint is in fact stricter than a similar constraint found in [21], where it is
stated that “A cannot be executed before C is evaluated”. The formulation of [21], however,
does not rule out simultaneous action executions and condition evaluations, a situation that
obviously can lead to disastrous behaviors.

Specifying Active Databases as Non-Markovian Theories of Actions?? 33

Suppose we have a set R of n ECA-rules of the form (13). Then the following
GOLOG procedure captures the immediate execution model (1, 1):

proc Rules(t)

(πx1,y1)[τ1[R1, t]? ; ζ1(x1)[R1, t]? ; α1(y1)[R1, t]]|

...

(πxn,yn)[τn[Rn, t]? ; ζn(xn)[Rn, t]? ; αn(yn)[Rn, t]]|

¬[(∃x1)(τ1[R1, t]∧ζ1(x)[R1, t]) ∨. . .∨

(∃xn)(τn[Rn, t]∧ζn(xn)[Rn, t])] ?

endProc .

(47)

Notice that the procedure (47) above formalizes how rules are processed using
the immediate model examined here: the procedureRules(t) nondeterministically
selects a rule Ri (hence the use of |), tests if an event τi[Ri, t] occurred (hence the
use of ?), in which case it immediately tests whether the condition ζi(xi)[Ri, t]
holds (hence the use of ;), at which point the action part αi(yi) is executed. The
last test condition of (47) permits to exit from the rule procedure when none of the
rules is triggered.

4.2.3 Delayed Execution Model Now, we specify the execution model (2, 2) that
has both EC and CA coupling being delayed modes. This asks to evaluate C and
execute A at the end of a transaction between the transaction’s last action
and either its commitment or its failure. However, notice that the constraint of
executingA after C has been evaluated must be enforced.

The interval between the end of a transaction (i.e., do(End(t), s), for some s)
and its termination (i.e., do(Commit(t), s) or do(Rollback(t), s), for some s) is
called an assertion interval. We use the fluent assertionInterval(t, s) to capture
the notion of assertion interval, with the following successor state axiom:

assertionInterval(t, do(a, s)) ≡ a = End(t)∨

assertionInterval(t, s) ∧ ¬termAct(a, t).
(48)

Now, the following GOLOG procedure captures the delayed execution model
(2, 2):

proc Rules(t)

(πx1,y1)[τ1[R1, t]? ; (ζ1(x1)[R1, t] ∧ assertionInterval(t))? ;

α1(y1)]|

...

(πxn,yn)[τn[Rn, t]? ; (ζn(xn)[rn, t]∧assertionInterval(t))? ;

αn(yn)]|

¬{[(∃x1)(τ1[R1, t]∧ζ1(x)[R1, t]) ∨. . .

∨ (∃xn)(τn[Rn, t]∧ζn(xn)[Rn, t])] ∧ assertionInterval(t)} ?

endProc.

(49)

34 Iluju Kiringa

Here, both the C and A components of triggered rules are executed at assertion
intervals.

4.2.4 Mixed Execution Model Here, we specify the execution model (1, 2) that
mix both immediate EC and delayed CA coupling modes. This execution model
asks to evaluate C immediately after the ECA-rule is triggered and to execute
A after evaluating C in the assertion interval. This model has the semantics

proc Rules(t)

(πx1,y1)[τ1[R1, t]? ; ζ1(x1)[R1, t]? ; assertionInterval(t)? ;

α1(y1)]|

...

(πxn,yn)[τn[Rn, t]? ; ζn(xn)[rn, t]? ; assertionInterval(t))? ;

αn(yn)]|

¬{[(∃x1)(τ1[R1, t]∧ζ1(x)[R1, t]) ∨. . .

∨ (∃xn)(τn[Rn, t]∧ζn(xn)[Rn, t])] ∧ assertionInterval(t)} ?

endProc.

(50)

Here, only the A components of triggered rules are executed at assertion intervals.

Example 5 Consider the stock trading database of Example 2, and also the ac-
tive behavior described there. That is, customer stocks are updated whenever new
prices are notified. When a current price of a stock is being updated, its closing
price is also updated if the current price notification is the last of the day. Suitable
trade actions are initiated whenever some conditions become true of a stock price,
under the specific constraint that the customer balance cannot drop below a certain
amount. Under the delayed execution model, the two rules shown in Figure 1 can
be compiled into the rule program shown in Figure 3. �

4.3 Semantics of Rule Programs

4.3.1 Abstract Execution of Rule Programs Given the program Rules(t) speci-
fied as in (47)–(50), we can now complete the logical characterization of the ex-
ecution models by showing how the predicate Trans(δ, s, δ′, s′) of [12] must be
modified to handle primitive actions:

Trans(a, s, a′, s′) ≡

(∃a∗, s′′, s∗, t).transOf(a, t, s) ∧ Poss(a, s) ∧a′=nil∧

{[s′′ = do(a, s) ∧ systemAct(a∗, t) ∧ Poss(a∗, s′′) ∧ s′ = do(a∗, s′′)]∨

[s∗=do(a, s)∧[(∀a′′, t′)systemAct(a′′, t′)⊃

¬Poss(a′, s∗) ∧Do(Rules(t), s∗, s′)]]}.

(51)

With the last conjunct, we interleave the execution of each action with the exe-
cution of Rules(t). The interpreter picks one of the triggered rules, according to

Specifying Active Databases as Non-Markovian Theories of Actions?? 35

proc Rules(trans)

(π c, time, bal, price
′

, s id, price, clos pr)

[price inserted[Update stocks, trans] ? ;

[{price inserted(s id, price, time)∧ customer(c, bal, s id)∧

stock(s id, price
′

, clos pr)}[Update stocks, trans]∧

assertionInterval(trans)] ? ;

stock insert(s id, price, clos pr)[Update stocks, trans]] |

(π new price, time, bal, pr, clos pr, c, s id, 100))

[price inserted[Buy 100shares, trans] ? ;

[{price inserted(s id, new price, time) ∧ customer(c, bal, s id)∧

stock(s id, pr, clos pr) ∧ new price < 50∧

clos pr > 70}[Update stocks, trans]∧

assertionInterval(trans)] ? ;

buy(c, s id, 100)[Update stocks, trans]] |

¬[(∃c, time, bal, price
′)(price inserted[Update stocks, trans]∧

{price inserted(s id, price, time)∧ customer(c, bal, s id)∧

stock(s id, price
′

, clos pr)}[Update stocks, trans])]∨

(∃new price, time, bal, pr, clos pr)(price inserted[Buy 100shares, trans]∧

{customer(c, bal, s id) ∧ stock(s id, pr, clos pr)∧

new price < 50 ∧ clos pr > 70}[Update stocks, trans])∧

assertionInterval(trans)} ?

endProc.

Fig. 3 Rules for updating stocks and buying shares: delayed execution model

(47)–(50), executes it, and comes back at the beginning ofRules(t); it does so un-
til the last test condition of (47)–(50) becomes true; the semantics (47)–(50) will
make sure that rule execution follows the appropriate execution model.12 Finally,
transOf(t, a, s) is characterized as follows:

transOf(t, a, s) ≡
∨

A∈A

(∃x)a = A(x, t). (52)

Here, A denotes the set of the database actions of the domain.
We execute a GOLOG program T embodying an active behavior by perform-

ing the theorem proving task of establishing entailments of the form (44), where
D is now the active relational theory for an appropriate transaction model.

12 Notice that this semantics means that transitions may in fact be big leaps involving
many actions. This may prevent some desirable concurrency. We leave this problem out of
the scope of this document.

36 Iluju Kiringa

Using the notion of well formed ConGolog programs introduced in Defini-
tion 14, together with the notion of legal database log defined in (12), we can show
the following:

Theorem 4 Suppose D is an active relational theory for flat transactions, and let
T be a well formed ConGolog program for flat transactions. Then,

D |= (∀s).Do(T, S0, s) ⊃ legal(s), (53)

and, more generally,

D |= (∀s, s′).legal(s) ⊃ [Do(T, s, s′) ⊃ legal(s′)]. (54)

4.3.2 Classification Theorems for Execution Models There is a natural question
which arises with respect to the different execution models whose semantics have
been given above: is it possible to reduce the set of execution models described
above to a handful of classes by virtue of some equivalence mechanism? To an-
swer this question, we must develop a (logical) notion of equivalence between two
given execution models. Suppose that we are given two programs Rules(i,j)(t)
and Rules(k,l)(t) corresponding to the execution models (i, j) and (k, l), respec-
tively.

Definition 20 (Database versus system queries) Suppose Q is a situation calcu-
lus query. Then Q is a database query iff the only fluents it mentions are database
fluents. A system query is one that mentions at least one system fluent.

