

A. Gelbukh (Ed.): CICLing 2007, LNCS 4394, pp. 175 – 185, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Generalized Approach to Word Segmentation
Using Maximum Length Descending Frequency

and Entropy Rate

Md. Aminul Islam, Diana Inkpen, and Iluju Kiringa

School of Information Technology and Engineering,
University of Ottawa, Ottawa, ON, Canada, K1N 6N5

{mdislam, diana, kiringa}@site.uottawa.ca

Abstract. In this paper, we formulate a generalized method of automatic word
segmentation. The method uses corpus type frequency information to choose
the type with maximum length and frequency from “desegmented” text. It also
uses a modified forward-backward matching technique using maximum length
frequency and entropy rate if any non-matching portions of the text exist. The
method is also extendible to a dictionary-based or hybrid method with some
additions to the algorithms. Evaluation results show that our method
outperforms several competing methods.

1 Introduction

Word segmentation is an important problem in many natural language processing
tasks; for example, in speech recognition where there is no explicit word boundary
information given within a continuous speech utterance, or in interpreting written
languages such as Chinese, Japanese and Thai where words are not delimited by
white-space but instead must be inferred from the basic character sequence. We
differentiate the terms word breaking and word segmentation. Word breaking refers
to the process of segmenting known words that are predefined in a lexicon. Word
segmentation refers to the process of both lexicon word segmentation and unknown
word or new word1 detection. Automatic word segmentation is a basic requirement
for unsupervised learning in morphological analysis. Developing a morphological
analyzer for a new language by hand can be costly and time consuming, requiring a
great deal of effort by highly-specialized experts.

In databases, word segmentation can be used in schema matching to solve semantic
heterogeneity, a key problem in any data sharing system whether it is a federated
database, a data integration system, a message passing system, a web service, or a
peer-to-peer data management system [16]. The name of an element in a database
typically contains words that are descriptive of the element’s semantics. N-grams

1 New words in this paper refer to out-of-vocabulary words that are neither recognized as

named entities or factoids, nor derived by morphological rules. These words are mostly
domain-specific and / or time-sensitive.

176 Md. A. Islam, D. Inkpen, and I. Kiringa

have been shown to work well in the presence of short forms, incomplete names and
spelling errors that are common in schema names [10].

Also, extracting words (word segmentation) from a scanned document page or a
PDF is an important and basic step in document structure analysis and understanding
systems; incorrect word segmentation during OCR leads to errors in information
retrieval and in understanding the document.

One of the common approaches involving an extensive word list combined with an
informed segmentation algorithm can help achieve a certain degree of accuracy in
word segmentation, but the greatest barrier to accurate word segmentation is in
recognizing unknown words, words not in the lexicon of the segmenter. This problem
is dependent both on the source of the lexicon as well as the correspondence between
the text in question and the lexicon. Fung and Wu [11] reported that segmentation
accuracy is significantly higher when the lexicon is constructed using the same type
of corpus as the corpus on which it is tested.

The term maximum length descending frequency means that we choose maximum
length n-grams that have a minimum threshold frequency and then we look for further
n-grams in descending order based on length. If two n-grams have same length then
we choose the n-gram with higher frequency first and then the n-gram with next
higher frequency if any of its characters are not a part of the previous one. If we
follow this procedure, after some iterations, we can be in a state with some remaining
character(s) (we call it residue) that is not matched with any type in the corpus. To
solve this, we use the leftMaxMatching and rightMaxMatching algorithms presented
in Section 3 along with entropy rate.

This paper is organized as follow: Section 2 presents a brief overview of the related
work. The proposed method is described in Section 3. A walk-through example of the
method is presented in Section 4. Evaluation and experimental results are discussed in
Section 5. We address the potential applications of the proposed method and conclude
in Section 6.

