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Abstract. In this paper, we formulate a generalized method of automatic word 
segmentation. The method uses corpus type frequency information to choose 
the type with maximum length and frequency from “desegmented” text. It also 
uses a modified forward-backward matching technique using maximum length 
frequency and entropy rate if any non-matching portions of the text exist. The 
method is also extendible to a dictionary-based or hybrid method with some 
additions to the algorithms. Evaluation results show that our method 
outperforms several competing methods. 

1   Introduction 

Word segmentation is an important problem in many natural language processing 
tasks; for example, in speech recognition where there is no explicit word boundary 
information given within a continuous speech utterance, or in interpreting written 
languages such as Chinese, Japanese and Thai where words are not delimited by 
white-space but instead must be inferred from the basic character sequence. We 
differentiate the terms word breaking and word segmentation. Word breaking refers 
to the process of segmenting known words that are predefined in a lexicon. Word 
segmentation refers to the process of both lexicon word segmentation and unknown 
word or new word1 detection. Automatic word segmentation is a basic requirement 
for unsupervised learning in morphological analysis. Developing a morphological 
analyzer for a new language by hand can be costly and time consuming, requiring a 
great deal of effort by highly-specialized experts.  

In databases, word segmentation can be used in schema matching to solve semantic 
heterogeneity, a key problem in any data sharing system whether it is a federated 
database, a data integration system, a message passing system, a web service, or a 
peer-to-peer data management system [16]. The name of an element in a database 
typically contains words that are descriptive of the element’s semantics. N-grams 
                                                           
1 New words in this paper refer to out-of-vocabulary words that are neither recognized as 

named entities or factoids, nor derived by morphological rules. These words are mostly 
domain-specific and / or time-sensitive.  
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have been shown to work well in the presence of short forms, incomplete names and 
spelling errors that are common in schema names [10]. 

Also, extracting words (word segmentation) from a scanned document page or a 
PDF is an important and basic step in document structure analysis and understanding 
systems; incorrect word segmentation during OCR leads to errors in information 
retrieval and in understanding the document. 

One of the common approaches involving an extensive word list combined with an 
informed segmentation algorithm can help achieve a certain degree of accuracy in 
word segmentation, but the greatest barrier to accurate word segmentation is in 
recognizing unknown words, words not in the lexicon of the segmenter. This problem 
is dependent both on the source of the lexicon as well as the correspondence between 
the text in question and the lexicon. Fung and Wu [11] reported that segmentation 
accuracy is significantly higher when the lexicon is constructed using the same type 
of corpus as the corpus on which it is tested.  

The term maximum length descending frequency means that we choose maximum 
length n-grams that have a minimum threshold frequency and then we look for further 
n-grams in descending order based on length. If two n-grams have same length then 
we choose the n-gram with higher frequency first and then the n-gram with next 
higher frequency if any of its characters are not a part of the previous one. If we 
follow this procedure, after some iterations, we can be in a state with some remaining 
character(s) (we call it residue) that is not matched with any type in the corpus. To 
solve this, we use the leftMaxMatching and rightMaxMatching algorithms presented 
in Section 3 along with entropy rate.  

This paper is organized as follow: Section 2 presents a brief overview of the related 
work. The proposed method is described in Section 3. A walk-through example of the 
method is presented in Section 4. Evaluation and experimental results are discussed in 
Section 5. We address the potential applications of the proposed method and conclude 
in Section 6. 

2   Related Work 

Word segmentation methods can be roughly classified as either dictionary-based or 
statistically-based methods, while many state-of-the-art systems use hybrid 
approaches. In dictionary-based methods, given an input character string, only words 
that are stored in the dictionary can be identified. The performance of these methods 
thus depends to a large degree upon the coverage of the dictionary, which 
unfortunately may never be complete because new words appear constantly. 
Therefore, in addition to the dictionary, many systems also contain special 
components for unknown word identification. In particular, statistical methods have 
been widely applied because they use a probabilistic or cost-based scoring mechanism 
rather than a dictionary to segment the text [12]. 