Intuitively, establishing an equivalence between the programs Rules(i,j)(t) and
Rules(k,l)(t) with respect to a background active relational theory D amounts
to establishing that, for all database queries Q(s) and transactions t, whenever the
answer toQ(s) is “yes” in a situation resulting from the execution ofRules(i,j)(t)
in S0, executingRules(k,l)(t) in S0 results in a situation yielding “yes” to Q(s).

Definition 21 (Implication of Execution Models) Suppose D is an active rela-
tional theory, and let Rules(i,j)(t) andRules(k,l)(t) be ConGolog programs cor-
responding to the execution models (i, j) and (k, l), respectively. Moreover, sup-
pose that for all database queries Q, we have13

(∀s, s′, s′′, t).Do(Rules(m,n)(t), s, s′) ∧Do(Rules(m,n)(t), s, s′′) ⊃ Q[s′]≡Q[s′′],

where (m,n) is (i, j) or (k, l). Then a rule program Rules(i,j)(t) implies an-
other rule program Rules(k,l)(t) (Rules(i,j)(t) =⇒ Rules(k,l)(t)) iff, for every
database query Q,

(∀t, s){[(∃s′).Do(Rules(i,j)(t), s, s′) ∧Q[s′]] ⊃

[(∃s′′).Do(Rules(k,l)(t), s, s′′) ∧Q[s′′]]}.
(55)

13 We will come back to this sentence later in Section 4.5. The sentence expresses the
so-called confluence property of active rules.

Specifying Active Databases as Non-Markovian Theories of Actions?? 37

Definition 22 (Equivalence of execution models) Assume the conditions and no-
tations of Definition 21. Then the rule programs Rules(i,j)(t) and Rules(k,l)(t)
are equivalent (Rules(i,j)(t) ∼= Rules(k,l)(t)) iff, for every database query Q,

(∀t, s){[(∃s′).Do(Rules(i,j)(t), s, s′) ∧Q[s′]] ≡

[(∃s′′).Do(Rules(k,l)(t), s, s′′) ∧Q[s′′])]}.

It is important to see why we restrict our attention to database queries. We do so
since we are interested in the final state of the content of the database, regardless
of the final values of the system fluents. Consider the execution models (1, 1) and
(1, 2) and suppose that we use the Do predicate to execute a well formed program
T assuming the rules in Figure 1. Assume that the classic flat transaction model
is used for the transaction program T . Therefore the execution model (1, 1) will
involve no system fluent since the flat transaction model does not involve any. On
the contrary, the execution model (1, 2) will involve a system fluent if the trig-
gered transaction associated with this execution model involves any system fluent.
In general, different execution models are most likely to involve different system
fluents so that, from the point of view of these, virtually no two execution models
would be equivalent. Fortunately, the content of the database is usually what mat-
ters to the user, not the internal state of the system which may be considered as a
black box. This justifies restricting our attention to database queries in establishing
the relationships among execution models.

Theorem 5 Assume the conditions of Definition 21. Then the following holds:
Rules(2,2)(t) =⇒ Rules(1,1)(t).

Theorem 6 Assume the conditions of Definition 21. Then the following holds:
Rules(1,2)(t) ∼= Rules(2,2)(t).

Corollary 1 Assume the conditions of Definition 21. Then the following holds:
Rules(1,2)(t) =⇒ Rules(1,1)(t).

4.4 Priorities

Rules are assigned priorities by the programmer who provides an explicit (partial)
order among rules. Given a set R 6= ∅ of rules, this amounts to partitioning the set
R into subsets Ri, 1 ≤ i ≤ k, such that rules in Ri all have equal priority, and
rules in Ri have priority higher than the rules in Rj , for all j such that i < j. As an
example, we partition the set of rules of Example 2 into two subsets; the first subset
contains the rule Update stocks and the second one contains Buy 100shares.

Suppose that the set R of rules is partitioned into subsets Ri = {ri1 , . . . , rili
},

1 ≤ i ≤ k, in the fashion explained above. Then the procedure below represents
the set R of rules with priorities:

38 Iluju Kiringa

proc Rules(t)

r11
|r12

| . . . | r1l1
|

{¬[(τr11
∧(∃x)ζr11

(x)) ∨. . .∨ (τr1l1

∧(∃x)ζr1l1

(x))]? ;

[r21
| r22

| . . . | r2l2
|

(¬[(τr21
∧(∃x)ζr21

(x)) ∨. . .∨ (τr2l2

∧(∃x)ζr2l2

(x))]? ; Rulesrest)]}

endProc,

where τr1j
and ζr1j

(x) denote the event and the condition parts of rule r1j
, which

is the j-th rule of the subset R1 of R, respectively; Rulesrest is a GOLOG pro-
gram representing the remaining rules and their priorities in R3 ∪ . . . ∪ Rk; and
Rulesrest iterates the construction in the body of the procedureRules(t).

Rules within a subset Ri are selected nondeterministically until one is found,
at which point their action parts are executed according to the semantics expressed
in (47)–(50). The test action at the end of Ri means that if no triggered rule of Ri

has a true condition, the rule processing stops for that subset and continues with
rules of lower priorities. Notice that if the processing of rules in Ri leads to the
triggering of one of the rules rjk

, such that j > i, control goes back to the rules of
higher priority.

Example 6 Using the immediate execution model, the procedure for the prioritized
rules in Example 2 is given in Figure 4: Upon the signaling of a price inserted
event, rule Update stocks updates the stock price in the database for some cus-
tomer if this stock is being monitored. Rule Buy 100 shares is also triggered by
the same price inserted event. If the price of some monitored stock has been up-
dated and the new price lies between some threshold, then a suitable trading action
is performed. However, Update stocks has priority over Buy 100 shares and
will be processed first. In this example, instead of using the notation φ[y], we have
restored the arguments y involved, in this case the arguments Update stocks,
Buy 100 shares, and t (for “transaction”). �

4.5 Properties of Rule Programs

Usually, even a relatively small number of ECA-rules can display a complex and
unpredictable run-time behavior, such as non-termination, and discrepancies in
the final states of the database depending on how rules are selected for execution.
Therefore, in designing ECA-rules, it is important to be able to predict run-time
behavior of rule at design-time. This is done by analyzing the set of ECA-rules.
Rule analysis is a design-time inspection of rules for compliance with a set of
desired properties. The most important properties rule designers must care about
are ([54]):

– Termination: This ensures that a rule program reaches a database state in which
no further rules are triggered.

Specifying Active Databases as Non-Markovian Theories of Actions?? 39

proc Rules(t)

(π s id, pr
′

, clos pr)[price inserted(Update stocks, t)? ;

(∃ c, time, bal, pr
′)[price inserted(Update stocks, s id, pr, time, t)∧

customer(c, bal, s id, t) ∧ stock(s id, pr
′

, clos pr, t)]? ;

stock insert(s id, pr, clos pr, t)] |

{¬[price inserted(Update stocks, t)∧

(∃ s id, pr, c, time, bal, pr
′

, clos pr)[price inserted(s id, pr, time, t)∧

customer(c, bal, s id, t) ∧ stock(s id, pr
′

, clos pr, t)]]? ;

(π c, s id, 100)[price inserted(Buy 100 shares, t)? ;

(∃ new pr, time, bal, pr, clos pr)[price inserted(Buy 100 shares, s id, new pr, time, t)∧

customer(c, bal, s id, t) ∧ stock(s id, pr, clos pr, t) ∧ new pr < 50 ∧ clos pr > 70]? ;

buy(c, s id, 100, t)] |

{¬[price inserted(Buy 100 shares, t) ∧ (∃ c, s id, new pr, time, bal, pr, clos pr)

[price inserted(Buy 100 shares, s id, new pr, time, t) ∧ customer(c, bal, s id, t)∧

stock(s id, pr, clos pr, t) ∧ new pr < 50 ∧ clos pr > 70]]? }}

endProc .

Fig. 4 Prioritized rules for updating stocks and buying shares

– Confluence: This ensures that whenever a rule program reaches two final database
states, then the two states are the same, independently of the order of the exe-
cution of non-prioritized rules.

– Observable determinism: This ensures that a rule program always performs the
same visible actions, independently of the execution order of non-prioritized
rules.

This section shows how the first two of these properties can be expressed in the
situation calculus.14 The last one is left out.

4.5.1 General Properties Here, we briefly illustrate the use of our framework
for specifying properties of well formed ConGolog programs. We appeal to a well
known hierarchy of properties expressible in temporal logic of Manna and Pnueli
([31]) who distinguish two classes of properties: Safety, and Progress. In the sit-
uation calculus, a safety property is syntactically characterized by a formula of
the form (∀s)φ, where φ is any first order past temporal formula expressed in the
situation calculus. A progress property is syntactically characterized by a formula
of the form (Q1s1) · · · (Qnsn)φ, where φ is any first order past temporal formula
expressed in the situation calculus, and theQi must contain at least one occurrence
of ∃.

14 The general treatment of these properties deserves a full paper of its own. Here, we
just show how to formulate the properties in the situation calculus without reasoning about
them.