2 Related Work

Word segmentation methods can be roughly classified as either dictionary-based or
statistically-based methods, while many state-of-the-art systems use hybrid
approaches. In dictionary-based methods, given an input character string, only words
that are stored in the dictionary can be identified. The performance of these methods
thus depends to a large degree upon the coverage of the dictionary, which
unfortunately may never be complete because new words appear constantly.
Therefore, in addition to the dictionary, many systems also contain special
components for unknown word identification. In particular, statistical methods have
been widely applied because they use a probabilistic or cost-based scoring mechanism
rather than a dictionary to segment the text [12].

A simple word segmentation algorithm is to consider each character a distinct
word. This is practical for Chinese because the average word length is very short,
usually between one and two characters, depending on the corpus [11], and actual
words can be recognized with this algorithm. Although it does not assist in task such
as parsing, part-of-speech tagging, or text-to-speech systems [24], the character-as-

 A Generalized Approach to Word Segmentation 177

word segmentation algorithm has been used to obtain good performance in Chinese
information retrieval, a task in which the words in a text play a major role in indexing.

One of the most popular methods is maximum matching (MM), usually augmented
with heuristics to deal with ambiguities in segmentation. Another very common
approach to word segmentation is to use a variation of the maximum matching
algorithm, frequently referred to as the greedy algorithm. The greedy algorithm starts
at the first character in a text and, using a word list for the language being segmented,
attempts to find the longest word in the list starting with that character. If a word is
found, the maximum-matching algorithm marks a boundary at the end of the longest
word, then begins the same longest match search starting at the character following
the match. If no match is found in the word list, the greedy algorithm simply segments
that character as a word and begins the search starting at the next character. A
variation of the greedy algorithm segments a sequence of unmatched characters as a
single word; this variant is more likely to be successful in writing systems with longer
average word lengths. In this manner, an initial segmentation can be obtained that is
more informed than a simple character-as-word approach. As a demonstration of the
application of the character-as-word and greedy algorithms, consider an example of
“desegmented” English, in which all white spaces has been removed: the
“desegmented” version of the text the most favourite music of all time would thus be
themostfavouritemusicofalltime, Applying the character-as-word algorithm would
result in the useless sequence of tokens t h e m o s t f a v o u r i t e m u s i c o f a l l t i
m e, which is why this algorithm only makes sense for languages such as Chinese.
Applying the greedy algorithm with a “perfect” word list containing all known
English words would first identify the word them, since that is the longest sequence of
letters starting at the initial t which forms an actual word. Starting at the o following
them, the algorithm would then find no match. Continuing in this manner,
themostfavouritemusicofalltime would be segmented by the greedy algorithm as them
o s t favourite music of all time. A variant of the maximum matching algorithm is the
reverse maximum matching algorithm, in which the matching proceeds from the end
of the string of characters, rather than the beginning. In the foregoing example,
themostfavouritemusicofalltime would be segmented as the most favourite music o fall
time by the reverse maximum matching algorithm. Greedy matching from the
beginning and the end of the string of characters enables an algorithm such as
forward-backward matching, in which the results are composed and the segmentation
optimized based on the two results [7].

Many unsupervised methods have been proposed for segmenting raw character
sequences with no boundary information into words [1, 2, 4, 5, 8, 14, 15]. Brent [1]
gives a good survey of these methods. Most current approaches are using some form
of EM to learn a probabilistic speech-or-text model and then employing Viterbi
decoding procedures [19] to segment new speech or text into words. One reason that
EM is widely adopted for unsupervised learning is that it is guaranteed to converge to
a good probability model that locally maximizes the likelihood or posterior
probability of the training data. For the problem of word segmentation, EM is
typically applied by first extracting a set of candidate multi-grams from a given
training corpus [8], initializing a probability distribution over this set, and then using
the standard iteration to adjust the probabilities of the multi-grams to increase the
posterior probability of the training data. Somewhat similar tasks of segmenting

178 Md. A. Islam, D. Inkpen, and I. Kiringa

words into morphemes, where methods use minimal length description were shown to
give good results [13].

Saffran et al., [21] proposed that word segmentation from continuous speech may
be achieved by using transitional probabilities (TP) between adjacent syllables A and
B, where, TP(A→B) = P(AB)/P(A), with P(AB) being the frequency of B following A,
and P(A) the total frequency of A. Word boundaries are postulated at local minima,
where the TP is lower than its neighbors.

