Coordinating Peer Databases Using ECA Rules

Vasiliki Kantere!, Tluju Kiringa?, John Mylopoulos',
Anastasios Kementsietsidis!, and Marcelo Arenas!

! Dept. of Computer Science, University of Toronto
2 School of Inf. Technology and Engineering, University of Ottawa

Abstract. Peer databases are stand-alone, independently developed data-
bases that are linked to each other through acquaintances. They each
contain local data, a set of mapping tables and expressions, and a set
of ECA rules that are used to exchange data among them. The set
of acquaintances and peers constitutes a dynamic peer-to-peer network
in which acquaintances are continuously established and abolished. We
present techniques for specifying data exchange policies on-the-fly based
on constraints imposed on the way in which peers exchange and share
data. We realize the on-the-fly specification of data exchange policies by
building coordination ECA rules at acquaintance time. Finally, we de-
scribe mechanisms related to establishing and abolishing acquaintances
by means of examples. Specifically, we consider syntactical constructs
and executional semantics of establishing and abolishing acquaintances.

1 Introduction

Peer-to-Peer (P2P) networking is establishing itself as an architecture of choice
for a certain number of popular applications such as file sharing, distributed pro-
cessing, and instant messaging. A P2P architecture involves nodes, called peers,
which act as both clients and servers, and participate in a common network by
autonomously controlling and evolving its topology. Using appropriate protocols,
new peers may join or leave the network at will.

Building on the P2P model of computing, data management techniques are
now being developed for query, update, and transaction processing in a P2P
network involving peers that are databases [3,5]. The architecture of such a P2P
network consists of a collection of peer databases that are located at nodes of the
P2P network. Each peer database is managed by a peer data management sys-
tem (PDBMS). Typically, a PDBMS has a P2P layer that interoperates the peer
database with other peers. In order for such an interoperation to take place, an
acquaintance must be established between the peer databases. A peer database
establishes at least one acquaintance with other peers that are already part of
the P2P network. Doing so, it joins the P2P network. The acquainted peers are
called acquaintees. Acquaintees share and coordinate data over their acquain-
tance. Acquaintances are transient since they may evolve over time as peers join
and leave the network. An acquaintance is established between peers that belong
to the same interest group. The later is a community of peers centred around a
common business (e.g. airline, genomic, hospital, and university databases) [4].

We assume that the peer databases do not share any global database schema
and administrative authority. Moreover, the availability of their data is strictly
local.

Syntactically, the peer language includes the usual constructs for querying
and updating data. It also includes constructs that allow the user to establish
or abolish acquaintances between peers. Semantically, an acquaintance outgoing
from a peer is qualified by a subset of the mapping tables and expressions, as
well as by a set of coordination rules. The former constrain the data exchange
over the acquaintance, and the latter coordinate that exchange.

In this paper, we describe algorithms used by PDBMSs for establishing and
abolishing acquaintances. We give several examples of coordination rules ex-
pressed in an extension of the standard SQL3 triggers. We also consider syn-
tactical constructs used to establish or abolish acquaintances between peers.
Finally, we give execution semantics for these constructs. Specifically, we make
the following contributions:

— Using the concept of mapping tables introduced in [7], we present new tech-
niques for specifying data exchange policies on-the-fly based on constraints
on the way in which peers exchange and share data. Unlike many approaches
used in data integration systems [10], we do not consider design-time, uni-
form access to a collection of heterogeneous data. Rather we consider a set-
ting in which data coordination plays a key role. Here, each PDBMS defines
and manages its own view of the shared data, and defines its own shar-
ing and coordination policies based on Event-Condition-Action (ECA) rules
provided by interest groups.

— We realize the on-the-fly specification of data exchange policies by selecting
coordination ECA rules at acquaintance time from domain-specific rule li-
braries, rather than having them designed for particular peers by database
designers. This way of selecting active rules contributes to a vision of a P2P
database technology that can be used by end-users to establish acquaintances
between peers in a flexible and cost-effective way.

— We focus on setting up and abolishing acquaintances between PDBMSs. We
describe mechanisms to that end and illustrate them by means of examples.
These mechanisms create logical meta-data and ECA rules on-the-fly to
guide the exchange of data.