40 Iluju Kiringa

A classical example of safety property is the partial correctness of a given
program T : if T terminates, then it does so in a situation satisfying a desirable
property, say φ; i.e.

(∀s).Do(T, S0, s) ⊃ φ(s).

Notice that transaction systems are designed to terminate. So they constitute a
domain where this kind of property can be considered.

Checking partial correctness amounts to establishing the entailment

D |= (∀s).Do(T, S0, s) ⊃ φ(s). (56)

As an illustration of partial correctness checking, we have the entailment (67) from
Theorem 3. Another illustration is

D |= (∀s).Do(T, S0, s) ⊃ always(φ, s),

where T is a given well formed ConGolog program, and φ is any first order past
temporal formula expressed in the situation calculus . Suppose we have the fol-
lowing abbreviation for well−formed−sit(s):

well−formed−sit(s) =df

(∀s′)[do(Commit(t), s′) @ s ⊃ ¬(∃s′′)do(Rollback(t), s′′) @ s].

Then the following is a further example of checking correctness:

D |= (∀s).Do(T, S0, s) ⊃ well−formed−sit(s),

with T being a given well formed ConGolog program.
Given a relational theory D, a property φ(s), and a well formed ConGolog

program T , it is important to look for computationaly feasible ways of establish-
ing the entailment (56). The answer to this question would take us too far aside;
nevertheless, we can mention one possible mechanism for doing this: in order to
check the property φ(s), we must answer a historical query, i.e. check the validity
of φ(s) over a finite log starting in S0 and involving only ground operations. We do
this by first generating a ground log S such that Do(T, S0, S) using the relational
theory D. Then we use the regression mechanism for non-Markovian situation
calculus theories defined in [16] to reduce our task to establishing an entailment
involving only the initial database. Regressing the given formula φ(s) means us-
ing D to transform it into a logically equivalent formula φ′(s′) which mentions a
shorter sublog s′ of s. Repeatedly performing this mechanism leads ultimately to
a formula whose only log is S0. So, thanks to the regression, checking a property
in the log resulting from the execution of a transaction amounts to checking that
property – as a theorem proving task – in the initial database.

Specifying Active Databases as Non-Markovian Theories of Actions?? 41

4.5.2 Termination and Correctness Recall that termination ensures that a rule
program reaches a database state in which no further rules are triggered. In the
situation calculus, this can be expressed by writing a formula that captures the
fact that a rule program Rules(i, j)(t) reaches a final situation with the Do pred-
icate. Formally, suppose D is an active relational theory, and let Rules(i,j)(t) be
the ConGolog program corresponding to the execution model (i, j). Then a rule
programRules(i,j)(t) terminates iff

(∀t, s)(∃s′)Do(Rules(i,j)(t), s, s′). (57)

So, termination of active rules is a progress properties since one of the quantifiers
of the formula (57) is an existential quantifier.

Strictly speaking, termination just means that rule processing ceases at some
point. That is what the formula (57) expresses. If we strictly follow the way ter-
mination is defined above, that is, as a property that “ensures that a rule program
reaches a database state in which no further rules are triggered”, we can view ter-
mination as a correctness property. In fact, it is easy to see that the following holds:

Proposition 2 The following is a valid situation calculus formula:

(∀t, s, s′).Do(Rules(i,j)(t), s, s′) ⊃ ¬Φ(i,j),

whereΦ(i,j) is the formula in the last test condition ofRules(i,j); i.e., forRules(1,1),
Φ(i,j) is the formula

(∃x1)(τ1[R1, t]∧ζ1(x)[R1, t]) ∨. . .∨ (∃xn)(τn[Rn, t]∧ζn(xn)[Rn, t]).

4.5.3 Confluence Confluence ensures that a rule program never reaches two di-
vergent database states, independently of the order of the execution of non-prioritized
rules. Notice that, informally, a database state is the set of all database fluents, to-
gether with their truth values. Confluence must ensure that all possible executions
of a rule program reach the same database state. We may express this property in
the situation calculus as follows:

(∀Q)(∀s, s′, s′′, t).Do(Rules(i,j)(t), s, s′)∧

Do(Rules(i,j)(t), s, s′′) ⊃ {Q[s′]≡Q[s′′]},
(58)

where Q is a database query, and i and j are fixed. The formula (58) above shows
that confluence is a safety property since all the quantifiers involved in it are uni-
versal quantifiers.

5 Related Work

In general, the formal specification of active behavior can be classified in two
groups. The first group uses the denotational semantics [49] as formalism to de-
scribe the execution models of actual ADBMSs [52,11,44]. In the second group,
logic is used, especially in form of first-order logic, event calculus, or situation
calculus [56,57,29,4,5,14]. We also will cover other approaches that exist, but do
not fit into the present classification, due to their limited scope.

42 Iluju Kiringa

5.1 Denotational Semantics-based Formalization

In [52], Widom formally specifies the execution model of the Starburst ADBMS,
using the denotational semantics. A denotational semantics is generally defined as
a mapping of the syntactic constructs of a formal language into an abstract mean-
ing formalized in a suitable mathematical model [49]. This mapping is represented
as a meaning function taking programs of the language as an input value and pro-
ducing the function computed by those programs. In the context of an ADBMS, a
denotational semantics is a meaning function. This takes a set of active rules as an
input and produces a function which maps the set of database states and the set of
allowed database modification operations into a new set of database states.

The semantics described in [52] assumes both deterministic and non-deterministic
selection of which rule to consider first when more than one rule is triggered. It is
divided into three parts. The first describes the different domains of various help or
supporting functions used to define the meaning function M; the second defines
these supporting functions themselves; and the third defines the meaning function
M. Here, M has a set of rules Rules ∈ 2R and a rule ordering o ∈ O as input,
where R is the set of active rules, 2R is the powerset of R, and O is the set of rule
orderings. The meaning of o and Rules, denoted by M[Rules, o], is defined as a
function φ : 4 × S −→ S ∪ {⊥}, where 4 is the domain of sets of database
changes, S is the domain of database states, and ⊥ denotes the non-termination
of rule execution. Putting it all together, Widom formally defines M as a function
2R×O −→ 4× S → S ∪ {⊥}.

To our knowledge, this proposal is the first one to have succeeded in giving
a formal foundation to active rules. For this reason, it is widely referred to in
the literature. Unfortunately, though Widom argues that her work is providing a
denotational semantics for the Starburst rule language, it is in fact providing only
a specification of the execution model of the Starburst ADBMS, abstracting from
its rule language.

Coupaye and Collet present another attempt to use denotational semantics for
formally specifying ADBMSs ([11]). They give a formal specification of the ex-
ecution model of the NAOS system developed at the university of Grenoble. In
NAOS, a rule condition can be a query expressed in O2SQL, which is an object-
oriented version of SQL, and a rule action can be a O2C program. Both O2SQL
and O2C are languages in the style of Heraclitus (see Section 5.3): they may be
used to express the formal semantics of ADBMSs.

Coupaye and Collet are essentially applying the set of semantic functions de-
veloped by Widom on the NAOS system, taking the object-oriented character of
NAOS conditions and actions into account. For example, they extend the defini-
tion of the valuation function for the net effect of rule actions by incorporating
the effect of object-oriented related operations such as object creation, or method
invocation. They also add some new domains for supporting functions that valu-
ate new features found in NAOS such as the dynamic activation or deactivation of
rules.

Like in the denotational semantics approach, we give a declarative semantics
that allows to reason about the behavior of active rules. Unlike there, ours is a for-

Specifying Active Databases as Non-Markovian Theories of Actions?? 43

malization that can be generalized without difficulties, thus allowing a comparison
between the various execution models that exist.

5.2 Logic-based Formalization

The idea of using first-order logic as a mean to formalize ADBMSs has been advo-
cated first by Widom and Zaniolo ([53], [56]). Some other researchers have tried to
give a logical account of the semantics of ADBMSs [53,56,57,20,15,29,4,5,14].
Most of these researchers have been motivated by the existence of well developed
semantics for deductive rules [50,28,18,51].

Databases have been formalized in logic now for about 20 years (for a descrip-
tion of the main contributions to the use of logic in databases, the actual state of
the art in commercial implementations, and future trends, see [36]). Reiter [45]
provides the first of these formalizations.

Deductive databases (Datalog) are an extension of relational databases for-
malized à la Reiter. Datalog programs are function-free logic programs. Concepts
playing an important role in relational databases like integrity constraints are also
formalized in logic (for an account, see [36]).