In corpus-based word segmentation, there is either no explicit model learnt, as
when neural networks [20] or lazy learning [6] are used, or the derived models are
less sophisticated and do not use any abstractions of the word constituents found in
data [3, 17]. Using annotated corpora greatly facilitates learning. However, there are
situations in which one is interested in Unsupervised Learning (UL), that is, from
unannotated corpora. Motivation for UL can vary from purely pragmatic, such as the
high cost or unavailability of annotated corpora, to theoretical, when language is
modelled as yet another communication code within the framework of Information
Theory [22].

3 Proposed Method

Let S = l1l2l3 …lm denotes a text of m consecutive characters without any space in
between them for which we need to segment and C = {c1, c2, …, cτ} denotes a large
corpus of text containing τ words (tokens). Also, let Tp = {t1, t2, …, tp} be the set of all
(p) unique words (types) which occur in the corpus C and Tf = {f1, f2, …, fp} be the set
of frequencies of all the corresponding types in Tp i.e. fx is the frequency of type tx.
Unlike the corpus C, which is an ordered list containing many occurrences of the
same words, Tp is a set containing no repeated words. Again, let n be the maximum
length of any possible words in the segmented words list where n m and Np = {l1, l2,
.., ln, l1l2, l2l3, .. , l1l2.. ln,…} be the set of all possible n-grams where η = |Np| is the
total number of n-grams in Np. We can also consider Np as Np = {w1, w2 …, wη}. And
Nf = {f1

', f2
'…, fη

'} be the set of frequencies of all the corresponding n-grams of Np
taken from Tf, i.e. fx

' is the frequency of wx. To get rid of the noise types of the corpus,
we assign a set of minimum frequencies for each possible length from 1 to n to be
considered as a valid word. Mf = {α1, α2…, αn}, where αx is the minimum frequency
required to be a valid word of length x. The steps of the method are as follows:

Step 1: Sort all the elements of Np in descending order based on length (in
characters). Again sort in descending order for same length words of the sorted Np

(say pN) based on the frequencies of Nf. For each element in pN do the next steps:

Step 2: If S ≠ Ø and the current maximum length n-gram (say wn) in pN satisfies
'

nn wf α≥ and nw S∈ (i.e., S ∩ wn = wn) then add wn to segmented word list, S'
 (i.e.,

S' ← S' U wn) and remove wn from S (i.e., S ← S \ wn) and add a blank space as a
boundary mark.

 A Generalized Approach to Word Segmentation 179

Step 3: If S ≠ Ø and not all elements in pN are done then update wn by the next

maximum length n-gram from pN and go to step 2.
Step 4: Rearrange all the words of S' in accordance with S. If S = Ø, then output S' and
exit. Otherwise, for each remaining chunks2, r in S call matchResidue(r), output S' and
exit.

Algorithm matchResidue
 Input: r, S '

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

16.

17.
18.

// Take the prefix word, wn-1 and suffix
// word, wn of r from S' according to the
// would be position of r in S'.
 S' ← S' \ wn-1
 S' ← S' \ wn
 St ← wn-1 U r U wn
// St = {l1l2l3 …lm}, where m is the length of St
 St

' ← leftMaxMatching(St)
 St

'' ← rightMaxMatching(St)
 if (|St

'| > | St
''|)

 S' ← S' U St
''

 elseif (|St
'| < | St

''|)
 S' ← S' U St

'
 else

 find a ' ''{ , }t tx S S∈ for which entropy

 rate ∑
=

x

i
if

x 1
2)(log

1 is maximum

 S' ← S' U x
 end

 Output: S'

Algorithm leftMaxMatching
// n is the maximum length of any possible valid words in St and n ≤ m
 Input: St
 1. while St ≠ Ø do