This work is part of the Hyperion project conducted at the Universities of
Toronto and Ottawa [1].

This paper is organized as follows. Section 2 motivates the use of ECA rules
for coordinating peer databases; it also reviews the notions of mapping tables
and expressions. Section 3 summarizes the architecture of Hyperion. Mechanisms
used by peer databases for joining and leaving a peer network are described in
Section 4. Here, we show how ECA rules are generated on-the-fly and from
a library of generic rules for setting up coordination between peers. Section 5
treats related work. Finally, Section 6 concludes the paper and indicates how
the framework presented here is being extended in various ways.

OA _Passenger OA _Ticket

3 QA _Passenger QA _Fleet
pi Ean;e pid| fno |meal dname aid |type capacity
5 Sa‘? tﬁ“"e 1 [OA229[Veal pl Afiobay— [B-1[Bombard. 27[140
3 Mnélore 2 |OA378|Trout| | | L;Chance B-2|Embraer L12| 130
B-3|Boeing 737 117
OA _Flight .
fno date \dest |sold cap ?né)_Fllghzlate to sold |aid Qpiéi_RefSr‘la(zve
OXPOL/ SN 0256 oot oo (67 531 [QRera:
OA378 01/21 g F- 90 |124 QA1187 01/15 LBP (118 |B-2|| 2 |[QA1187
S QA1109 01/15 MDC (164 |[B-1|| 2 [QA1109
(a) Ontario-Air Database Instance (b) Quebec-Air Database Instance

Fig. 1. Instances for the two airline databases

2 ECA Rules for Coordinating Peer Databases

2.1 Motivating Example: Mapping Tables and Expressions

We consider two airline-ticket reservation peer databases Ontario— Air_DB and
Quebec — Air_D B belonging to two fictitious airlines Ontario Air and Quebec
Air, respectively. Assume that these databases manage reservations for flights
originating in Ottawa. Their schemas are as follows:

OA Passenger (pid, name)
OA Flight (fno, date, dest, sold, cap)
OA _Ticket (pid, fno, meal)

(a) Schema, for the Ontario-Air database

QA Fleet (aid, type, capacity)
QA Passenger (pid, name)

QA Flight (fno, date, to, sold, aid)
QA Reserve (pid, fno)

(b) Schema for the Quebec-Air database

Ontario-Air stores identifications and names for each passenger. It stores flight
numbers, dates, destinations, number of tickets sold, and capacities of flights.
Finally, it stores identifiers, flight numbers, and meal requests of passengers.
Quebec-Air stores passenger identifiers and names, and the number, date, des-
tination airport code, number of tickets sold and the airplane identifier for each
flight. Quebec-Air also stores a table containing the passenger identifiers and the
corresponding flight numbers. Finally, Quebec-Air stores information about its

fleet, i.e., the identifier of each plane together with the corresponding type and
capacity. Figure 1 shows instances of the two peer database schemas.

Ontario-Air and Quebec-Air can aim at coordinating their activities by es-
tablishing an acquaintance. The goal of such an acquaintance can be to favour
an exchange of flight information and to coordinate their flights to various lo-
cations. Since the schemas of both peer databases are heterogeneous, no data
exchange can take place before a form of homogenization is undertaken. In the
more traditional context of data integration (see e.g. [10]), views are used to
facilitate some form of data exchange across heterogeneous schemas. Usually, to
adopt our terminology, these views constraint the content of source peer data-
bases in order to determine the content of target peer databases. However, two
major assumptions of the PDBMS setting precludes the use of the data inte-
gration approach: peer databases are supposed to be autonomous with respect
to their contents, and the very large number of involved peers makes any static
approach to the reconciliation process of peer contents inadequate. Rather we
focus on techniques for coordinating data exchange between peers by looking for
ways of constraining, not the contents of the peers, but the data exchange it-
self. We propose using mapping tables [8] and expressions [1],and an appropriate
extension of SQL3 triggers as a way of constraining data exchange across het-
erogeneous boundaries. Figure 2(a) shows an example of the former construct,
and Figure 2(b)-(c) shows examples of the latter.

