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ABSTRACT
This paper introduces algorithms for learning how to trade
using insider (superior) information in Kyle’s model of fi-
nancial markets. Prior results in finance theory relied on
the insider having perfect knowledge of the structure and
parameters of the market. I show here that it is possible
to learn the equilibrium trading strategy when its form is
known even without knowledge of the parameters govern-
ing trading in the model. However, the rate of convergence
to equilibrium is slow, and an approximate algorithm that
does not converge to the equilibrium strategy achieves bet-
ter utility when the horizon is limited. I analyze this ap-
proximate algorithm from the perspective of reinforcement
learning and discuss the importance of domain knowledge
in designing a successful learning algorithm.
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Economics

Keywords
Computational Finance, Market Microstructure

1. INTRODUCTION
In financial markets, information is revealed by trading.

Once private information is fully disseminated to the pub-
lic, prices reflect all available information and reach market
equilibrium. Before prices reach equilibrium, agents with
superior information have opportunities to gain profits by
trading. This paper focuses on the design of a general algo-
rithm that allows an agent to learn how to exploit superior or
“insider” information (while the term “insider” information
has negative connotations in popular belief. I use the term
solely to refer to superior information, however it may be
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obtained – for example, paying for an analyst’s report on a
firm can be viewed as a way of obtaining insider information
about a stock). Suppose a trading agent receives a signal
of what price a stock will trade at n trading periods from
now. What is the best way to exploit this information in
terms of placing trades in each of the intermediate periods?
The agent has to make a tradeoff between the profit made
from an immediate trade and the amount of information
that trade reveals to the market. If the stock is undervalued
it makes sense to buy some stock, but buying too much may
reveal the insider’s information too early and drive the price
up, relatively disadvantaging the insider.

This problem has been studied extensively in the finance
literature, initially in the context of a trader with monopo-
listic insider information [6], and later in the context of com-
peting insiders with homogeneous [4] and heterogeneous [3]
information.1 All these models derive equilibria under the
assumption that traders are perfectly informed about the
structure and parameters of the world in which they trade.
For example, in Kyle’s model, the informed trader knows
two important distributions — the ex ante distribution of
the liquidation value and the distribution of other (“noise”)
trades that occur in each period.

In this paper, I start from Kyle’s original model [6], in
which the trading process is structured as a sequential auc-
tion at the end of which the stock is liquidated. An informed
trader or “insider” is told the liquidation value some num-
ber of periods before the liquidation date, and must decide
how to allocate trades in each of the intervening periods.
There is also some amount of uninformed trading (modeled
as white noise) at each period. The clearing price at each
auction is set by a market-maker who sees only the combined
order flow (from both the insider and the noise traders) and
seeks to set a zero-profit price. In the next section I dis-
cuss the importance of this problem from the perspectives
of research both in finance and in reinforcement learning.
In sections 3 and 4 I introduce the market model and two
learning algorithms, and in Section 5 I present experimen-
tal results. Finally, Section 6 concludes and discusses future
research directions.

1My discussion of finance models in this paper draws di-
rectly from these original papers and from the survey by
O’Hara [8].
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2. MOTIVATION: BOUNDED
RATIONALITY AND REINFORCEMENT
LEARNING

One of the arguments for the standard economic model
of a decision-making agent as an unboundedly rational op-
timizer is the argument from learning. In a survey of the
bounded rationality literature, John Conlisk lists this as
the second among eight arguments typically used to make
the case for unbounded rationality [2]. To paraphrase his
description of the argument, it is all right to assume un-
bounded rationality because agents learn optima through
practice. Commenting on this argument, Conlisk says “learn-
ing is promoted by favorable conditions such as rewards, re-
peated opportunities for practice, small deliberation cost at
each repetition, good feedback, unchanging circumstances,
and a simple context.” The learning process must be an-
alyzed in terms of these issues to see if it will indeed lead
to agent behavior that is optimal and to see how differences
in the environment can affect the learning process. The de-
sign of a successful learning algorithm for agents who are
not necessarily aware of who else has inside information or
what the price formation process is could elucidate the con-
ditions that are necessary for agents to arrive at equilibrium,
and could potentially lead to characterizations of alternative
equilibria in these models.