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

 Np ← {l1, l1l2, l1l2l3 ..,l1l2… ln}
 i.e., Np ← {w1, w2 …, wn}
 Nf ← {f1

', f2
'…, fn

'}
 Mf ←{α1, α2…, αn}
 i←1
 while (i ≤ n && i ≤ m)
 if (fi

' ≥ αi)
 max ← i
 end
 increment i

2 A single chunk may contain one or more characters.

180 Md. A. Islam, D. Inkpen, and I. Kiringa

12.
13.
14.

 end
 St

' ← St
' U wmax

 St ← St \ wmax
 15. end
 Output: St

'

Algorithm rightMaxMatching
// n is the maximum length of any possible valid words in St and n ≤ m
 Input: St
 1. while St ≠ Ø do

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

 N p ← {lm, lm-1lm, lm-2lm-1lm, ..,
 lm-nlm-n+1… lm}
 i.e., N p ← {w1, w2 …, wn}
 N f ← {f1

', f2
'…, fn

'}
 M f ←{α1, α2…, αn}
 i←1
 while (i ≤ n && i ≤ m)
 if (fi

' ≥ αi)
 max ← i
 end
 increment i
 end
 St

' ← St
' U wmax

 St ← St \ wmax
 16. end
 Output: St

'

4 A Walk-Through Example

As a demonstration of the application of the proposed algorithms, consider the same
example of “desegmented” English text, S = {themostfavouritemusicofalltime}. We
have used the BNC3 (British National Corpus) to calculate Tp and Tf. let, n=10 be the
maximum length4 of all possible words in S and Mf = {1000, 500, 50, 16, 15, 12, 10,

3, 2, 2}. Table 1 shows the sorted n-grams, pN and their frequencies, N f for this
specific example.

For each element wn (say, favourite) in pN ,
Step 2: wn satisfies '

nn wf α≥ as 4671 ≥ 2 and wn is a substring of S.

S'={favourite} and S = {themost musicofalltime}.

Step 3: Not all elements in pN are done, update wn = {alltime} and go to step 2.
Step 2: doesn’t satify '

nn wf α≥ as 6<10 though wn is a substring of S.

3 http://www.natcorp.ox.ac.uk/
4 Though in BNC, the length of the longest valid word is 34.

 A Generalized Approach to Word Segmentation 181

Table 1. Sorted n-grams and their frequencies (the right-hand side continues the table)

pN N f pN N f pN N f pN N f
 favourite 4671 tfa 2 hem 305 ll 233
 alltime 6 of 3052752 sic 292 ri 230
 favour 6805 it 1054552 mus 269 ou 151
 musico 10 he 641236 emu 247 ic 132
 music 15134 me 131869 ico 95 vo 93
 vouri 1 us 80206 uri 46 ur 77
 them 167457 co 17476 fal 44 tf 11
 time 164294 th 16486 ofa 36 a 2179299
 most 98276 st 15565 mos 36 i 873059
 fall 11202 al 7299 fav 33 l 59
 item 3780 fa 2172 tem 31 c 46
 rite 293 em 1641 emo 20 t 21
 allt 28 os 1005 ost 18 s 19
 emus 14 te 831 rit 13 e 17
 musi 3 si 658 ite 11 r 14
 hemo 3 mo 639 usi 8 h 12
 emos 2 ti 615 ime 6 f 10
 the 6057315 im 576 cof 5 v 9
 all 282012 lt 485 avo 5 m 8
 our 93463 av 291 lti 4 o 5
 tim 3401 mu 276 vou 3 u 3

Step 3: Not all elements in pN are done, update wn = {favour} and go to step 2.
Step 2: Condition fails as wn is not a substring of S.

Step 3: Not all elements in pN are done, update wn = {musico} and go to step 2.
Step 2: Condition fails as wn does not satisfy '

nn wf α≥ as 10<12.

Step 3: Not all elements in pN are done, update wn = {music} and go to step 2.
Step 2: wn satisfies '

nn wf α≥ as 15134 15 and wn is a substring of S.

S'={favourite, music} and
S = {themost ofalltime}.

We will only show the step 2 of all the remaining elements in pN that satisfy the
conditions.