Intuitively, mapping tables are binary tables that provide a correspondence
between data values of acquaintees. Implicitly, they also provide a rudimentary
schema-level correspondence. As an example, the mapping table 2(b) associates
city names mentioned in the Ontario-Air database to airport codes mentioned
by the Quebec-Air database, and the table 2(¢) gives correspondences between
flight numbers mentioned by the two peer databases.

Intuitively, a mapping expression relates two different schemas. It realizes a
schema level correspondence of two different peers. Syntactically, it is expressed
in some first order, Datalog-like language. The mapping expression of Figure 2(a)
says that, in the context of data exchange, any flight of Quebec-Air is considered
a flight of Ontario-Air, and not necessarily vice-versa. Here, we assume that the
mapping expression is created at the Ontario-Air database.

Once the two databases are acquainted, and mapping tables or expressions
are in place, the peers can use each other’s contents during query answering
and data coordination. In [1], the use of mapping tables in query answering is
outlined and illustrated.

2.2 ECA Rules for PDBMSs

The Language: Apart from querying, peers are also able to coordinate their
data with those of their acquaintances. For some applications, run-time rec-
onciliation will not be sufficient and we will want to reconcile the data as it is
updated. In this example, suppose the two partner airlines wish to reconcile their
data to conform to the mapping expression of Figure 2(a). Using this mapping
expression, we can derive a rule to ensure the two databases stay consistent as

OA Flight(fno,date,dest,sold,cap) O QA _Flight(fno,date,dest,sold,cap)

Mapping expression 2(a)

dest to
Tor. LBP OA.fno|| QA.fno |
Tor. ILD 0A229(|QA2132

Mont. ||Dorv. 0A341||QA1187
Mont. |/Mira. 0A341]|QA1108
Ottawa|MDC

Mapping table 2(b) Mapping table 2(c)

Fig. 2. Mapping tables and expressions

new passengers are entered into the Quebec-Air peer. To enforce this rule, and
other similar business rules, we propose a mechanism which uses event-condition-
action (ECA) rules with the distinctive characteristic that events, conditions and
actions in rules refer to multiple peers. An example of such an ECA rule is given
below.

create trigger passengerlnsertion

after insert on QQA_Passenger
referencing new as NewPass

for each row

begin
insert into OA_Passenger values NewPass
in Ontario-Air_DB;

end

According to this rule, an event that is detected in the Quebec-Air database
causes an action to be executed in the Ontario-Air database. Specifically, each
passenger insertion in the QA _Passenger relation generates an event which trig-
gers the rule above. The rule has no condition while its action causes the insertion
of an identical passenger tuple in the OA _Passenger relation.

The rule above is expressed in a language extending SQL3 triggers [9]. An
SQL3 trigger is an ECA rule that bears an explicit name. Each trigger is asso-
ciated with a specific table, and only insertions, deletions, and updates on this
table can activate the associated trigger. SQL3 events are simple. Conditions are
SQL queries, and actions are SQL statements that will be executed on the data-
base. There are two sorts of triggers, namely the AFTER and BEFORE triggers.
The former are activated before the occurrence of their activating event, and the
later are activated after their activating event has occurred.

A rule of our language extends a typical SQL3 trigger by explicitly mentioning
the database in which the event, condition, and action occurs. It also contains

a richer event language to permit the expression of complex active behavior
encountered in peer coordination. The rule above is a example of a typical rule
for enforcing the consistency of peers that coordinate their work. In this paper,
we illustrate the rule language and its use in coordinating data exchange between
different peers. We also outline its execution semantics below. We leave its formal
definition out of the scope of this paper.

Interaction with Mapping Tables: The mappings in the mapping tables
are intimately related to values that are stored in the Ontario-Air and Quebec-
Air databases. Therefore, it is natural to keep in the mapping tables only the
associations between values that exist in the actual instances of the relation
schemas of those databases. This means that insertions and deletions of values
into the instances of Ontario-Air and Quebec-Air databases may result in an
update of mapping tables to avoid discrepancies between the databases of both
peers and the mapping tables relating them.