One way of approaching the problem of learning how to
trade in the framework developed here is to apply a standard
reinforcement learning algorithm with function approxima-
tion. Fundamentally, the problem posed here has infinite
(continuous) state and action spaces (prices and quantities
are treated as real numbers), which pose hard challenges for
reinforcement learning algorithms. However, reinforcement
learning has worked in various complex domains, perhaps
most famously in backgammon [11] (see Sutton and Barto
for a summary of some of the work on value function ap-
proximation [10]). There are two key differences between
these successes and the problem studied here that make it
difficult for the standard methodology to be successful with-
out properly tailoring the learning algorithm to incorporate
important domain knowledge.

First, successful applications of reinforcement learning with
continuous state and action spaces usually require the pres-
ence of an offline simulator that can give the algorithm ac-
cess to many examples in a costless manner. The environ-
ment envisioned here is intrinsically online — the agent in-
teracts with the environment by making potentially costly
trading decisions which actually affect the payoff it receives.
In addition to this, the agent wants to minimize exploration
cost because it is an active participant in the economic envi-
ronment. Achieving a high utility from early on in the learn-
ing process is important to agents in such environments.
Second, the sequential nature of the auctions complicates
the learning problem. If we were to try and model the pro-
cess in terms of a Markov decision problem (MDP), each
state would have to be characterized not just by traditional
state variables (in this case, for example, last traded price
and liquidation value of a stock) but by how many auctions
in total there are, and which of these auctions is the cur-
rent one. The optimal behavior of a trader at the fourth
auction out of five is different from the optimal behavior
at the second auction out of ten, or even the ninth auc-
tion out of ten. While including the current auction and

total number of auctions as part of the state would allow
us to represent the problem as an MDP, it would not be
particularly helpful because the generalization ability from
one state to another would be poor. This problem might be
mitigated in circumstances where the optimal behavior does
not change much from auction to auction, and characterizing
these circumstances is important. In fact, I describe an al-
gorithm below that uses a representation where the current
auction and the total number of auctions do not factor into
the decision. This approach is very similar to model based
reinforcement learning with value function approximation,
but the main reason why it works very well in this case is
that we understand the form of the optimal strategy, so the
representations of the value function, state space, and tran-
sition model can be tailored so that the algorithm performs
close to optimally. I discuss this in more detail in Section 5.

An alternative approach to the standard reinforcement
learning methodology is to use explicit knowledge of the do-
main and learn separate functions for each auction. The
learning process receives feedback in terms of actual prof-
its received for each auction from the current one onwards,
so this is a form of direct utility estimation [12]. While
this approach is related to the direct-reinforcement learning
method of Moody and Saffell [7], the problem studied here
involves more consideration of delayed rewards, so it is nec-
essary to learn something equivalent to a value function in
order to optimize the total reward.

The important domain facts that help in the development
of a learning algorithm are based on Kyle’s results. Kyle
proves that in equilibrium, the expected future profits from
auction i onwards are a linear function of the square dif-
ference between the liquidation value and the last traded
price (the actual linear function is different for each i). He
also proves that the next traded price is a linear function
of the amount traded. These two results are the key to
the learning algorithm. I will show in later sections that
the algorithm can learn from a small amount of randomized
training data and then select the optimal actions according
to the trader’s beliefs at every time period. With a small
number of auctions, the learning rule enables the trader to
converge to the optimal strategy. With a larger number
of auctions the number of episodes required to reach the
optimal strategy becomes impractical and an approximate
mechanism achieves better results. In all cases the trader
continues to receive a high flow utility from early episodes
onwards.