Step 2: wn = {them}, S'={favourite, music, them} and S = { ost ofalltime}.
Step 2: wn = {time}, S'={favourite, music, them, time} and S = { ost ofall }.
Step 2: wn = {fall}, S'={favourite, music, them, time, fall} and S = { ost o }.

Step 4: Rearrange S' = { them, favourite, music, fall, time} and S ≠ Ø, so call
matchResidue(ost) and then matchResidue(o).

Case 1: matchResidue(ost) is called
S' = S' \{ wn-1, wn }

182 Md. A. Islam, D. Inkpen, and I. Kiringa

S' = { them, favourite, music, fall, time}\{ them, favourite }
 = {music, fall, time}
St = {themostfavourite}
St

' = {them, os, t, favourite}← leftMaxMatching(themostfavourite)
St

'' = {the, most, favourite}← rightMaxMatching(themostfavourite)
As |St

'| > | St
''|, S' = {music, fall, time} U St

''
i.e., S' = {the, most, favourite, music, fall, time}

Case 2: matchResidue(o) is called
S' = S' \{ wn-1, wn }
S' = {the, most, favourite, music, fall, time}\{ music, fall }
 = {the, most, favourite, time}
St = {musicofall}
St

' = {music, of, all}← leftMaxMatching(musicofall)
St

'' = {mus, ico, fall}←rightMaxMatching(musicofall)
As in this case |St

'| = |St
''|, we need to find whether St

' or St
'' maximizes the entropy rate,

∑
=

x

i
if

x 1
2)(log

1 , where ' ''{ , }t tx S S∈ . The entropy rate for St
' is (13.89 + 21.54 +

18.11) / 3 and for St
'', (8.07 + 6.57 + 13.45) / 3. So, S' = {the, most, favourite, time} ∪

St
', as ∑

=

'

1
2'

)(log
1 tS

i
i

t

f
S

 > ∑
=

''

1
2''

)(log
1 tS

i
i

t

f
S

. Finally, S' = {the, most, favourite, music,

of, all, time}.

5 Evaluation and Experimental Results

An obstacle to high-accuracy word segmentation is that there are no widely accepted
guidelines for what constitutes a word; therefore, there is no agreement on how to
“correctly” segment a text in a “desegmented” language. Native speakers of a
language do not always agree about the “correct” segmentation, and the same text
could be segmented into several very different (and equally correct) sets of words by
different native speakers. Such ambiguity in the definition of what constitutes a word
makes it difficult to evaluate segmentation algorithms that follow different
conventions, as it is nearly impossible to construct a “gold standard” against which to
directly compare results [7]. As shown in [23], the rate of agreement between two
human judges on this task is less than 80%.

The performance of word segmentation is usually measured using precision and
recall, where recall is defined as the percent of words in the manually segmented text
identified by the segmentation algorithm, and precision is defined as the percentage of
words returned by the algorithm that also occurred in the hand-segmented text in the
same position. In general, it is easy to obtain high performance for one of the two
measures but relatively difficult to obtain high performance for both. F-measure (F) is
the geometric mean of precision (P) and recall (R) and expresses a trade-off between
those two measures. These performance measures are defined as follows:

 A Generalized Approach to Word Segmentation 183

P = TP / (TP + FP)
R = TP / (TP + FN)
F = (1 + β)PR / (βP + R)
 = 2PR / (P + R), with β = 1 such that precision and recall weighted equally.

For instance, if the target segmentation is “we are human”, and the model outputs
“weare human”, then precision is 1/2 (“human” out of “weare” and “human”, recall is
1/3 (“human” out of “we”, “are”, and “human”) and F-measure is 2/5.

We used the type frequency from BNC and tested our segmentation method on part
of the Brown corpus. Specifically, we converted a portion of the corpus to lowercase
letters and removed all white space and punctuation. We used 285K characters, 57904
tokens as our test data. We obtained 84.28% word precision rate, 81.63% word recall
rate, and 82.93% word F-measure.