Considering semantics of deductive databases, some researchers attempt to
provide similar semantics to ADBMSs [56,57,20,29,14]). They feel a need for
combining active and deductive DBMSs into a single and reconciled paradigm.
This need is being addressed in different ways. Widom argues that deductive rules
could be naturally extended to run on active DBMSs [53]. Zaniolo, Harrison and
Dietrich, and Ludäscher et al. state that some syntactically and semantically con-
strained active rules would run on deductive DBMSs [56,57,20,29]. Finally, Fer-
nandes et al. advocate that active and deductive DBMSs have no intrinsic similari-
ties with respect to their operational semantics, but they can be integrated into one
hybrid system [14].

The most elaborated semantics in this approach that unifies semantics for ac-
tive and deductive databases are given in [56,57,29]. The main result of this effort
is a demonstration of a possible unification of active and deductive rules within
a common logical framework of a suitably extended version of Datalog. The uni-
fied semantics keep the classical deductive database engine while simulating active
rules by re-writing them as deductive rules with updates. The obvious advantage
of the approach is the possibility of reusing old components of a deductive DBMS
without major changes. In addition, this approach provides a semantic account for
an active rule as an unfragmented unity. However, we stress one drawback in the
approach: it is not clear whether all aspects of the active behavior like coupling
modes or operational semantics of active rules can be simulated within a pure se-
mantics for deductive database updates.

Some other researchers are proposing logic-based formalizations that do not
directly address the issue of combining the active and deductive DBMSs into a
single and reconciled paradigm. For example, Picouet and Vianu [39,40] address
expressiveness and complexity questions such as: the relevance of active features,
their impact on the expressive power and the complexity of the systems, and the

44 Iluju Kiringa

simplification of execution models and their equivalence. They describe a generic
framework for formalizing active databases. They use it to articulate and factor
out common features of sevral prototypes of ADBMSs. Within their framework,
they investigate the impact of the various dimensions of the active behavior on the
expressiveness and complexity of active databases.

The main contribution of the work of Picouet and Vianu seems to be the insight
provided into which active features are essential and which are not. A feature is
essential if it has an impact on the expressive power and the complexity of the
ADBMS. However, they omit the event part of ECA-rules in their approach. The
impact of this omission on the expressiveness and the complexity of an ADBMS
is an open question. Though the operational semantics abstracted by Picouet and
Vianu seems general enough to account for many existing ADBMSs, the style
of their formalization remains operational. In this paper, we have showed how to
express execution models in a purely declarative way.

Baral and Lobo develop a situation calculus-based language called Lactive to
describe actions and their effects, events, and evaluation modes of active rules [4,
5]. What Baral and Lobo propose can be considered as preliminary work on how
the situation calculus may be used to formalize active rules: in these papers, many
aspects such as modelling complex events, complex and concurrent actions, and
transactions remain as future work. Beside this limitation, there is another one:
having presented their language, Baral and Lobo give a translation method for
transforming active database rules in a corresponding logic program expressed in
the situation calculus notation. In our opinion, this presents a conceptual problem:
their language seems to be a set of metaconstructs that have to be translated to the
situation calculus. Why not directly express active rules in the situation calculus?
The purpose of introducing a new language seems unclear to us.

In [41], Pinto introduces various notions of action occurrence. He views an oc-
currence statement as a constraint on the legal path in the tree of possible futures.
His theory incorporates many ingredients that are partly user-provided facts. Pinto
argues that his framework can be used as an effective tool for formalizing active
databases, assuming Reiter’s formalization of DB transactions. The idea is to let an
action occur in the state following the performance of a triggering action, accord-
ing to the general (simplified) pattern φ ⊃ occurs(α2(x̄2), do(α1(x̄1), s)), where
φ is the condition of the rule, do(α, s) means the situation following the execution
of action α in situation s, and α1 triggers α2. The same idea is found in [34]. Pinto
and McCarthy’s proposals are yet too fragmentary to allow a comparison with our
approach.

Bertossi et al. [8] propose a situation calculus-based formalization that dif-
fer considerably from our approach. They first extend Reiter’s specification of
database updates to database transactions, incorporating a formalization of static
integrity constraints and the notion of action occurrence introduced in [41]. They
then specify active rules as sentences of the situation calculus. This representation
of rules forces the action part of their rules to be a primitive database operation.
Unlike Bertossi et al., we base our approach on GOLOG, which allows the action
component of our rules to be arbitrary GOLOG programs.

Specifying Active Databases as Non-Markovian Theories of Actions?? 45

Finally, Fraternali and Tanca address the problem of giving a formal semantics
based on formal concepts that captures most of the features of known ADBMSs
in the similar way fixpoint semantics captures the deductive nature of deductive
DBMSs [15].

5.3 Other Approaches

In [22], Hull and Jacobs present a rich language using an operational semantics.
Based on the database language Heraclitus, the discussion in this work shows how
to theoretically analyze alternative rule processing semantics. As an example of
such an analysis, they examine approaches of accessing delta relations. Heraclitus
is an imperative language that is statically typed, supports (possibly persistent)
relation types and variables, supports a type called delta which stores insertions to,
or deletions from, a relation, and has an embedded relational calculus subpart to
manipulate relations and delta values.

Constructs of Heraclitus can be used to express rule processing semantics.
Rules are expressed in Heraclitus as a function from deltas to deltas. A particu-
lar semantics of an existing system can be expressed as a procedure called rule
application template, which uses rules defined as functions. A special kind of in-
dexing called indexed families is used to manipulate and refer to functions; it is
a mapping from integers to the appropriate code fragments. The authors exclude
considering explicit arrays of rules, since this would introduce rules as first-class
citizens.

Using the framework of Heraclitus, Hull and Jacobs specify the semantics of
Starburst.

In [6], an approach based on relational algebra is described, aiming at the anal-
ysis and optimization of CA rules. It shows how to propagate changes introduced
by the execution of the action part of a rule, for example r1, to the condition of
another rule, say r2, in order to know whether r1 may trigger r2.

There are some other approaches which are of limited scope since they cover
only one aspect of active behavior. As an example, graph-based formalism is used,
especially in the form of event graphs [10] or Petri nets [17] to model and/or detect
composite events. In [1], a graph-based approach is also used to model provable
properties of sets of active rules, such as confluence, termination, and determinism.

6 Conclusion

6.1 Summary

This paper has proposed foundations of active databases using the situation calcu-
lus. Our approach allows to formally specify and reason about both the ECA-rule
language and the execution models for rules. The theories introduced in the pa-
per allow a precise definition of the properties of the main dimensions of active
behavior, such as relational databases, database querying and updates, (advanced)

46 Iluju Kiringa

database transaction models, events, conditions, actions, execution of ECA-rules,
etc.

Developing mathematical foundations for dynamical systems has attracted many
research efforts since Amir Pnueli [43] first showed the importance of using tem-
poral logic to specify semantics and dynamical properties of concurrent programs.
Ray Reiter’s book [47] on situation calculus theories as “logical foundations for
specifying and implementing dynamical systems” is mainly about foundations for
autonomous, cognitive robots that perceive and act in changing environments and
reason about their actions and the knowledge they accumulate about these actions.
This paper aimed to give similar foundations, this time not to cognitive agents, but
to the dynamical world of active databases. It focused on logical theories for cap-
turing advanced transaction models, complex events, execution models of ECA-
rules, and a methodology for obtaining Prolog implementations of these theories.

To start with our endeavour, we have recapitulated an existing framework for
capturing database transaction models in the sistuation calculus. Then, we have
extended the framework for modelling transactions to reactive and execution mod-
els of active behaviors. With respect to these, the main contributions of this paper
can succinctly be summarized as follows:

– We constructed logical theories called active relational theories to formal-
ize active databases along the lines set by the framework of basic relational
theories introduced in [25]. Like the later, active relational theories are non-
Markovian theories. They provide the formal semantics of the corresponding
active database model, along with an underlying database transaction model.
They are an extension of the classical relational theories of [45] to the transac-
tion and active database settings.

– We specified event algebras in the situation calculus, and gave precise seman-
tics to the following dimensions of active behavior: event consumption modes,
rule priorities, and net effects. We also specified various execution models in
the situation calculus, together with their coupling modes, that is, immediate,
deferred, and detached execution models.

– The main result here is a set of classification theorems for the various semantics
identified for important dimensions of active behavior such as consumption
modes, and execution models. These theorems say roughly which semantics
are equivalent and which are not.

We have used one single logic – the situation calculus — to accounts for virtu-
ally all features of rule languages and execution models of ADBMSs. The output
of this account is a conceptual model for ADBMSs in the form of active relational
theories. Thus, an active relational theory corresponding to an ADBMS constitutes
a conceptual model for that ADBMS. Since active relational theories are imple-
mentable specifications, implementing the conceptual model provides one with a
rapid prototype of the specified ADBMS.

Specifying Active Databases as Non-Markovian Theories of Actions?? 47

6.2 Future Work

Ideas expressed and developed in this paper may be extended in various ways. we
mention a few of them.