3. MARKET MODEL
The model is based on Kyle’s original model [6]. There

is a single security which is traded in N sequential auc-
tions. The liquidation value v of the security is realized af-
ter the Nth auction, and all holdings are liquidated at that
time. v is drawn from a Gaussian distribution with mean
p0 and variance Σ0, which are common knowledge. Here we
assume that the N auctions are identical and distributed
evenly in time. An informed trader or insider observes v in
advance and chooses an amount to trade ∆xi at each auc-
tion i ∈ {1, . . . , N}. There is also an uninformed order flow
amount ∆ui at each period, sampled from a Gaussian distri-
bution with mean 0 and variance σ2

u∆ti where ∆ti = 1/N for
our purposes (more generally, it represents the time interval
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between two auctions).2 The trading process is mediated
by a market-maker who absorbs the order flow while earn-
ing zero expected profits. The market-maker only sees the
combined order flow ∆xi +∆ui at each auction and sets the
clearing price pi. The zero expected profit condition can be
expected to arise from competition between market-makers.

Equilibrium in the monopolistic insider case is defined by
a profit maximization condition on the insider which says
that the insider optimizes overall profit given available in-
formation, and a market efficiency condition on the (zero-
profit) market-maker saying that the market-maker sets the
price at each auction to the expected liquidation value of
the stock given the combined order flow.

Formally, let πi denote the profits made by the insider
on positions acquired from the ith auction onwards. Then
πi =

PN
k=i(v − pk)∆xk. Suppose that X is the insider’s

trading strategy and is a function of all information avail-
able to her, and P is the market-maker’s pricing rule and
is again a function of available information. Xi is a map-
ping from (p1, p2, . . . , pi−1, v) to xi where xi represents the
insider’s total holdings after auction i (from which ∆xi can
be calculated). Pi is a mapping from (x1+u1, . . . , xi+ui) to
pi. X and P consist of all the component Xi and Pi. Kyle
defines the sequential auction equilibrium as a pair X and
P such that the following two conditions hold:

1. Profit maximization: For all i = 1, . . . , N and all X ′:

E[πi(X, P )|p1, . . . , pi−1, v] ≥ E[πi(X
′, P )|p1, . . . , pi−1, v]

2. Market efficiency : For all i = 1, . . . , N ,

pi = E[v|x1 + u1, . . . , xi + ui]

The first condition ensures that the insider’s strategy is
optimal, while the second ensures that the market-maker
plays the competitive equilibrium (zero-profit) strategy. Kyle
also shows that there is a unique linear equilibrium [6].

Theorem 1 (Kyle, 1985). There exists a unique lin-
ear (recursive) equilibrium in which there are constants

βn, λn, αn, δn, Σn

such that for:

∆xn = βn(v − pn−1)∆tn

∆pn = λn(∆xn + ∆un)

Σn = var(v|∆x1 + ∆u1, . . . , ∆xn + ∆un)

E[πn|p1, . . . , pn−1, v] = αn−1(v − pn−1)
2 + δn−1

Given Σ0 the constants βn, λn, αn, δn, Σn are the unique
solution to the difference equation system:

αn−1 =
1

4λn(1− αnλn)

δn−1 = δn + αnλ2
nσ2

u∆tn

βn∆tn =
1− 2αnλn

2λn(1− αnλn)

λn = βnΣn/σ2
u

Σn = (1− βnλn∆tn)Σn−1

2The motivation for this formulation is to allow the represen-
tative uninformed trader’s holdings over time to be a Brow-
nian motion with instantaneous variance σ2

u. The amount
traded represents the change in holdings over the interval.

subject to αN = δN = 0 and the second order condition
λn(1− αnλn) = 0.3

The two facts about the linear equilibrium that will be es-
pecially important for learning are that there exist constants
λi, αi, δi such that:

∆pi = λi(∆xi + ∆ui) (1)

E[πi|p1, . . . , pi−1, v] = αi−1(v − pi−1)
2 + δi−1 (2)

Perhaps the most important result of Kyle’s character-
ization of equilibrium is that the insider’s information is
incorporated into prices gradually, and the optimal action
for the informed trader is not to trade particularly aggres-
sively at earlier dates, but instead to hold on to some of
the information. In the limit as N → ∞ the rate of reve-
lation of information actually becomes constant. Also note
that the market-maker imputes a strategy to the informed
trader without actually observing her behavior, only the or-
der flow.