A simple word segmentation algorithm is to consider each character a distinct 
word. This is practical for Chinese because the average word length is very short, 
usually between one and two characters, depending on the corpus [11], and actual 
words can be recognized with this algorithm. Although it does not assist in task such 
as parsing, part-of-speech tagging, or text-to-speech systems [24], the character-as-
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word segmentation algorithm has been used to obtain good performance in Chinese 
information retrieval, a task in which the words in a text play a major role in indexing. 

One of the most popular methods is maximum matching (MM), usually augmented 
with heuristics to deal with ambiguities in segmentation. Another very common 
approach to word segmentation is to use a variation of the maximum matching 
algorithm, frequently referred to as the greedy algorithm. The greedy algorithm starts 
at the first character in a text and, using a word list for the language being segmented, 
attempts to find the longest word in the list starting with that character. If a word is 
found, the maximum-matching algorithm marks a boundary at the end of the longest 
word, then begins the same longest match search starting at the character following 
the match. If no match is found in the word list, the greedy algorithm simply segments 
that character as a word and begins the search starting at the next character. A 
variation of the greedy algorithm segments a sequence of unmatched characters as a 
single word; this variant is more likely to be successful in writing systems with longer 
average word lengths. In this manner, an initial segmentation can be obtained that is 
more informed than a simple character-as-word approach. As a demonstration of the 
application of the character-as-word and greedy algorithms, consider an example of  
“desegmented” English, in which all white spaces has been removed: the 
“desegmented” version of the text the most favourite music of all time would thus be 
themostfavouritemusicofalltime, Applying the character-as-word algorithm would 
result in the useless sequence of tokens t h e m o s t f a v o u r i t e m u s i c o f a l l t i 
m e, which is why this algorithm only makes sense for languages such as Chinese. 
Applying the greedy algorithm with a “perfect” word list containing all known 
English words would first identify the word them, since that is the longest sequence of 
letters starting at the initial t which forms an actual word. Starting at the o following 
them, the algorithm would then find no match. Continuing in this manner, 
themostfavouritemusicofalltime would be segmented by the greedy algorithm as them 
o s t favourite music of all time. A variant of the maximum matching algorithm is the 
reverse maximum matching algorithm, in which the matching proceeds from the end 
of the string of characters, rather than the beginning. In the foregoing example, 
themostfavouritemusicofalltime would be segmented as the most favourite music o fall 
time by the reverse maximum matching algorithm. Greedy matching from the 
beginning and the end of the string of characters enables an algorithm such as 
forward-backward matching, in which the results are composed and the segmentation 
optimized based on the two results [7]. 

Many unsupervised methods have been proposed for segmenting raw character 
sequences with no boundary information into words [1, 2, 4, 5, 8, 14, 15]. Brent [1] 
gives a good survey of these methods. Most current approaches are using some form 
of EM to learn a probabilistic speech-or-text model and then employing Viterbi 
decoding procedures [19] to segment new speech or text into words. One reason that 
EM is widely adopted for unsupervised learning is that it is guaranteed to converge to 
a good probability model that locally maximizes the likelihood or posterior 
probability of the training data. For the problem of word segmentation, EM is 
typically applied by first extracting a set of candidate multi-grams from a given 
training corpus [8], initializing a probability distribution over this set, and then using 
the standard iteration to adjust the probabilities of the multi-grams to increase the 
posterior probability of the training data. Somewhat similar tasks of segmenting 
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words into morphemes, where methods use minimal length description were shown to 
give good results [13].  

Saffran et al., [21] proposed that word segmentation from continuous speech may 
be achieved by using transitional probabilities (TP) between adjacent syllables A and 
B, where, TP(A→B) = P(AB)/P(A), with P(AB) being the frequency of B following A, 
and P(A) the total frequency of A. Word boundaries are postulated at local minima, 
where the TP is lower than its neighbors. 