Using our running example, the following discussion further illustrates the
updating of mapping tables. Whenever there is a deletion of a tuple in OA Flight,
there is an ECA rule that removes the appropriate tuple in the mapping table
of Figure 2(c). Of course such a rule may not be needed for many cases of
mapping tables. For example, as far as Figure 2(b) is concerned, even if there is
a deletion of all flights of Ontario-Air to New-York, we wouldn’t like to delete
the respective information from Figure 2(b), because we will probably need it in
the future. However, in the case of Figure 2(c), if a cancelled Ontario-Air flight
becomes active, again it may not correspond to the same flight of Quebec-Air
database. Thus, deleting the corresponding tuples from Figure 2(c) when a flight
is cancelled is a reasonable action. The following rule illustrates how deletion in
the mapping table of Figure 2(c) might be dealt with:

create trigger flightDeletion
after delete on OA_Flight
referencing old as OldFlight
for each row
begin
delete from MT2c where MT2c.fnoOA = OldFlight.fno

end

Here, MT2c¢ is the relation name of the mapping table of Figure 2(c).

3 System Architecture

This section also summarizes the architecture of Hyperion [1]. Figure 3 repre-
sents a generic architecture for the envisioned data management framework. The
architecture consists of a collection of PDBMSs located at nodes Ny, --- , Ny, of
a P2P network. The various acquaintances that exist in the network induce the
existence of communities of peers that coordinate their data. Such groups are

P2P Layer

local

?
V _quey
global

answer

1dV ded
saoueiU enbae

/1N

Local Mapping
DB Tables

qdd 1esd

Mapping
Expressions

Fig. 3. Architecture for a PDBMS

called interest groups [4]. In the left hand side of Figure 3, two such groups,
delimited by thin dashed lines, are depicted. Each PDBMS coordinates many
of its typical database activities such as queries, updates, and transactions with
its acquaintees in a transparent way. Qur proposal assumes concepts such as
absence of any global database schema, transient PDBMSs, distributed (or no)
administrative authority, locally available data, strict local access to a single
database, etc.

Figure 3, right hand side (taken from [1]), depicts the architecture of a
PDBMS with its main functionalities. A PDBMS consists of three main com-
ponents: an interface (P2P API), a P2P layer, and a DBMS. For simplicity, we
do not show the local management system layer that manages a peer database.
This contains local data along with mapping tables and expressions that are
used in data exchange with other peers. The P2P API is the interface for posing
queries and specifying whether these are to be executed only locally or remotely.
Through an acquaintance manager, the P2P layer allows a PDBMS to establish
or abolish an acquaintance (semi-)automatically at runtime, thereby inducing a
logical peer-to-peer network. More specifically, the acquaintance manager uses
mapping tables as constraint on the data exchange between peer databases to
automatically check the consistency of a set of mapping constraints and infer
new ones. In [8], these capabilities are shown to be of practical importance in
establishing new acquaintances. We will return to this issue below.

4 Setting up and Abolishing Acquaintances

In this section, we describe the algorithms used by peer databases for joining and
leaving a peer network. Syntactically, the peer language includes constructs that

allow the user to establish or abolish acquaintances between peers. Semantically,
an acquaintance is a kind of bookkeeping instance that interface two peers.
Figure 4 depicts the semantics of an acquaintance.

4.1 Setting up Acquaintances

To join a network, a peer N;, must establish an acquaintance with a known peer,
say N;, which is already part of the network. We assume, for simplicity, that
acquaintances are explicitly established by a user, most probably a database
administrator. To that end, the peer language includes the following construct
in its syntax:
set acquaintance to <peer database>
[using mapping tables <list of mapping table names>]
[using mapping expressions <list of mapping expression names>]
[belonging to <Interest Group>]

Using this construct, a peer database administrator establishes explicit acquain-
tances between her database and other existing ones. When an acquaintance is
established, it is coupled with several constraints. The most important of these
constraints are mapping tables and expressions which — as stated earlier — con-
strain the exchange of data between peers, and coordination rules (written in
the ECA language outlined above) which are guide lines for such an exchange.

Now we give details on the algorithm used by a peer to establish an acquain-
tance. Assume that peer N; issues the following command for establishing an
acquaintance:

set acquaintance to Nj

Then the following algorithm is used for completing this request:
Phase 1. Semi-automatically generate mappings as follows:

1. Use a matching algorithm to get an initial match between schemas of the
peers N; and N;. Such a matching will most probably not be correct or
complete, and may have to be revised manually by the administrator.