In a second test, we used the type frequency from BNC and tested our
segmentation method on the Brown corpus to make sure that we test on different
vocabulary from the training data. This insures that some of the word in the test set
were not previously seen (out-of-vocabulary words). There were 4,705,022
characters and 1,003,881 tokens in the Brown corpus. We obtained 89.92% word
precision rate, 94.69% word recall rate, and 92.24% word F-measure. The average
number of tokens per line could be the reason for obtaining better result when we
tested on the Brown corpus, as 8.49 and 16.07 are the average number of tokens per
line in the Brown corpus and the BNC corpus, respectively.

One of the best known results on segmenting the Brown corpus is due to Kit and
Wilks [15] who use a description-length gain method. They trained their model on the
whole corpus (6.13M) and reported results on the training set, obtaining a boundary
precision of 79.33%, a boundary recall of 63.01% and boundary F-measure of
70.23%. Peng and Schuurmans [18] trained their model on a subset of the corpus
(4292K) and tested on unseen data. After the lexicon is optimized, they obtained
16.19% higher recall and 4.73% lower precision; resulting in an improvement of 5.2%
in boundary F-measure. De Marcken [9] also used a minimum description length
(MDL) framework and a hierarchical model to learn a word lexicon from raw speech.
However, this work does not explicitly yield word boundaries, but instead recursively
decomposes an input string down to the level of individual characters. As pointed out
by Brent [1], this study gives credit for detecting a word if any node in the
hierarchical decomposition spans the word. Under this measure [9] reports a word
recall rate of 90.5% on the Brown corpus. However, his method creates numerous
chunks and therefore only achieves a word precision rate of 17%. Christiansen et al.
[5] used a simple recurrent neural network approach and report a word precision rate
of 42.7% and word recall rate of 44.9% on spontaneous child-directed British English.
Brent and Cartwright [2] used a MDL approach and reported a word precision rate of
41.3% and a word recall rate of 47.3% on the CHILDES collection. Brent [1]
achieved about 70% word precision and 70% word recall by employing additional
language modeling and smoothing techniques. Peng and Schuurmans [18] obtained
74.6% word precision rate, 79.2% word recall rate, and 75.4% word F-measure on the
Brown corpus. A balance of high precision and high recall is the main advantage of
our proposed method. However, it is difficult to draw a direct comparison
between these results because of the different test corpora used by different authors.

184 Md. A. Islam, D. Inkpen, and I. Kiringa

Fig. 1 summarizes the result of different methods, which are tested on the Brown
corpus based on precision, recall and F-measure. Though all the methods in Fig. 1 use
the Brown corpus, the testing data sets in the Brown corpus are not exactly the same.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

de Marcken Peng&Schuurmans Kit&Wilks Our method

Methods

Va
lu

e
in

 % P

R

F

Fig. 1. Test result on the Brown corpus

6 Conclusion and Future Work

Actually the uses of maximum length descending frequency and entropy rate can
effectively distill special terms and proper nouns when the corpus covers a huge
collection of both domain-dependent and domain-independent words, and it can
effectively avoid statistical errors on shorter strings which belong to a longer one.
However, names are not always easy to exploit and contain abbreviations and special
characters that vary between domains. This method can be used to address this issue,
an important step of schema matching in databases. Top choices search engines
segment the ‘desegmented’ part from a search text only if the ‘desegmented’ part
contains two to three words. Even the popular search engine Google segments a
‘desegmented’ part of search text consisting of only two words and fails to provide
any search result when the search text consists of more than two ‘desegmented’
words. Experimental results show that our method can segment words with high
precision and high recall. Future directions also involve integrating the current
algorithm into a larger system for comprehensive and context-based word analysis.