– Properties of Rule programs. Formalizing rules as ConGolog programs can
be fruitful in terms of proving formal properties of active rules since proving
such properties can be reduced to proving properties of programs. Here, the
problems arising classically in the context of active database like confluence
and termination [54] are dealt with. In Section 6.2, we gave a preliminary in-
dication on how these properties can be formulated. We appealed to the well
known distinction between Safety and Progress properties due to Manna and
Pnueli [31] and argued that the classical properties such termination, conflu-
ence, and determinism that are ascribed to ECA-rule programs may be fruit-
fully viewed in the light of the general classification of Manna and Pnueli.
However, much work remains to be done on these issues.

– Further Classification Theorems. The issue of classifying execution models
and consumption modes needs further study. For example, we classified con-
sumption modes under the assumption that the scope of consumption is global.
We would like to know what happens when the local scope is considered. Also,
by assuming more advanced transaction models such as those modelled in [25],
the issue of classifying the execution models becomes more intriguing.

– Systematic Implementation of some of the Semantics. Being foundational,
this work has been theoretical by its nature. Though we have shown how to
simulate the theories of this paper, it remains to systematically implement a
full fledged system by following the guidelines laid down above. This issue is
the subject of a future paper.

– Development Methodology. Finally, we could explore ways of making the
framework of this paper part of a logic-based development methodology for
active rule systems. Such a methodology would exhibit the important advan-
tage of uniformity in many of its phases by using the single language of the
situation calculus.

References

1. A. Aiken, J.M. Hellerstein, and J. Widom. Static analysis techniques for predicting the
behaviour of active database rules. ACM Transaction on Database Systems, 20:3–41,
1995.

2. M. Arenas and L. Bertossi. Hypothetical temporal queries in databases. In A. Borgida,
V. Chaudhuri, and V. Staudt, editors, Proceedings of the ACM SIGMOD/PODS 5th
International Workshop on Knowledge Representation meets Databases (KRDB’98),
pages 4.1–4.8, 1998. http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-
WS/Vol-10/.

3. J. Bailey and S. Mikulás. Expressivemenss issues and decision problems for active
database event queries. In ICDT’2001, pages 69–82, 2001.

4. C. Baral and J. Lobo. Formal characterizations of active databases. In International
Workshop on Logic in Databases, LIDS’96, 1996.

48 Iluju Kiringa

5. C. Baral, J. Lobo, and G. Trajcevski. Formal characterizations of active databases: Part
ii. In Proceedings of Deductive and Object-Oriented Databases, DOOD’97, 1997.

6. E. Baralis, S. Ceri, and J. Widom. Better termination analysis for active databases.
In N.W. Paton and H. Williams, editors, Rules in Database Systems, pages 163–179.
Springer Verlag, 1993.

7. P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery in
database systems. Addison-Wesley, Reading, MA, 1987.

8. L. Bertossi, J. Pinto, and R. Valdivia. Specifying database transactions and active rules
in the situation calculus. In H. Levesque and F. Pirri, editors, Logical Foundations
of Cognitive Agents. Contributions in Honor of Ray Reiter, pages 41–56, New-York,
1999. Springer Verlag.

9. A. Bonner and M. Kifer. Transaction logic programming. Technical report, University
of Toronto, 1992.

10. S. Chakravarthy and D. Mishra. An event specification language (snoop) for active
databases and its detection. Technical Report UF-CIS-TR-91-23, University of Florida,
1991.

11. T. Coupaye and C. Collet. Denotational semantics for an active rule execution model.
In T. Sellis, editor, Rules in Database Systems: Proceedings of the Second International
Workshop, RIDS ’95, pages 36–50. Springer Verlag, 1995.

12. G. De Giacomo, Y. Lespérance, and H.J. Levesque. Reasoning about concurrent ex-
ecution, prioritized interrupts, and exogeneous actions in the situation calculus. In
Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence,
pages 1221–1226, 1997.

13. G. De Giacomo, Y. Lespérance, and H.J. Levesque. Congolog, a concurrent program-
ming language based on the situation calculus: foundations. Artificial Intelligence,
121(1-2):109–169, 2000.

14. A.A.A. Fernandes, M.H. Williams, and N.W. Paton. A logic-based integration of active
and deductive databases. New Generation Computing, 15(2):205–244, 1997.

15. P. Fraternali and L. Tanca. A structured approach to the definition of the semantics of
active databases. ACM Transactions on Database Systems, 20:414–471, 1995.

16. A. Gabaldon. Non-markovian control in the situation calculus. In Proceedings of AAAI,
Edmonton, Canada, 2002.

17. S. Gatziu and K.R. Dittrich. Detecting composite events in active database systems
using petri nets. In Proceeding on Research Issues in Data Engineering, RIDE’94,
pages 2–9, 1994.

18. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
R Kowalski and K.A. Bowen, editors, Proceedings the 5th International Conference on
Logic Programming, pages 1070–1080, Cambridge, MA, 1988. MIT Press.

19. A. Guessoum and J.W. Lloyd. Updating knowledge bases. New Generation Computing,
8(1):71–89, 1990.

20. J.V. Harrisson and S.W. Dietrich. Integrating active and deductive rules. In Rules in
Database Systems, RIDS’93, pages 288–305, Edinburgh, 1993. Springer-Verlag.

21. M. Hsu, R. Ladin, and R. McCarthy. An execution model for active database man-
agement systems. In Proceedings of the third International Conference on Data and
Knowledge Bases, pages 171–179. Morgan Kaufmann, 1988.

22. R. Hull and D. Jacobs. Language constructs for programming active databases. In
Proceedings of the 17th International Conference on VLDB, Barcelona, 1991.

23. I Kiringa. Simulation of advanced transaction models using golog. In Proceedings of
the 8th Biennial Workshop on Data Bases and Programming Languages (DBPL’01),
2001.

Specifying Active Databases as Non-Markovian Theories of Actions?? 49

24. I. Kiringa. Specifying event logics for active databases. In KRDB, 2002.
25. I. Kiringa and A. Gabaldon. Synthesizing advanced transaction models using the situ-

ation calculus. 2006. Submitted to the Journal of Intelligent Information Systems.
26. I. Kiringa and R. Reiter. Specifying semantics of active databases in the situation

calculus (extended abstract). In DBLP, 2002.
27. H. Levesque, R. Reiter, Y. Lespérance, Fangzhen Lin, and R.B. Scherl. Golog: A logic

programming language for dynamic domains. J. of Logic Programming, Special Issue
on Actions, 31(1-3):59–83, 1997.

28. J.W. Lloyd. Foundations of Logic Programming, Second, Extended Edition. Springer-
Verlag, Berlin, 1988.

29. B. Ludäscher, U. Hamann, and G. Lausen. A logical framework for active rules. In
Proceedings of the Seventh International Conference on Management of Data, Pune,
1995. Tata and McGraw-Hill.

30. N. Lynch, M.M. Merritt, W. Weihl, and A. Fekete. Atomic Transactions. Morgan
Kaufmann, San Mateo, 1994.

31. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer Verlag, New-York, 1991.

32. D. McCarthy and U. Dayal. The architecture of an acctive data base management
system. In ACM-SIGMOD Conference on Management of Data, Portland, 1989.

33. J. McCarthy. Situations, actions and causal laws. Technical report, Stanford University,
1963.

34. J. McCarthy and T. Costello. Combining narratives. In A.G. Cohn and L.K. Schubert,
editors, Principles of Knowledge Representation and Reasoning: Proceedings of the
Fifth International Conference (KR’98, pages 48–59, San Francisco, CA, 1998. Mor-
gan Kaufmann.

35. J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of artifi-
cial intelligence. Machine Intelligence, 4:463–502, 1969.

36. J. Minker. Logic and databases: A 20 year retrospective. In International Workshop on
Logic in Databases, LIDS’96, pages 3–57, 1996.

37. N.W. Paton. Active Rules in Database Systems. Springer Verlag, New York, 1999.
38. N.W. Paton, J. Campin, A.A.A. Fernandes, and M.H. Williams. Formal specifica-

tions of active database functionality: A survey. In T. Sellis, editor, Rules in Database
Systems: Proceedings of the Second International Workshop, RIDS ’95, pages 21–35.
Springer Verlag, 1995.

39. P. Picouet and V. Vianu. Semantics and expressiveness issues in active databases. In
ACM Symposium on Principles of Database Systems, pages 126–138, San José, 1995.

40. P. Picouet and V. Vianu. Expressiveness and complexity active databases. In ICDT’97,
1997.

41. J.A. Pinto. Occurrences and narratives as constraints in the branching structure of the
situation calculus. Journal of Logic and Computation, 8:777–808, 1998.

42. F. Pirri and R. Reiter. Some contributions to the metatheory of the situation calculus.
Journal of the ACM, 46(3):325–364, 1999.

43. A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE Sym-
posium on foundations of Computer Science, pages 46–57. IEEE Computer Society,
1977.