In corpus-based word segmentation, there is either no explicit model learnt, as 
when neural networks [20] or lazy learning [6] are used, or the derived models are 
less sophisticated and do not use any abstractions of the word constituents found in 
data [3, 17]. Using annotated corpora greatly facilitates learning. However, there are 
situations in which one is interested in Unsupervised Learning (UL), that is, from 
unannotated corpora. Motivation for UL can vary from purely pragmatic, such as the 
high cost or unavailability of annotated corpora, to theoretical, when language is 
modelled as yet another communication code within the framework of Information 
Theory [22]. 

3   Proposed Method 

Let S = l1l2l3 …lm denotes a text of m consecutive characters without any space in 
between them for which we need to segment and C = {c1, c2, …, cτ} denotes a large 
corpus of text containing τ words (tokens). Also, let Tp = {t1, t2, …, tp} be the set of all 
(p) unique words (types) which occur in the corpus C and Tf = {f1, f2, …, fp} be the set 
of frequencies of all the corresponding types in Tp i.e. fx is the frequency of type tx. 
Unlike the corpus C, which is an ordered list containing many occurrences of the 
same words, Tp is a set containing no repeated words. Again, let n be the maximum 
length of any possible words in the segmented words list where n  m and Np = {l1, l2, 
.., ln, l1l2, l2l3, .. , l1l2.. ln,…} be the set of all possible n-grams where η = |Np| is the 
total number of n-grams in Np. We can also consider Np as Np = {w1, w2 …, wη}. And 
Nf = {f1

', f2
'…, fη

'} be the set of frequencies of all the corresponding n-grams of Np 
taken from Tf, i.e. fx

' is the frequency of wx. To get rid of the noise types of the corpus, 
we assign a set of minimum frequencies for each possible length from 1 to n to be 
considered as a valid word. Mf = {α1, α2…, αn}, where αx is the minimum frequency 
required to be a valid word of length x. The steps of the method are as follows: 

 
Step 1: Sort all the elements of Np in descending order based on length (in 
characters). Again sort in descending order for same length words of the sorted Np 

(say pN ) based on the frequencies of Nf. For each element in pN do the next steps: 

Step 2: If S ≠ Ø and the current maximum length n-gram (say wn) in pN satisfies 
'

nn wf α≥  and nw S∈ (i.e., S ∩ wn = wn) then add wn to segmented word list, S'
 (i.e., 

S' ← S' U wn ) and remove wn from S (i.e.,  S ← S \ wn ) and add a blank space as a 
boundary mark.  
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Step 3: If S ≠ Ø and not all elements in pN are done then update wn by the next 

maximum length n-gram from pN  and go to step 2. 
Step 4: Rearrange all the words of S' in accordance with S. If S = Ø, then output S' and 
exit. Otherwise, for each remaining chunks2, r in S call matchResidue(r), output S' and 
exit. 
 
Algorithm matchResidue 
  Input: r, S '  

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
 
16. 

 
17. 
18. 

// Take the prefix word, wn-1 and suffix 
// word, wn of r from S' according to the  
// would be position of r in S'.  
 S' ← S' \ wn-1 
 S' ← S' \ wn 
 St ← wn-1 U r U wn 
// St = {l1l2l3 …lm}, where m is the length of St 
   St

' ← leftMaxMatching(St)   
   St

'' ← rightMaxMatching(St)   
   if ( |St

'| > | St
''| )   

        S' ← S' U St
'' 

   elseif ( |St
'| < | St

''| )   
        S' ← S' U St

' 
   else 

 find a ' ''{ , }t tx S S∈ for which entropy 

 rate ∑
=

x

i
if

x 1
2 )(log

1   is  maximum 

 S' ← S' U x 
   end 

  Output: S' 
 

Algorithm leftMaxMatching  
// n is the maximum length of any possible valid words in St and n ≤ m  
  Input: St 
  1. while St ≠ Ø do 