References

1. Brent, M.: An efficient, probabilistically sound algorithm for segmentation and word
discovery. Machine Learning 34, (1999) 71–106

2. Brent, M. and Cartwright, T.: Distributional regularity and phonotactics are useful for
segmentation. Cognition 61, (1996) 93-125

3. Brill, E.: Some advances in transformation-based part of speech tagging. In: Proc. of the
Twelfth National Conference on Artificial Intelligence, AAI Press/MIT Press, (1994)
748–753

 A Generalized Approach to Word Segmentation 185

4. Christiansen, M. and Allen, J.: Coping with Variation in Speech Segmentation. In
Proceedings of GALA 1997: Language Acquisition: Knowledge Representation and
Processing, (1997) 327-332

5. Christiansen, M., Allen, J. and Seidenberg, M.: Learning to Segment Speech Using
Multiple Cues: A Connectionist Model. Language and Cognitive Processes 13, (1998)
221-268

6. Daelamans, W., van den Bosch, A. and Weijters, A.: IGTree: Using trees for compression
and classification in lazy learning algorithms. Artificial Intelligence Review, 11, (1997)
407–423

7. Dale, R., Moisl, H. and Somers, H.: Handbook of Natural Language Processing. Marcel
Dekker, Inc. New York (2000) 22-26

8. Deligne, S. and Bimbot, F.: Language Modeling by Variable Length Sequences:
Theoretical Formulation and Evaluation of Multigrams. In Proceedings ICASSP (1995)

9. de Marcken, C.: The Unsupervised Acquisition of a Lexicon from Continuous Speech.
Technical Report AI Memo No. 1558, M.I.T., Cambridge, Massachusetts (1995)

10. Do, H.H. and Rahm, E.: COMA – A System for Flexible Combination of Schema
Matching Approaches. In VLDB (2002)

11. Fung, P. and Wu, D.: Improving Chinise tokenization with linguistic filters on statistical
lexical acquisition. Fourth Conference Applied Natural Language Processing, Stuttgart
(1994) 180-181

12. Gao, J., Li, M., Wu, A. and Huang, C.-N.: Chinese word segmentation and named entity
recognition: a pragmatic approach. Computational Linguistics, 31(4) (2005)

13. Gelbukh, A., Alexandrov, M. and Han, S.Y.: Detecting Inflection Patterns in Natural
Language by Minimization of Morphological Model. In CIARP 2004, LNCS 3287, (2004)
432-438

14. Hua, Y.: Unsupervised word induction using MDL criterion. In Proceedings ISCSL2000,
Beijing (2000)

15. Kit, C. and Wilks, Y.: Unsupervised Learning of Word Boundary with Description Length
Gain. In Proceedings CoNLL99 ACL Workshop. Bergen (1999)

16. Madhavan, J., Bernstein, P., Doan, A. and Halevy, A.: Corpus-based Schema Matching. In
International Conference on Data Engineering (ICDE-05) (2005)

17. Mikheev, A.: Automatic rule induction for unknown word guessing. Computational
Linguistics, 23(3) (1997) 405–423

18. Peng, F. and Schuurmans, D.: A Hierarchical EM Approach to Word Segmentation, In
Proceedings of the Sixth Natural Language Processing Pacific Rim Symposium (NLPRS
2001) Tokyo, Japan. (2001) 475-480

19. Rabiner, L.: A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition. In Proceedings of IEEE, 77(2) (1989)

20. Rumelhart, D.E. and McClelland, J.: On learning the past Tense of English verbs. In
Parallel distributed processing Vol. II, Cambridge, MA: MIT Press (1986) 216–271

21. Saffran, J.R., Newport, E.L. and Aslin, R.N.: Word segmentation: The role of
distributional cues. Journal of Memory and Language 35, (1996) 606–621

22. Shannon, C.E. and Weaver, W.: The mathematical theory of communication. Urbana:
University of Illinois Press (1963)

23. Sproat, R., Shih, C., Gale, W. and Chang, N.: A stochastic finite-state word-segmentation
algorithm for Chinese. Computational Linguistics, 22(3) (1996) 377–404

24. Sproat, R., Shih, C., Gale, W. and Chang, N.: A stochastic word segmentation algorithm
for a Mandarin text-to-speech system. 32nd Annual Meeting of the Association for
Computational Linguistics, Las Cruces, NM (1994) 66-72

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