2. Create mapping expressions and views.

3. Use the match obtained in step 1 to create and populate an initial set of
mapping tables.

4. Send a copy of the mapping table instances to N;.

Phase 2. Generate consistency-enforcing rules from mapping expressions ob-
tained in Phase 1,and generate rules for maintenance of mapping tables.
Phase 3. Add N; to the list of N;’s acquaintees.

The algorithm above does not use initial mapping tables. To process a request
with an initial list My, --- , M,, of mapping tables, it suffices to replace step 3 of
phase 1 in the algorithm above by the mere use of the given mappings tables. The
algorithm above also does not use initial coordination rules. We could assume
that an initial list of coordination rules is used in setting up an acquaintance.

acquaintance
P2P layer P2P layer

2 : mapping constraints
R : coordination rules

T T
AA_DB BA_DB
\/ v

Fig.4. A constrained acquaintance

However, though this is not precluded in principle, we prefer to think of such
a list of initial rules being brought in on-the-fly from an interest group, rather
than being designed for particular peers by database designers. The main reason
for doing this is that we want to create a technology that is end-user oriented.

4.2 Generic Rules for Interest Groups

The simple acquaintance algorithm given above assumes that all peers belong to
a single universal group of peers. However, it seems appropriate to classify peers
into interest groups. We assume that an interest group has standard schemas
known to all members of the group. For the airline domain, for example, we have
schema S 4 for airline peer databases, schema St 4 for travel agencies, schema
Sgra for regional airlines. Rules are written for common patterns of data exchange
and coordination among S, Sta, and Sga. When a particular set of peers, say
airline a;, travel agency ta; and regional airline ra; decide to coordinate with a
given rule R;, they need to bind/match their respective schemas to the schema
with respect to which R; was defined in order to find appropriate mappings.
With these bindings in place, all that is left is agreement among a;, ta;, and ra,
that they indeed want to coordinate with rule R;. This detail is left out.

When peers join the network, they need to register as belonging to certain
interest groups. By default, the interest group will be a distinguished catch all
interest group to which all peers belong. It also means that some domain experts
use the rule language outlined in Section 2.1 to define possible coordinations
among members of different interest groups. We assume that generic rules are
created with respect to the standard schema of an interest group, and then
adapted for specific databases that belong to the interest group. In fact, a generic
rule may involve the standard schemas of more than one interest group. For
simplicity, we also assume that the standard schema and generic rules are stored
at every member of the interest group.

By means of an example, we now illustrate step by step a mechanism for
setting up acquaintances in the presence of interest groups. In the example below,
we will use the following terminology. A schema mapping is a correspondence
between schema elements of two peers. We call a mapping “strict” if it represents
an identity function that maps each value of an attribute A of the first peer to
itself in the second peer. For example, the values of the attribute “date” in the

Ontario-Air database are mapped to itself in the Quebec-Air database. We call a

mapping “loose” if it represents any function that possibly maps different values

of the same attribute. Finally, a view is conceived in its traditional meaning.
Assume the schemas of Ontario-Air and Quebec-Air given in Section 2.1 and

that both peers belongs to the interest group Airlines.

Step 1. Suppose that the interest group Airlines has the following standard

schema, called S4:

Ticket(pid, name, fno, meal)
Flight(fno, date, destination)
FlightInfo(fno, sold, cap, aid, type)

Then, the schema mappings for Ontario-Air and Quebec-Air databases would
be as follows:
For Ontario-Air, we have the following mappings Ms, ,04:

Moua,: OA_Passenger(pid, name) < Ticket(pid, name, fno, meal)

Moa,: OA_Ticket(pid, fno, meal) < Ticket(pid, name, fno, meal)

Moa,: OA_Flight(fno, date, dest, sold, cap) + Flight(fno, date, dest),
FlightInfo(fno, sold, cap, aid, type)

From the three mappings above, Ontario-Air marks Mo 4, as a loose one (be-
cause the database administrator thinks that the mapping of fnos may not be
very accurate, because she knows that usually airlines use different flight num-
bers). Also, Mp4, is marked as a loose one (because the administrator suspects
that different airlines consider different things as destinations). Finally, Mo 4, is
marked as a strict mapping.