4. A LEARNING MODEL

4.1 The Learning Problem
I am interested in examining a scenario in which the in-

formed trader knows very little about the structure of the
world, but must learn how to trade using the superior in-
formation she possesses. I assume that the price-setting
market-maker follows the strategy defined by the Kyle equi-
librium. This is justifiable because the market-maker (as
a specialist in the New York Stock Exchange sense [9]) is
typically in an institutionally privileged situation with re-
spect to the market and has also observed the order-flow
over a long period of time. It is reasonable to conclude that
the market-maker will have developed a good domain theory
over time.

The problem faced by the insider is similar to the stan-
dard reinforcement learning model [5, 1, 10] in which an
agent does not have complete domain knowledge, but is in-
stead placed in an environment in which it must interact by
taking actions in order to gain reinforcement. In this model
the actions an agent takes are the trades it places, and the
reinforcement corresponds to the profits it receives. The
informed trader makes no assumptions about the market-
maker’s pricing function or the distribution of noise trad-
ing, but instead tries to maximize profit over the course of
each sequential auction while also learning the appropriate
functions.

4.2 A Learning Algorithm
At each auction i the goal of the insider is to maximize

πi = ∆xi(v − pi) + πi+1 (3)

The insider must learn both pi and πi+1 as functions of the
available information. We know that in equilibrium pi is
a linear function of pi−1 and ∆xi, while πi+1 is a linear
function of (v − pi)

2. This suggests that an insider could
learn a good representation of next price and future profit

3The second order condition rules out a situation in which
the insider can make unbounded profits by first destabilizing
prices with unprofitable trades.
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based on these parameters. In this model, the insider tries
to learn parameters a1, a2, b1, b2, b3 such that:

pi = b1pi−1 + b2∆xi + b3 (4)

πi+1 = a1(v − pi)
2 + a2 (5)

These equations are applicable for all periods except the
last, since pN+1 is undefined, but we know that πN+1 = 0.
From this we get:

πi = ∆xi(v − b1pi−1 − b2∆xi − b3)+

a1(v − b1pi−1 − b2∆xi − b3)
2 + a2 (6)

The profit is maximized when the partial derivative with
respect to the amount traded is 0. Setting ∂πi

∂(∆xi)
= 0:

∆xi =
−v + b1pi−1 + b3 + 2a1b2(v − b1pi−1 − b3)

2a1b2
2 − 2b2

(7)

Now consider a repeated sequential auction game where
each episode consists of N auctions. Initially the trader
trades randomly for a particular number of episodes, gath-
ering data as she does so, and then performs a linear re-
gression on the stored data to estimate the five parameters
above for each auction. The trader then updates the pa-
rameters periodically by considering all the observed data
(see Algorithm 1 for pseudocode). The trader trades op-
timally according to her beliefs at each point in time, and
any trade provides information on the parameters, since the
price change is a noisy linear function of the amount traded.
There may be benefits to sometimes not trading optimally
in order to learn more. This becomes a problem of both
active learning (choosing a good ∆x to learn more, and a
problem of balancing exploration and exploitation.

Data: T : total number of episodes, N : number of auctions,
K: number of initialization episodes, D[i][j]: data
from episode i, auction j, Fj : estimated parameters
for auction j

for i = 1 : K do
for j = 1 : N do

Choose random trading amount, save data in D[i][j]
end

end
for j = 1 : N do

Estimate Fj by regressing on D[1][j] . . . D[K][j]
end
for i = K + 1 : T do

for j = 1 : N do
Choose trading amount based on Fj , save data in
D[i][j]

end
if i mod 5 = 0 then

for j = 1 : N do
Estimate Fj by regressing on D[1][j] . . . D[i][j]

end
end

end
Algorithm 1: The equilibrium learning algorithm

4.3 An Approximate Algorithm
An alternative algorithm would be to use the same pa-

rameters for each auction, instead of estimating separate a’s
and b’s for each auction (see Algorithm 2). Essentially, this
algorithm is a learning algorithm which characterizes the
state entirely by the last traded price and the liquidation

price, irrespective of the particular auction number or even
the total number of auctions. The value function of a state is
given by the expected profit, which we know from equation
6. We can solve for the optimal action based on our knowl-
edge of the system. In the last auction before liquidation,
the insider trades knowing that this is the last auction, and
does not take future expected profit into account, simply
maximizing the expected value of that trade.