44. S. Reddi, A. Poulovassilis, and C. Small. Pfl: an active functional dbpl. In N.W. Paton,
editor, Active Rules in Databases Systems, pages 297–308, New-York, 1999. Springer
Verlag.

45. R. Reiter. Towards a logical reconstruction of relational database theory. In M. Brodie,
J. Mylopoulos, and J. Schmidt, editors, On Conceptual Modelling, pages 163–189,
New-York, 1984. Springer Verlag.

50 Iluju Kiringa

46. R. Reiter. On specifying database updates. J. of Logic Programming, 25:25–91, 1995.
47. R. Reiter. Knowledge in Action: Logical Foundations for Describing and Implementing

Dynamical Systems. MIT Press, Cambridge, 2001.
48. A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logics.

Journal of the ACM, 32(3):733–749, 1985.
49. R.D. Tennent. The denotational semantics of programming languages. Communica-

tions of the ACM, 19:437–453, 1976.
50. M.H. Van Emden and R. Kowalski. The semantics of predicate logic as a programming

language. Journal of the ACM, 23(4):733–742, 1976.
51. A. Van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded sets and well-founded se-

mantics for general programs. In Proceedings the 7th Annual ACM Symposium on
Principles of Database Systems, pages 221–230. ACM Press, 1988.

52. J. Widom. A denotational semantics for the starburst production rule language. SIG-
MOD RECORD, 21(3):4–9, September 1992.

53. J. Widom. Deductive and active databases: Two paradigms or ends of a spectrum?
In N.W. Paton and H. Williams, editors, Rules in Database Systems, pages 306–315.
Springer Verlag, 1993.

54. J. Widom and S. Ceri. Active Database Systems: Triggers and Rules for Advanced
Database Processing. Morgan Kaufmann Publishers, San Francisco, CA, 1996.

55. M. Winslett. Updating Logical Databases. Cambridge University Press, Cambridge,
MA, 1990.

56. C. Zaniolo. A unified semantics for active and deductive databases. In N.W. Paton
and H. Williams, editors, Rules in Database Systems, pages 271–287. Springer Verlag,
1993.

57. C. Zaniolo. Active database rules with transaction-conscious stable-model semantics.
In T.W. Ling and A.O. Mendelzon, editors, Fourth International Conference on Deduc-
tive and Object-Oriented Databases, pages 55–72, Berlin, 1995. Springer Verlag.

58. D. Zimmer and R. Unland. On the semantics of complex events in active database
managements systems. Unpublished, 2001.

Specifying Active Databases as Non-Markovian Theories of Actions?? 51

A Proofs

In proving Theorem 4 below, the following lemma will be useful.

Lemma 1 Let D be a basic relational theory. Then

Df ∪ {(12)} |= (∀s, a){legal(S0)∧

[legal(do(a, s)) ≡ legal(s) ∧ Poss(a, s)∧

(∀a
′

, t).systemAct(a′

, t) ∧ responsible(t, a′

, s) ∧ Poss(a′

, s) ⊃ a = a
′]}.

Proof: See [25]. 2

Proposition 1

It is sufficient to give a formula of the past temporal fragment of the situation calculus for
each of the consumption modes involved.

1. First. The formula in (30), i.e.,

(∃r
′)e2[r

′

, t, s] ∧ (∃s
′

, r
′′)[s′ @ s ∧ e1[r

′′

, t, s
′]∧

(∀s
∗).s′ @ s

∗

@ s ⊃ ((∃r1)e1[r1, t, s
∗] ∨ ¬(∃r2)e2[r2, t, s

∗])]

is expressible by the following past temporal formula:

(∃r
′)e2[r

′

, t] ∧ since((∃r
′′)e1[r

′′

, t], (∃r1)e1[r1, t] ∨ ¬(∃r2)e2[r2, t]).

2. Consumed Last. The formula in (32), i.e.,

(∃r
′)e2[r

′

, t, s] ∧ (∃s
′

, r
′′)[s′ @ s ∧ e1[r

′′

, t, s
′]∧

(∀s
∗).s′ @ s

∗

@ s ⊃ ¬(∃r1)e1[r1, t, s
∗] ∧ ¬(∃r2)e2[r2, t, s

∗]]

is expressible by the following past temporal formula:

(∃r
′)e2[r

′

, t] ∧ since((∃r
′′)e1[r

′′

, t],¬(∃r1)e1[r1, t] ∧ ¬(∃r2)e2[r2, t]).

3. Non-Consumed Last. The formula in (34), i.e.,

(∃r
′)e2[r

′

, t, s] ∧ (∃s
′

, r
′′)[s′ @ s ∧ e1[r

′′

, t, s
′]∧

(∀s
∗).s′ @ s

∗

@ s ⊃ ¬(∃r1)e1[r1, t, s
∗]]

is expressible by the following past temporal formula:

(∃r
′)e2[r

′

, t] ∧ since((∃r
′′)e1[r

′′

, t],¬(∃r1)e1[r1, t]).

4. Cumulative. The formula in (36), i.e.,

(∃r
′)e2[r

′

, t, s] ∧ (∃s
′

, r
′′)[s′ @ s ∧ e1[r

′′

, t, s
′]∧

(∀s
∗).s′ @ s

∗

@ s ⊃ ¬(∃r2)e2[r2, t, s
∗]]

is expressible by the following past temporal formula:

(∃r′)e2[r
′, t] ∧ since((∃r′′)e1[r

′′, t],¬(∃r2)e2[r2, t]). �

Theorem 1

Suppose an event logic E = (E, C,L) given by:

52 Iluju Kiringa

– E = {F inserted(r, t, s), F inserted(r, t, s), seq evCM (r, t, e1, e2, s),
simult ev(r, t, e1, e2, s), conj ev(r, t, e1, e2, s), disj ev(r, t, e1, e2, s),
neg ev(r, t, e, s)},

with CM ∈ {F, CL, NL, CUMUL};
– C = {¬,∧, @};
– L is the past temporal fragment of the situation calculus.

Suppose further that D is a set of situation calculus formula that specify the semantics of
events according to the event logic E , and that e[r, t, s] and e′[r, t, s] are two events of the
event logic E such that we want to establish, for given R and T , that D |= (∀s).e[R,T, s] ⊃
e′[R, T, s]. Assume that Sn is the actual situation. Since we deal with the past temporal
fragment of the situation calculus, the implication problem is reducible to the problem of
checking whether D logically implies

¬e[R, T, S0] ∨ e
′[R, T, S0] ∧ ¬e[R, T, S1]∨e

′[R, T, S1] ∧ · · · ∧

¬e[R, T, Sn] ∨ e
′[R, T, Sn],

(59)

with S0 v S1 v · · · v Sn, where S1, S2, · · ·Sn−1 are all the successive intermediate
situations between S0 and Sn. Notice that (59) mentions only atoms (all of which are from
the set E) and its only connectors are from the set C.

Using Proposition 1, we can transform (59) into a formula of the past temporal logic
fragment of the situation calculus (and vice-versa). Since this past temporal formula will
only mention atoms, we use a straightforward encoding to transform each of its atoms into
a proposition. By Theorem 4.1 of [48], stating that propositional linear temporal logic is
PSPACE-complete, we conclude that the implication problem is PSPACE-hard. The proof
for the equivalence problem follows easily from the implication case. �

Theorem 2

1. From (29), (31), (35), it is sufficient to establish the following three entailments:15

D |= (∃s
′)(∀s

∗){s′ @ s
∗

@ s ⊃

((∃r1)e1[r1, t, s
∗] ∨ ¬(∃r2)e2[r2, t, s

∗])} ⊃

(∃s
′′)(∀s

∗∗){s′′ @ s
∗∗

@ s ⊃

¬(∃r1)e1[r1, t, s
∗∗] ∧ ¬(∃r2)e2[r2, t, s

∗∗]},

(60)

D |= (∃s
′)(∀s

∗){s′ @ s
∗

@ s ⊃

¬(∃r1)e1[r1, t, s
∗] ∧ ¬(∃r2)e2[r2, t, s

∗]]} ⊃

(∃s
′′)(∀s∗∗){s′ @ s

∗∗

@ s ⊃

¬(∃r2)e2[r2, t, s
∗∗]]},

(61)

D |= (∃s
′)(∀s

∗){s′ @ s
∗

@ s ⊃

¬(∃r2)e2[r2, t, s
∗]]} ⊃

(∃s
′)(∀s

∗){s′ @ s
∗∗

@ s ⊃

((∃r1)e1[r1, t, s
∗∗] ∨ ¬(∃r2)e2[r2, t, s

∗∗])]}.

(62)

Let us establish the entailment (60). We must prove that the antecedent of the involved
formula taken as premise entails the existence of a situation s′′ such that

(∀s
∗∗){s′′ @ s

∗∗

@ s ⊃ ¬(∃r1)e1[r1, t, s
∗∗] ∧ ¬(∃r2)e2[r2, t, s

∗∗]}.