For Quebec-Air, we have the following mappings Mg, ga:

Mga,: QA_Passenger(pid, name) < Ticket(pid, name, fno, meal)

Mga,: QA _Reserve(pid, fno) < Ticket(pid, name, fno, meal)

Mga,: QA Flight(fno, date, to, sold, aid) < Flight(fno, date, to),
FlightInfo(fno, sold, cap, aid, type)

Mga,: QA Fleet(aid, type, capacity) < FlightInfo(fno, sold, capacity, aid, type)

Mga, and Mgy, are marked as loose mappings and Mg, and Mg4, as strict
ones.

Step 2.

A. We try to define views between the schemas of Ontario-Air and Quebec-Air.
We observe from Mg, ,04 and Mg, ,ga that the mappings Mo, and Mga,
are defined over the same set of attributes. Therefore we create the trivial view:

V1: OA_Passenger(pid, name) «— QA _Passenger(pid, name)

Also, we observe that the sets of attributes of the mappings Mopa, and Mga,
overlap. Thus we map the one with the more attributes to the one with less
attributes using the following view:

V2: QA_Reserve(pid, fno) +— OA_Ticket(pid, fno, meal).

Finally, from the mappings Moa,, Mga,, and Mo 4,, we derive the view:

V3: OA _Flight(fno, date, dest, sold, cap) +—
QA _Flight(fno, date, dest, sold,aid), QA _Fleet(aid, type, cap)

where 'to’ is renamed as ’dest’ and ’capacity’ as cap’.

B.We now try to define mapping tables between the schemas of Ontario-Air
and Quebec-Air using views V1-V3. View V1 comes from schema mappings
that were strict. Thus, it can stand by itself and we can use it as it is. However,
V2 comes from two loose schema mappings. Thus, we understand that we need
additional information to use this view: we need a mapping of values in order
to fix the ’looseness’ of the mappings of attributes fno’. Thus, we create a
mapping table MT;(OA.fno, QA.fno). Now we search to find if we can derive
more mapping tables. Also, V3 comes from loose schema mappings, both because
'looseness’ on the attribute 'fno’ and the attribute ’dest’. For ’fno’ we have
already created a mapping table. For ’dest’ and ’to’ we create the mapping table
MT3(OA.dest, QA.to).

Step 3. We now ask the user/administrator if she wants to create mapping
expressions either on the already created views or any new ones from scratch
The user creates a mapping expression from view V1. Let the corresponding
mapping expression be

ME: OA _Passenger(pid, name) D QA _Passenger(pid,name)

As seen in Section 2.1, the mapping expression ME has an executional meaning
and does not refer to the structure of the relations.

Step 4. The user populates the mapping tables MT1 and MT2 as shown in
Figure 2.

Step 5.

A. Using the mapping expression ME, we create the following rule to ensure con-
sistency over the acquaintance link between Ontario-Air and Quebec-Air data-
bases:

create trigger enforceME

after insert on QA_Passenger
referencing new as New in Quebec-Air_ DB

for each row

begin
insert into OA_Passenger values (New.pid, New.name)
in Ontario-Air_DB

end

B. For the maintenance of mapping tables MT; and MT,, we create maintenance
rules. Generally the administrator has to decide which kind of rules are needed
for the maintenance of a mapping table according to the nature of information
that it keeps. Whenever there is a deletion of a tuple in OA _Flight, there is a
rule that removes the corresponding tuple in MT5. The rule flightDeletion given
in Section 2.2 captures this interaction with mapping tables.

Step 6. Now suppose the following active behavior that involves two airline
peers: DB_A and DB_B agree that whenever a DB_A flight is oversold, a new
flight should be created by DB_B to accommodate new passengers. The following
is a generic rule that captures this behavior:

create trigger AFullFlight

before update of sold on FlightInfo
referencing new as New
referencing old as Old in DB_A

when New.sold = New.cap

for each row

begin
insert into Flight values (New.fno, date, New.destination);
insert into FlightInfo values (New.fno, 0, New.cap, New.aid, New.type)
in DB_B

end

When this rule is customized for Ontario-Air and Quebec-Air peer databases,
we get the following rule:

create trigger OAAFullFlight
before update of sold on OA_Flight
referencing new as New
old as Old
in Ontario-Air_DB
when New.sold = New.cap
for each row

begin
insert into QA_Flight values
(map(New.fno), date, map(New.dest), 0, null)
in Quebec-Air_DB

end

Notice that the action part of the rule above contains an insertion of a new
tuple which is a transformation of the updated Ontario-Air flight tuple. This
transformation is accomplished using the mapping tables.