Stating this more explicitly in terms of standard rein-
forcement learning terminology, the insider assumes that the
world is characterized by the following.

• A continuous state space where the state is v−p, where
p is the last traded price.

• A continuous action space where actions are given by
∆x, the amount the insider chooses to trade.

• A stochastic transition model mapping p and ∆x to p′

(v is assumed constant during an episode). The model
is that p′ is a (noisy) linear function of ∆x and p.

• A (linear) value function mapping (v − p)2 to π, the
expected profit.

In addition, the agent knows at the last auction of an episode
that the expected future profit from the next stage onwards
is 0.

Of course, the world does not really conform exactly to
the agent’s model. One important problem that arises be-
cause of this is that the agent does not take into account
the difference between the optimal way of trading at differ-
ent auctions. The great advantage is that the agent should
be able to learn with considerably less data and perhaps
do a better job of maximizing finite-horizon utility. Fur-
ther, if the parameters are not very different from auction
to auction this algorithm should be able to find a good ap-
proximation of the optimal strategy. Even if the parameters
are considerably different for some auctions, if the expected
difference between the liquidation value and the last traded
price is not high at those auctions, the algorithm might learn
a close-to-optimal strategy. The next section discusses the
performance of these algorithms, and analyzes the condi-
tions for their success. I will refer to the first algorithm as
the equilibrium learning algorithm and to the second as the
approximate learning algorithm in what follows.

Data: T : total number of episodes, N : number of auctions,
K: number of initialization episodes, D[i][j]: data
from episode i, auction j, F : estimated parameters

for i = 1 : K do
for j = 1 : N do

Choose random trading amount, save data in D[i][j]
end

end
Estimate F by regressing on D[1][] . . . D[K][] for
i = K + 1 : T do

for j = 1 : N do
Choose trading amount based on F , save data in
D[i][j]

end
if i mod 5 = 0 then

Estimate F by regressing on D[1][] . . . D[i][]
end

end
Algorithm 2: The approximate learning algorithm
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5. EXPERIMENTAL RESULTS

5.1 Experimental Setup
To determine the behavior of the two learning algorithms,

it is important to compare their behavior with the behavior
of the optimal strategy under perfect information. In order
to elucidate the general properties of these algorithms, this
section reports experimental results when there are 4 auc-
tions per episode. For the equilibrium learning algorithm
the insider trades randomly for 50 episodes, while for the
approximate algorithm the insider trades randomly for 10
episodes, since it needs less data to form a somewhat rea-
sonable initial estimate of the parameters.4 In both cases,
the amount traded at auction i is randomly sampled from
a Gaussian distribution with mean 0 and variance 100/N
(where N is the number of auctions per episode). Each simu-
lation trial runs for 40,000 episodes in total, and all reported
experiments are averaged over 100 trials. The actual param-
eter values, unless otherwise specified, are p0 = 75, Σ0 =
25, σ2

u = 25 (the units are arbitrary). The market-maker
and the optimal insider (used for comparison purposes) are
assumed to know these values and solve the Kyle difference
equation system to find out the parameter values they use
in making price-setting and trading decisions respectively.

5.2 Main Results
Figure 1 shows the average absolute value of the quantity

traded by an insider as a function of the number of episodes
that have passed. The graphs show that a learning agent us-
ing the equilibrium learning algorithm appears to be slowly
converging to the equilibrium strategy in the game with four
auctions per episode, while the approximate learning algo-
rithm converges quickly to a strategy that is not the optimal
strategy. Figure 2 shows two important facts. First, the
graph on the left shows that the average profit made rises
much more sharply for the approximate algorithm, which
makes better use of available data. Second, the graph on
the right shows that the average total utility being received
is higher from episode 20,000 onwards for the equilibrium
learner (all differences between the algorithms in this graph
are statistically significant at a 95% level). Were the sim-
ulations to run long enough, the equilibrium learner would
outperform the approximate learner in terms of total utility
received, but this would require a huge number of episodes
per trial.