2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 

    Np ← {l1, l1l2, l1l2l3 ..,l1l2… ln} 
    i.e., Np ← {w1, w2 …, wn} 
    Nf ← {f1

', f2
'…, fn

'} 
    Mf ←{α1, α2…, αn} 
    i←1 
    while ( i ≤ n && i ≤ m ) 
        if  ( fi

' ≥ αi )  
             max ← i 
        end 
        increment i 

                                                           
2 A single chunk may contain one or more characters. 
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12. 
13. 
14. 

    end 
    St

' ← St
' U wmax 

    St ← St \ wmax 
  15. end  
  Output: St

' 
 
Algorithm rightMaxMatching  
// n is the maximum length of any possible valid words in St and n ≤ m  
  Input: St 
  1. while St ≠ Ø do 

2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 

    N p ← {lm, lm-1lm, lm-2lm-1lm,  ..,  
                lm-nlm-n+1… lm} 
    i.e., N p ← {w1, w2 …, wn} 
    N f ← {f1

', f2
'…, fn

'} 
    M f ←{α1, α2…, αn} 
    i←1 
    while ( i ≤ n && i ≤ m ) 
        if  ( fi

' ≥ αi )  
             max ← i 
        end 
        increment i 
    end 
    St

' ← St
' U wmax 

    St ← St \ wmax 
  16. end  
  Output: St

' 

4   A Walk-Through Example 

As a demonstration of the application of the proposed algorithms, consider the same 
example of “desegmented” English text, S = {themostfavouritemusicofalltime}. We 
have used the BNC3 (British National Corpus) to calculate Tp and Tf. let, n=10 be the 
maximum length4 of all possible words in S and Mf = {1000, 500, 50, 16, 15, 12, 10, 

3, 2, 2}. Table 1 shows the sorted n-grams, pN  and their frequencies, N f for this 
specific example. 

For each element wn (say, favourite) in pN , 
Step 2: wn satisfies  '

nn wf α≥  as 4671 ≥ 2 and wn is a substring of S. 

S'={favourite} and S = {themost musicofalltime}. 

Step 3: Not all elements in pN are done, update wn = {alltime} and go to step 2.  
Step 2: doesn’t satify '

nn wf α≥ as 6<10 though wn is a substring of S. 

                                                           
3 http://www.natcorp.ox.ac.uk/ 
4 Though in BNC, the length of the longest valid word is 34. 
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Table 1. Sorted n-grams and their frequencies (the right-hand side continues the table) 

pN          N f    pN     N f    pN          N f    pN     N f    
 favourite   4671  tfa   2   hem   305  ll     233 
 alltime    6  of  3052752   sic     292  ri   230 
 favour   6805  it   1054552   mus   269  ou   151 
 musico   10  he   641236   emu   247  ic   132 
 music   15134  me  131869   ico     95  vo   93 
 vouri   1  us   80206   uri   46  ur   77 
 them   167457  co   17476   fal     44  tf    11 
 time   164294  th   16486   ofa     36  a  2179299 
 most   98276  st   15565   mos   36  i   873059 
 fall    11202  al     7299   fav   33  l   59 
 item   3780  fa     2172   tem    31  c   46 
 rite   293  em   1641   emo   20  t   21 
 allt    28  os   1005   ost   18  s   19 
 emus   14  te    831   rit    13  e   17 
 musi    3  si   658   ite    11  r   14 
 hemo   3  mo  639   usi     8  h   12 
 emos   2  ti     615   ime   6  f   10 
 the  6057315  im   576   cof     5  v   9 
 all     282012  lt     485   avo   5  m   8 
 our   93463  av   291   lti     4  o   5 
 tim    3401  mu   276   vou   3  u   3 

 

Step 3: Not all elements in pN are done, update wn = {favour} and go to step 2. 
Step 2: Condition fails as wn is not a substring of S.  

Step 3: Not all elements in pN are done, update wn = {musico} and go to step 2. 
Step 2: Condition fails as wn does not satisfy '

nn wf α≥  as 10<12.  