Step 7. Quebec-Air is added to the list of acquaintees of Ontario-Air and vice-
versa.

Now we give details on the algorithm for establishing an acquaintance in
presence of interest groups. Assume that peer N; issues the following command:

set acquaintance to Nj

belonging to SIG

Then the following algorithm is used for completing this request:

If N; does not belongs to SIG, then follow the simple algorithm of Section 4.1.
Otherwise, do the following:

1. For both N; and Nj, if there are no mappings between the standard schema
Ss1a of SIG and the actual schemas of Sy, of N; and Sy; of Nj, then create
such mappings.

2. Given the mappings M;_,sr¢ from Sy, to Ssia, and MSIG’—>j from Sgrg to

Sn;, infer (using algorithms of [8]) a mapping M;_,; from Sy, to Sn;. Use

M;_,; to create mapping tables and views between N; and Nj;.

Create mapping expressions.

4. Populate the mapping tables, and send a copy of the mapping table instances
to Nj.

5. Generate consistency-enforcing rules from mapping expressions obtained in
step 2,and generate rules for maintenance of mapping tables.

6. Customize the generic rules of SIG according to the final views and mapping
tables obtained in step 2 and activate the customized rules.

7. Add Nj to the list of N;’s acquaintees.

@

4.3 Abolishing Acquaintances

A peer N;, may abolish one or more acquaintances with known peers, say
Nj,,---,Nj. Again, for simplicity, we assume that acquaintances are explic-
itly abolished by a user. For this task, the peer language includes the following
construct:

abolish acquaintance to <peer database>

When an acquaintance is abolished, the various constraints that were attached
to it are dropped. Dropping a constraint can be as simple as locally disabling it.
However, abolishing an acquaintance can lead to the peer leaving the network
if the abolished acquaintance was the only one that the peer had. Therefore
dropping a constraint can also be as hard as filling the gap left behind by the
vanishing peer. To abolish all the acquaintances of a peer all together, the lan-
guage contains the construct leave.

The following gives details on the algorithm used by a peer to abolish an
acquaintance. Assume that peer IV; issues the following command for abolishing
an acquaintance:

abolish acquaintance to Nj

This is executed as follows:

If Nj is not the only IV;’s acquaintee, then do the following:
1. Send a message to IN; to disable any copies of the mapping tables that
originated in N; that it may have.

2. Disable any mapping tables, mapping expressions, and coordination rules
that is coupled to the acquaintance (N;,IN;).

Otherwise, do the following:

1. Send a marker to N;.
2. Steps 2 and 3 as above.

The leave command is executed by abolishing all the acquaintances using the
algorithm above.

Notice that the “marker” mentioned in the algorithm above is a proxy that
the very last peer that was acquainted with a vanishing peer will keep as an
indication that the vanishing peer was at some point in the network and has
left. We will not elaborate on this marker here. It suffice to mention that this
marker can be used to decide on what to do when a query is being answered or
an event is being detected while some peers have left the network.

5 Related work

Our architecture adds details to the local relational model presented in [3] and
extended in [1]. Our framework views peer databases as local relational data-
bases which establish or abolish acquaintances between them to build a P2P
network. In [3], each acquaintance is characterized both by a mapping between
the peer involved and by a first-order theory that gives the semantic dependen-
cies between the peers. In [1], details of the mappings between peers are given in
terms of the mapping tables seen in Section 2.1. There, it was also indicated that
the first-order theory that characterizes the semantic dependencies between the
peers can be implemented as ECA rules. In the present paper, we start spelling
out the details of this implementation.