Clearly, there is a tradeoff between achieving a higher flow
utility and learning a representation that allows the agent
to trade optimally in the limit. This problem is exacerbated
as the number of auctions increases. With 10 auctions per
episode, an agent using the equilibrium learning algorithm
actually does not learn to trade more heavily in auction
10 than she did in early episodes even after 40,000 total
episodes, leading to a comparatively poor average profit over
the course of the simulation. This is due to the dynamics of
learning in this setting. The opportunity to make profits by
trading heavily in the last auction are highly dependent on
not having traded heavily earlier, and so an agent cannot
learn a policy that allows her to trade heavily at the last
auction until she learns to trade less heavily earlier. This
takes more time when there are more auctions. It is also

4This setting does not affect the long term outcome signif-
icantly unless the agent starts off with terrible initial esti-
mates.
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Figure 1: Average absolute value of quantities
traded at each auction by a trader using the equilib-
rium learning algorithm (above) and a trader using
the approximate learning algorithm (below) as the
number of episodes increases. The thick lines par-
allel to the X axis represent the average absolute
value of the quantity that an optimal insider with
full information would trade.
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Figure 2: Above: Average flow profit recieved by
traders using the two learning algorithms (each
point is an aggregate of 50 episodes over all 100 tri-
als) as the number of episodes increases. Below:
Average profit received until the end of the simu-
lation measured as a function of the episode from
which we start measuring (for episodes 100, 10,000,
20,000 and 30,000).

worth noting that assuming that agents have a large amount
of time to learn in real markets is unrealistic.

The graphs in Figures 1 and 2 reveal some interesting dy-
namics of the learning process. First, with the equilibrium
learning algorithm, the average profit made by the agent
slowly increases in a fairly smooth manner with the number
of episodes, showing that the agent’s policy is constantly im-
proving as she learns more. An agent using the approximate
learning algorithm shows much quicker learning, but learns
a policy that is not asymptotically optimal. The second in-
teresting point is about the dynamics of trader behavior —
under both algorithms, an insider initially trades far more
heavily in the first period than would be considered optimal,
but slowly learns to hide her information like an optimal
trader would. For the equilibrium learning algorithm, there
is a spike in the amount traded in the second period early
on in the learning process. This is also a small spike in the
amount traded in the third period before the agent starts
converging to the optimal strategy.

5.3 Analysis of the Approximate Algorithm
The behavior of the trader using the approximate algo-

rithm is interesting in a variety of ways. First, let us con-
sider the pattern of trades in Figure 1. As mentioned above,
the trader trades more aggressively in period 1 than in pe-
riod 2, and more aggressively in period 2 than in period 3.
Let us analyze why this is the case. The agent is learning a
strategy that makes the same decisions independent of the
particular auction number (except for the last auction). At
any auction other than the last, the agent is trying to choose
∆x to maximize:

∆x(v − p′) + W [Sv,p′ ]

where p′ is the next price (also a function of ∆x, and also
taken to be independent of the particular auction) and W [Sv,p′ ]
is the value of being in the state characterized by the liqui-
dation value v and (last) price p′. The agent also believes
that the price p′ is a linear function of p and ∆x. There are
two possibilities for the kind of behavior the agent might
exhibit, given that she knows that her action will move the
stock price in the direction of her trade (if she buys, the
price will go up, and if she sells the price will go down).
She could try to trade against her signal, because the model
she has learned suggests that the potential for future profit
gained by pushing the price away from the direction of the
true liquidation value is higher than the loss from the one
trade.5 The other possibility is that she trades with her sig-
nal. In this case, the similarity of auctions in the represen-
tation ensures that she trades with an intensity proportional
to her signal. Since she is trading in the correct direction,
the price will move (in expectation) towards the liquidation
value with each trade, and the average amount traded will
go down with each successive auction. The difference in the
last period, of course, is that the trader is solely trying to
maximize ∆x(v − p′) because she knows that it is her last
opportunity to trade.