Step 3: Not all elements in pN are done, update wn = {music} and go to step 2. 
Step 2: wn satisfies '

nn wf α≥  as 15134  15 and wn is a substring of S. 

S'={favourite, music} and  
S = {themost ofalltime}. 

We will only show the step 2 of all the remaining elements in pN that satisfy the 
conditions. 

Step 2: wn = {them}, S'={favourite, music, them} and S = { ost ofalltime}.    
Step 2: wn = {time}, S'={favourite, music, them, time} and S = { ost ofall }. 
Step 2: wn = {fall}, S'={favourite, music, them, time, fall} and S = { ost o   }. 

Step 4: Rearrange S' = { them, favourite, music, fall, time} and S ≠ Ø, so call 
matchResidue(ost) and then matchResidue(o). 
 

Case 1: matchResidue(ost) is called  
S' = S' \{ wn-1, wn } 
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S' =  { them, favourite, music, fall, time}\{ them, favourite } 
   = {music, fall, time} 
St = {themostfavourite} 
St

' = {them, os, t, favourite}← leftMaxMatching(themostfavourite) 
St

'' = {the, most, favourite}← rightMaxMatching(themostfavourite) 
As |St

'| > | St
''|, S' = {music, fall, time} U St

'' 
i.e., S' = {the, most, favourite, music, fall, time} 
 
Case 2: matchResidue(o) is called  
S' = S' \{ wn-1, wn } 
S' = {the, most, favourite, music, fall, time}\{ music, fall } 
    = {the, most, favourite, time} 
St = {musicofall} 
St

' = {music, of, all}← leftMaxMatching( musicofall) 
St

'' = {mus, ico, fall}←rightMaxMatching( musicofall) 
As in this case |St

'| = |St
''|, we need to find whether St

' or St
'' maximizes the entropy rate, 

∑
=

x

i
if

x 1
2 )(log

1 , where ' ''{ , }t tx S S∈ . The entropy rate for St
' is (13.89 + 21.54 + 

18.11) / 3 and for St
'', (8.07 + 6.57 + 13.45) / 3. So, S' = {the, most, favourite, time} ∪ 

St
', as ∑

=

'

1
2'

)(log
1 tS

i
i

t

f
S

  > ∑
=

''

1
2''

)(log
1 tS

i
i

t

f
S

. Finally, S' = {the, most, favourite, music, 

of, all, time}. 

5   Evaluation and Experimental Results 

An obstacle to high-accuracy word segmentation is that there are no widely accepted 
guidelines for what constitutes a word; therefore, there is no agreement on how to 
“correctly” segment a text in a “desegmented” language. Native speakers of a 
language do not always agree about the “correct” segmentation, and the same text 
could be segmented into several very different (and equally correct) sets of words by 
different native speakers. Such ambiguity in the definition of what constitutes a word 
makes it difficult to evaluate segmentation algorithms that follow different 
conventions, as it is nearly impossible to construct a “gold standard” against which to 
directly compare results [7]. As shown in [23], the rate of agreement between two 
human judges on this task is less than 80%. 

The performance of word segmentation is usually measured using precision and 
recall, where recall is defined as the percent of words in the manually segmented text 
identified by the segmentation algorithm, and precision is defined as the percentage of 
words returned by the algorithm that also occurred in the hand-segmented text in the 
same position. In general, it is easy to obtain high performance for one of the two 
measures but relatively difficult to obtain high performance for both. F-measure (F) is 
the geometric mean of precision (P) and recall (R) and expresses a trade-off between 
those two measures. These performance measures are defined as follows: 
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P = TP / (TP + FP) 
R = TP / (TP + FN) 
F = (1 + β)PR / (βP + R) 
   = 2PR / (P + R), with β = 1 such that precision and recall weighted equally.   

For instance, if the target segmentation is “we are human”, and the model outputs 
“weare human”, then precision is 1/2 (“human” out of “weare” and “human”, recall is 
1/3 (“human” out of  “we”, “are”, and “human”) and F-measure is 2/5.  