That ECA rules constitute an important mechanism for supporting data co-
ordination has been recognized mainly in the context of multidatabase systems,
e.g. in [11,2, 6]. Here, distributed rules involving several databases of the kind ”If
event F; occurs in DBy, Es occurs in DBy, and E; precedes Fs then carry out
transaction T in DBs” is recognized. Executing such distributed rules requires
coordination among peer databases DBy, DBy and DBs. Therefore, it would
naturally be useful to add active functionality to P2P MDBSs. The work in
[6] presents a first attempt to study implementation issues for distributed ECA
rules as a mechanism of P2P interoperability. However, much work remains to be
done on this topic in terms of dealing with the management of seamless addition
and removal of peers in the network. Finally, like ours, the proposal for a peer
database architecture given in [4], is inspired by the theoretical foundations laid
down in [3]. It also mentions the importance of ECA rule for coordinating data
exchange between peers. Unlike ours, [4] does not focus on details of how ECA
rules can be used for such an endeavour.

6 Conclusions

We have described techniques for specifying data exchange policies on-the-fly
based on constraints (expressed as mapping tables and as generic ECA rules)
on the way in which peers exchange and share data. We considered a setting
in which a PDBMS defines and manages its own view of the shared data, and
defines its own sharing and coordination policies based on ECA rules provided by
interest groups. The on-the-fly specification of data exchange policies is realized

by building coordination ECA rules at acquaintance time, as opposed to having
them being created at design-time for particular peers by experts. This on-the-fly
generation of active rules contributes to our vision of a P2P database technology
that is end-user oriented and where establishing acquaintances between peers is
done in a flexible, and cost-effective way.

The coordination framework presented here is being extended in various
ways. First, we are investigating a complete extension of SQL3 triggers for the
peer database setting. For this extension, we are studying a suitable execution
model that combines the execution model for SQL3 triggers [9] and the one pro-
posed for the multidatabase context in [6]. Second, the notion of acquaintance
type, denoting the level of privileges attached to the acquaintance, is useful in
practice. For example, Ontario-Air may have established an acquaintance with
Quebec-Air that is of a higher degree of privileges than an existing acquain-
tance it has with Alberta-Air. We are studying types as a further constraint
that characterizes acquaintances.

References

1. M. Arenas, V. Kantere, T. Kementsietsidis, I. Kiringa, R.J. Miller, and J. Mylopou-
los. The hyperion project: from data integration to data coordination. SIGMOD
RECORD, September 2003. To appear.

2. R. Arizio, B. Bomitali, M. Demarie, A. Limongiello, and P.L. Mussa Managing
inter-database dependencies with rules + quasi-transactions. In Thirst Interna-
tional Workshop on Research Issues in Data Engineering: Interoperability in Mul-
tidatabase Systems, p. 34-41, Vienna, April 1993.

3. P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini, and
I. Zaihrayeu. Data Management for Peer-to-Peer Computing: A Vision. In Proc.
of the Int’l Workshop on the WEB and Databases (WebDB), 2002.

4. F. Giunchiglia and I. Zaihrayeu. Making peer databases interact - a vision for an
architecture supporting data coordination. In Proceedings of the Conference on
Information Agents, Madrid, September 2002.

5. S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu. What can databases
do for peer-to-peer? In Proc. of the Int’l Workshop on the WEB and Databases
(WebDB), 2001.

6. V. Kantere. A rule mechanism for p2p data management. Technical report, Uni-
versity of Toronto, 2003. CSRG-469.

7. A. Kementsietsidis, M. Arenas, and R. J. Miller. Data exchange in peer-to-peer
systems (extended abstract). Technical Report CSRG-456, CS Dept., University
of Toronto, June 2002.

8. A. Kementsietsidis, M. Arenas, and R. J. Miller. Data mapping in peer-to-peer
systems: Semantics and algorithmic issues. In ACM SIGMOD Int’l Conf. on the
Management of Data, 2003.

9. K. Kulkarni, N. Mattos, and R. Cochrane. Active database features in sql-3. In
N. Paton, editor, Active Rules in Database Systems, p. 197-219. Springer, 1999.

10. M. Lenzerini. Data Integration: A Theoretical Perspective. In Proc. of the ACM
Symp. on Principles of Database Systems (PODS), p. 233-246, 2002.

11. C. Turker and S. Conrad. Towards maintaining integrity in federated databases.
In 8rd Basque International Workshop on Information Technology (BIWIT’97),
Biarritz, France, July 1997.