15 Without loss of generality, we assume that e1 and e2 below are simple event fluents.

Specifying Active Databases as Non-Markovian Theories of Actions?? 53

We set s = do(A, s′′), for some A. Then, obviously, for all s∗∗ such that s′′ @ s∗∗ @

s, we obtain vacuously ¬(∃r1)e1[r1, t, s
∗∗] ∧ ¬(∃r2)e2[r2, t, s

∗∗]. Note that the fact
that ¬(∃r1)e1[r1, t, s

∗∗] holds will never contradict the assumptions, since there is no
situation between s′′ and s in which (∃r1)e1[r1, t, s

∗∗] could hold.

To establish the entailment (61), it suffice to notice that, by applying first order proof
rules, we obtain the following goal to prove:

e2[sk1(t, s), t, s], sk2(t, s) @ s, e1[sk3(t, s), t, sk2(t, s)],

sk2(t, s) @ s
∗

@ s ⊃ (¬(∃r1)e1[r1, t, s
∗] ∧ ¬(∃r2)e2[r2, t, s

∗]),

s
′

@ S
∗∗

@ S, (¬(∃r1)e1[r1, t, S
∗∗] ∧ ¬(∃r2)e2[r2, t, S

∗∗])

=⇒

¬(∃r2)e2[r2, T, S
∗∗].

(63)

Finally, to establish the entailments (62), we have to prove:

e2[sk1(t, s), t, s], sk2(t, s) @ s, e1[sk3(t, s), t, sk2(t, s)],

sk2(t, s) @ s
∗

@ s ⊃ ¬(∃r2)e2[r2, t, s
∗],

s
′

@ S
∗∗

@ S,¬(∃r2)e2[r2, t, S
∗∗]

=⇒

(∃r1)e1[r1, T, S
∗∗] ∨ ¬(∃r2)e2[r2, T, S

∗∗].

(64)

Both entailments (63) and (64) are obvious.

2. Here, it is sufficient to establish the following three entailments:

D |=(∃s
′)(∀s

∗){s′ @ s
∗

@ s ⊃ ¬(∃r1)e1[r1, t, s
∗]} ⊃

(∃s
′′){(∀s

∗∗)[s∗ @ s ⊃ ¬((∃r1)e1[r1, t, s
∗∗] ∧ seq ev(r, t, e1, e2, s

∗∗))]∧

(∀s
∗∗)[s∗∗ @ s

′′

@ s ⊃ [(∃r1)e1[r1, t, s
∗∗] ⊃

(∃s1).s1 @ s ∧ seq ev(r, t, e1, e2, s1)]]},

D |=(∃s
′){(∀s

∗∗)[s∗ @ s ⊃ ¬((∃r1)e1[r1, t, s
∗∗] ∧ seq ev(r, t, e1, e2, s

∗∗))]∧

(∀s
∗∗)[s∗∗ @ s

′

@ s ⊃

[(∃r1)e1[r1, t, s
∗∗] ⊃ (∃s1).s1 @ s ∧ seq ev(r, t, e1, e2, s1)]]} ⊃

(∃s
′′)(∀s

∗)[s∗ @ s ⊃ ¬((∃r1)e1[r1, t, s
∗] ∧ seq ev(r, t, e1, e2, s

∗))]∧

(∀s
∗)[s′′ @ s

∗

@ s ⊃ [(∃r1)e1[r1, t, s
∗] ⊃

(∃s1).s1 @ s ∧ seq ev(r, t, e1, e2, s)]],

D |=(∃s
′)(∀s

∗)[s∗ @ s ⊃ ¬((∃r1)e1[r1, t, s
∗] ∧ seq ev(r, t, e1, e2, s

∗))]∧

(∀s
∗)[s′ @ s

∗

@ s ⊃

[(∃r1)e1[r1, t, s
∗] ⊃ (∃s1).s1 @ s ∧ seq ev(r, t, e1, e2, s1)]] ⊃

(∃s
′′)(∀s

∗){s′′ @ s
∗

@ s ⊃ ¬(∃r1)e1[r1, t, s
∗]}.

The proofs are straightforward though tedious. Let us prove the first of these entail-
ments. After some skolemizations and quantifier eliminations, using D, we have, for
fixed r, s, t, e1, and e2 (call them R, S, T, E1 and E2, respectively), the following to

54 Iluju Kiringa

establish:

S
′

@ s
∗

@ s ⊃ ¬(∃r1)E1[r1, T, s
∗]

=⇒

{(∀s
∗∗)[s∗∗ @ s ⊃ ¬((∃r1)E1[r1, T, s

∗∗] ∧ seq ev(R,T, E1, E2, s
∗∗))]∧

(∀s
∗∗)[s∗∗ @ s

′′

@ s ⊃

[(∃r1)E1[r1, t, s
∗∗] ⊃ (∃s1).s1 @ s ∧ seq ev(R, T, E1, E2, s1)]]},

We first show that

S
′

@ s
∗

@ s ⊃ ¬(∃r1)E1[r1, T, s
∗]

=⇒

(∀s
∗∗)[s∗∗ @ s ⊃ ¬((∃r1)E1[r1, T, s

∗∗] ∧ seq ev(R,T, E1, E2, s
∗∗))].

This task is equivalent (after some logical transformations) to:

S
′

@ s
∗

@ s ⊃ ¬(∃r1)E1[r1, T, s
∗], S∗∗

@ s,

=⇒

seq ev(R,T, E1, E2, S
∗∗) ⊃ ¬(∃r1)E1[r1, T, S

∗∗].

By moving seq ev(R, T, E1, E2, S
∗∗) to the antecedents, and Modus Ponens in the

antecedents and unification, we get (∃r1)E1[r1, T, S∗∗].
Now we show that

S
′

@ s
∗

@ s ⊃ ¬(∃r1)E1[r1, T, s
∗]

=⇒

(∀s
∗∗)[s∗∗ @ s

′′

@ s ⊃

[(∃r1)E1[r1, t, s
∗∗] ⊃ (∃s1).s1 @ s ∧ seq ev(R,T, E1, E2, s1)]].

First skolemize the universal (∀s∗∗), and then move s∗∗ @ s′′ @ s and (∃r1)E1[r1, t, s
∗∗]

(with appropriate skolem functions instead of s∗∗) before =⇒. After that, it is easy to
see that the definition of the LIFO consumption mode given in (39) applies. �

Theorem 3

The proof is by induction over the structure of the well fromed program T . Assume for
fixed s that Do(T, S0, s).

Case: T is a primitive database update.
By Definition (43), we have

(∃δ
′).T rans

∗(T, S0, δ
′

, s) ∧ Final(δ′

, s).

By Definition (41), this implies that

(∃δ
′).P oss(T, S0) ∧ δ

′ = nil∧

{(∃a
′′

, s
′′

, t)[s′′ = do(T, S0) ∧ systemAct(a′′

, t)∧

Poss(a′′

, s
′′) ∧ s = do(a′′

, s
′′)]∨

s=do(T,S0)∧ [(∀a
′′

, t)systemAct(a′′

, t) ⊃ ¬Poss(a′′

, S0)]}∧

Final(δ′, S0),

(65)

Specifying Active Databases as Non-Markovian Theories of Actions?? 55

which, by the semantics of Final (See [27]) and minor transformations, is equivalent to

Poss(T, S0)∧

{(∃a
′′

, s
′′

, t)[s′′ = do(T, S0) ∧ systemAct(a′′

, t)∧

Poss(a′′

, s
′′) ∧ s = do(a′′

, s
′′)]∨

s=do(T, S0)∧ [(∀a
′′

, t)systemAct(a′′

, t) ⊃ ¬Poss(a′′

, S0)]}.

(66)

Now we must show that the following two formulas hold:

Poss(T, S0) ∧ (∃a
′′

, s
′′

, t)[s′′ = do(T, S0) ∧ systemAct(a′′

, t)∧

Poss(a′′

, s
′′) ∧ s = do(a′′

, s
′′)] ⊃ legal(s),

(67)

Poss(T, S0) ∧ s=do(T, S0)∧

[(∀a
′′

, t)systemAct(a′′

, t) ⊃ ¬Poss(a′′

, S0)] ⊃ legal(s).
(68)

Proof of (67): By Lemma 1, we have legal(S0). Notice that (67) is equivalent to

Poss(T, S0) ∧ (∃a
′′

, t)[systemAct(a′′

, t)∧

Poss(a′′

, do(T, S0)) ∧ s = do(a′′

, do(T, S0))] ⊃ legal(s).
(69)

By assuming the antecedent of (69), we conclude by Lemma 1 and the fact that legal(S0)
that legal(s).
Proof of (68): Notice that the formula (68) is equivalent to

Poss(T, S0) ∧ (∃a
′′

, t)[systemAct(a′′

, t) ⊃ ¬Poss(a′′

, S0)] ⊃ legal(s). (70)

The proof of this is immediate, using Lemma 1.