We used the type frequency from BNC and tested our segmentation method on part 
of the Brown corpus. Specifically, we converted a portion of the corpus to lowercase 
letters and removed all white space and punctuation. We used 285K characters, 57904 
tokens as our test data. We obtained 84.28% word precision rate, 81.63% word recall 
rate, and 82.93% word F-measure.  

In a second test, we used the type frequency from BNC and tested our 
segmentation method on the Brown corpus to make sure that we test on different 
vocabulary from the training data. This insures that some of the word in the test set 
were not previously seen (out-of-vocabulary words).  There were 4,705,022 
characters and 1,003,881 tokens in the Brown corpus. We obtained 89.92% word 
precision rate, 94.69% word recall rate, and 92.24% word F-measure. The average 
number of tokens per line could be the reason for obtaining better result when we 
tested on the Brown corpus, as 8.49 and 16.07 are the average number of tokens per 
line in the Brown corpus and the BNC corpus, respectively. 

One of the best known results on segmenting the Brown corpus is due to Kit and 
Wilks [15] who use a description-length gain method. They trained their model on the 
whole corpus (6.13M) and reported results on the training set, obtaining a boundary 
precision of 79.33%, a boundary recall of 63.01% and boundary F-measure of 
70.23%. Peng and Schuurmans [18] trained their model on a subset of the corpus 
(4292K) and tested on unseen data. After the lexicon is optimized, they obtained 
16.19% higher recall and 4.73% lower precision; resulting in an improvement of 5.2% 
in boundary F-measure. De Marcken [9] also used a minimum description length 
(MDL) framework and a hierarchical model to learn a word lexicon from raw speech. 
However, this work does not explicitly yield word boundaries, but instead recursively 
decomposes an input string down to the level of individual characters. As pointed out 
by Brent [1], this study gives credit for detecting a word if any node in the 
hierarchical decomposition spans the word. Under this measure [9] reports a word 
recall rate of 90.5% on the Brown corpus. However, his method creates numerous 
chunks and therefore only achieves a word precision rate of 17%. Christiansen et al. 
[5] used a simple recurrent neural network approach and report a word precision rate 
of 42.7% and word recall rate of 44.9% on spontaneous child-directed British English. 
Brent and Cartwright [2] used a MDL approach and reported a word precision rate of 
41.3% and a word recall rate of 47.3% on the CHILDES collection. Brent [1] 
achieved about 70% word precision and 70% word recall by employing additional 
language modeling and smoothing techniques. Peng and Schuurmans [18] obtained 
74.6% word precision rate, 79.2% word recall rate, and 75.4% word F-measure on the 
Brown corpus. A balance of high precision and high recall is the main advantage of 
our proposed method. However, it is difficult to draw a direct comparison  
between these results because of the different test corpora used by different authors. 
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Fig. 1 summarizes the result of different methods, which are tested on the Brown 
corpus based on precision, recall and F-measure. Though all the methods in Fig. 1 use 
the Brown corpus, the testing data sets in the Brown corpus are not exactly the same.  
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Fig. 1. Test result on the Brown corpus 

6   Conclusion and Future Work 

Actually the uses of maximum length descending frequency and entropy rate can 
effectively distill special terms and proper nouns when the corpus covers a huge 
collection of both domain-dependent and domain-independent words, and it can 
effectively avoid statistical errors on shorter strings which belong to a longer one. 
However, names are not always easy to exploit and contain abbreviations and special 
characters that vary between domains. This method can be used to address this issue, 
an important step of schema matching in databases. Top choices search engines 
segment the ‘desegmented’ part from a search text only if the ‘desegmented’ part 
contains two to three words. Even the popular search engine Google segments a 
‘desegmented’ part of search text consisting of only two words and fails to provide 
any search result when the search text consists of more than two ‘desegmented’ 
words. Experimental results show that our method can segment words with high 
precision and high recall. Future directions also involve integrating the current 
algorithm into a larger system for comprehensive and context-based word analysis. 
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