The success of the algorithm when there are as few as
four auctions demonstrates that learning an approximate

5This is not really learnable using linear representations for
everything unless there is a different function that takes over
at some point (such as the last auction), because otherwise
the trader would keep trading in the wrong direction and
never receive positive reinforcement.
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From episode Σ0 = 5, σ2
u = 25 Σ0 = 5, σ2

u = 50 Σ0 = 10, σ2
u = 25

Approx Equil Approx Equil Approx Equil
100 0.986 0.964 0.986 0.983 0.986 0.964
10,000 0.991 0.986 0.990 0.997 0.990 0.986
20,000 0.991 0.992 0.990 0.999 0.989 0.992
30,000 0.991 0.994 0.989 1.000 0.989 0.994

Table 1: Proportion of optimal profit received by traders using the approximate and the equilibrium learning
algorithm in domains with different parameter settings. The leftmost column indicates the episode from
which measurement starts, running through the end of the simulation (40,000 periods).

representation of the underlying model can be very success-
ful in this setting as long as the trader behaves differently
at the last auction. Another important question is that
of how parameter choice affects the profit-making perfor-
mance of the approximate algorithm as compared to the
equilibrium learning algorithm. In order to study this ques-
tion, I conducted experiments that measured the average
profit received when measurement starts at various differ-
ent points for a few different parameter settings (this is the
same as the second experiment in Figure 2). The results
are shown in Table 1. These results demonstrate especially
that the profit-making behavior of the equilibrium learning
algorithm is somewhat variable across parameter settings
while the behavior of the approximate algorithm is remark-
ably consistent. The advantage of using the approximate
algorithms will obviously be greater in settings where the
equilibrium learner takes a longer time to start making near-
optimal profits. From these results, it seems that the equi-
librium learning algorithm learns more quickly in settings
with higher liquidity in the market.

6. CONCLUSIONS AND FUTURE WORK
This paper presents two algorithms that allow an agent

to learn how to exploit monopolistic insider information in
securities markets when agents do not possess full knowl-
edge of the parameters characterizing the environment, and
compares the behavior of these algorithms to the behavior
of the optimal algorithm with full information. The results
presented here demonstrate how domain knowledge can be
very useful in the design of algorithms that learn from ex-
perience in an intrinsically online setting in which standard
reinforcement learning techniques are hard to apply.

An obvious extension of this work is to develop a hybrid
algorithm that learns parameters for both the exact and ap-
proximate methods and switches from trading based on the
approximate parameters to the exact parameters at some
time. While such an algorithm would work very well in this
setting, it would perhaps be more interesting to examine
the behavior of the approximate learning algorithm in mar-
ket environments that are not necessarily generated by an
underlying linear mechanism. For example, if many traders
are trading in a double auction type market, would it still
make sense for a trader to use an algorithm like the approx-
imate one presented here in order to maximize profits from
insider information?

I would also like to investigate what differences in market
properties are predicted by the learning model as opposed
to Kyle’s model. Another direction for future research is the
use of an online learning algorithm. Batch regression can be-
come prohibitively expensive as the total number of episodes

increases. While one alternative is to use a fixed window of
past experience, hence forgetting the past, another plausi-
ble alternative is to use an online algorithm that updates
the agent’s beliefs at each time step, throwing away the ex-
ample after the update. Under what conditions do online
algorithms converge to the equilibrium? Are there practical
benefits to the use of these methods?

Perhaps the most interesting direction for future research
is the multi-agent learning problem. First, what if there is
more than one insider and they are all learning?6 Insiders
could potentially enter or leave the market at different times,
but we are no longer guaranteed that everyone other than
one agent is playing the equilibrium strategy. What are the
learning dynamics? What does this imply for the system as
a whole? Another point is that the presence of suboptimal
insiders ought to create incentives for market-makers to de-
viate from the complete-information equilibrium strategy in
order to make profits. What can we say about the learn-
ing process when both market-makers and insiders may be
learning?
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