Case: T is a test action of the form Φ?.
By Definition (43), we have

(∃a
′).Holds(Φ, S0, s) ∧ Final(nil, s).

Therefore, by the semantics of Final, we have Holds(Φ, S0, s). By unwinding Holds(Φ, S0, s)
and using Definition 18, whenever we reach a fluent literal, we record that literal into the
log. Therefore, since legal(S0), by the UPA for test actions, we get by Lemma 1 legal(s),
with s = do([φ1, · · · , φn], S0). The φi are fluents introduced into the log by test actions
generated through the unwinding of Holds(Φ, S0, s).

Cases: T neither a primitive database update, nor a test action.
All these cases reduce to the base cases treated above by unwinding the program T using
the ConGolog definitions in [27]. �

Theorem 4

As in Theorem 3, the proof is by induction on the structure of T . All cases to consider are
like there, except for primitive database updates. Hence, we deal with this case. Assume for
fixed s that Do(T, S0, s). Then, as in Theorem 3, by Definition (43), we have

(∃δ
′).T rans

∗(T, S0, δ
′

, s) ∧ Final(δ′

, s).

56 Iluju Kiringa

By Definition (51), this implies that

(∃δ
′

, s
′′

, a
′′

, s
∗

, t).T ransOf(T, t, S0) ∧ Poss(T, S0) ∧ δ
′ = nil∧

{[s′′ = do(T, S0) ∧ systemAct(a′′

, t) ∧ Poss(a′′

, s
′′) ∧ s = do(a′′

, s
′′)]∨

s
∗=do(T, S0)∧ [(∀a

′′

, t).systemAct(a′′

, t) ⊃ ¬Poss(a′′

, S0)]∧

Do(Rules(t), s∗, s)}∧

Final(δ′, S0),

(71)

which, by the semantics of Final (See [27]) and minor transformations, is equivalent to

(∃s
′′

, a
′′

, s
∗

, t).T ransOf(T, t, S0) ∧ Poss(T, S0)∧

{[s′′ = do(T, S0) ∧ systemAct(a′′

, t) ∧ Poss(a′′

, s
′′) ∧ s = do(a′′

, s
′′)]∨

s
∗=do(T, S0)∧ [(∀a

′′

, t).systemAct(a′′

, t) ⊃ ¬Poss(a′′

, S0)]∧

Do(Rules(t), s∗, s)}.

(72)

Now we must show that the following two formulas hold:

(∃s
′′

, a
′′

, s
∗

, t).T ransOf(T, t, S0) ∧ Poss(T, S0)∧

[s′′ = do(T, S0) ∧ systemAct(a′′

, t) ∧ Poss(a′′

, s
′′)∧

s = do(a′′

, s
′′)] ⊃ legal(s),

(73)

(∃s
′′

, a
′′

, s
′′

, s
∗

, t).T ransOf(T, t, S0) ∧ Poss(T, S0) ∧ s
∗=do(T, S0)∧

[(∀a
′′

, t).systemAct(a′′

, t) ⊃ ¬Poss(a′′

, S0)]∧

Do(Rules(t), s∗, s) ⊃ legal(s).

(74)

Proof of (73): By Lemma 1, we have legal(S0). Notice that (67) is equivalent to

(∃a
′′

, s
∗

, t).T ransOf(T, t, S0) ∧ Poss(T, S0)∧

[systemAct(a′′

, t) ∧ Poss(a′′

, do(T, S0))∧

s = do(a′′

, do(T, S0))] ⊃ legal(s).

(75)

From the antecedent of (75), we get, by Lemma 1 and the fact that legal(S0), that

(∃s
∗

, t).T ransOf(T, t, S0) ∧ S0 @ s ∧ legal(s). (76)

Therefore, we conclude that legal(s).

Proof of (74): Through an argument similar to the proof of (74), we find that there is a
situation s∗ that is legal. Now, to execute any one of the rule programs (47) – (50) in some
legal situation s∗ to reach situation s, all the actions involved must have been possible
according to the semantics of ConGolog programs [27]. Therefore the outcome s must be
legal, i.e. legal(s) holds. �

Theorem 5

By Definition 21, we must prove that, whenever Q is a database query, we have

(∀t, s).[(∃s
′).Do(Rules

(2,2)(t), s, s′) ∧ Q[s′]] ⊃

[(∃s
′′).Do(Rules

(1,1)(t), s, s′′) ∧ Q[s′′]].
(77)

Therefore, by the definitions of Rules(1,1)(t) and Rules(2,2)(t), we need to prove that

Specifying Active Databases as Non-Markovian Theories of Actions?? 57

(∀t, s).

{(∃s
′).Do({(πx1,y1)[τ1[R1, t]? ; (ζ1(x1)[R1, t]∧

assertionInterval(t))? ; α1(y1)]|

...

(πxn,yn)[τn[Rn, t]? ; (ζn(xn)[rn, t]∧

assertionInterval(t))? ; αn(yn)]|

¬{[(∃x1)(τ1[R1, t]∧ζ1(x)[R1, t]) ∨. . .

∨ (∃xn)(τn[Rn, t]∧ζn(xn)[Rn, t])]∧

assertionInterval(t)} ?}, s, s
′) ∧ Q[s′]} ⊃

{(∃s
′′).Do({(πx1,y1)[τ1[R1, t]? ; ζ1(x1)[R1, t]? ; α1(y1)[R1, t]]|

...

(πxn,yn)[τn[Rn, t]? ; ζn(xn)[Rn, t]? ; αn(yn)[Rn, t]]|

¬[(∃x1)(τ1[R1, t]∧ζ1(x)[R1, t]) ∨. . .∨

(∃xn)(τn[Rn, t]∧ζn(xn)[Rn, t])] ?}, s, s
′′) ∧ Q[s′′]}.

(78)

By the definition (43) of Do and the semantics of ConGolog ([27]), we must prove:

(∀t, s).

{(∃s
′).T rans

∗({(πx1,y1)[τ1[R1, t]? ; (ζ1(x1)[R1, t]∧

assertionInterval(t))? ; α1(y1)]|

...

(πxn,yn)[τn[Rn, t]? ; (ζn(xn)[rn, t]∧

assertionInterval(t))? ; αn(yn)]|

¬{[(∃x1)(τ1[R1, t]∧ζ1(x)[R1, t]) ∨. . .

∨ (∃xn)(τn[Rn, t]∧ζn(xn)[Rn, t])]∧

assertionInterval(t)} ?}, s, nil, s
′) ∧ Q[s′]} ⊃

{(∃s
′′).T rans

∗({(πx1,y1)[τ1[R1, t]? ; ζ1(x1)[R1, t]? ; α1(y1)[R1, t]]|

...

(πxn,yn)[τn[Rn, t]? ; ζn(xn)[Rn, t]? ; αn(yn)[Rn, t]]|

¬[(∃x1)(τ1[R1, t]∧ζ1(x)[R1, t]) ∨. . .∨

(∃xn)(τn[Rn, t]∧ζn(xn)[Rn, t])] ?}, s, nil, s
′′) ∧ Q[s′′]}.

(79)

By the semantics of Trans, we may unwind the Trans∗ predicate in the antecedent of
(79) to obtain, in each step, a formula which is a big disjunction of the form

(∃s
′).[(φ1

1 ∧ φ
1
2 ∧ assertionInterval(t)∧ φ

1
3) ∨ · · ·

∨ (φn
1 ∧ φ

n
2 ∧ assertionInterval(t)∧ φ

n
3) ∨ Φ] ∧ Q[s′],

(80)

where φi
1 represents the formula τi[Ri, t], φi

2 represents ζi(xi)[Ri, t], and φi
3 represents

the situation calculus formula generated from αi(yi), with i = 1, · · · , n; Φ represents the

58 Iluju Kiringa

formula in the last test action of Rules(2,2)(t). Similarly, we may unwind the Trans∗ pred-
icate in the consequent of (79) to obtain, in each step, a formula which is a big disjunction
of the form

(∃s
′′).[(φ1

1 ∧ φ
1
2 ∧ φ

1
3) ∨ · · · ∨ (φn

1 ∧ φ
n
2 ∧ φ

n
3) ∨ Φ

′] ∧ Q[s′′], (81)

where φi
1, φi

2, and φi
3 are to interpret as above, and Φ′ represents the formula in the last

test action of Rules(1,1)(t). Φ′ differs from Φ only through the fact that Φ is a conjunction
with one more conjunct which is assertionInterval(t). Also, since no nested transaction
is involved, and since both rule programs involved are confluent, we may set s ′ = s′′.
Therefore, clearly (80) implies (81). �

Theorem 6

This proof is similar to that of Theorem 5, so we omit it. �

Corollary 1

The proof is immediate from Theorems 5 and 6. �

