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Summary. We examine Gödel’s completeness and incompleteness theorems for
higher order arithmetic from a categorical point of view. The former says that a
proposition is provable if and only if it is true in all models, which we take to be
local toposes, i.e. Lawvere’s elementary toposes in which the terminal object is a
nontrivial indecomposable projective. The incompleteness theorem showed that, in
the classical case, it is not enough to look only at those local toposes in which all the
numerals are standard. Thus, for a classical mathematician, Hilbert’s formalist pro-
gram is not compatible with the belief in a Platonic standard model. However, for
pure intuitionistic type theory, a single model suffices, the linguistically constructed
free topos, which is the initial object in the category of all elementary toposes and
logical functors. Hence, for a moderate intuitionist, formalism and Platonism can be
reconciled after all. The completeness theorem can be sharpened to represent any
topos by continuous sections of a sheaf of local toposes.

1.1 Introduction
Most practicing mathematicians see no need for the foundations of their sub-
ject. But those who wish to place it on a solid ground usually pick set the-
ory, an axiomatic treatment of the membership relation expressed in first
order logic. Some of us feel that higher order logic is more appropriate and,
since Russell and Whitehead’s Principia Mathematica, such a system has been
known as type theory (more precisely, classical impredicative type theory with
Peano’s axioms). Although type theory has been greatly simplified by works
of Alonzo Church, Leon Henkin, and others, and despite its naturalness for
expressing mathematics, it was unjustly neglected until quite recently.

An apparently different approach to foundations is via category theory, a
subject that was introduced by Samuel Eilenberg and Saunders Mac Lane in
1945. In 1964, F. W. Lawvere proposed to found mathematics on the category
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of categories [25]. When he lectured on this at an international conference in
Jerusalem, Alfred Tarski objected: “But what is a category if not a set of
objects together with a set of morphisms?” Lawvere replied by pointing out
that set theory axiomatized the binary relation of membership, while category
theory axiomatized the ternary relation of composition.

Later Lawvere returned from the category of categories to the category of
sets. Trying to axiomatize the latter (e.g. [24]), he ended up with the notion of
an elementary topos, which made its first public appearance in joint work with
Myles Tierney ([27, 36]). Elementary toposes have the advantage of describing
not only sets, but also sheaves (called “variable sets” by Lawvere). Quoting
Lawvere [28]:

This is the development on the basis of elementary (first-order) axioms
of a theory of “toposes” just good enough to be applicable not only
to sheaf theory, algebraic spaces, global spectrum etc. as originally
envisaged by Grothendieck, Giraud, Verdier, and Hakim but also to
Kripke semantics, abstract proof theory, and the Cohen-Scott-Solovay
method for obtaining independence results in set theory.

Indeed, it was soon realized that an elementary topos has an associated “inter-
nal” logic which is essentially a version of (intuitionistic) type theory. In the
second part of our book “Introduction to higher order categorical logic” [22],
we tried to exploit the close connections between higher order logic (better
called “higher order arithmetic”) and topos theory.

1.2 Type Theory
By a type theory (or higher order arithmetic) we understand a formulation
of higher order logic with Peano’s axioms. We shall follow our book [22] and
consider type theories based on equality. Thus the language contains both
types and terms (of the indicated types) as follows:

Types: 1 Ω N ΩA A×B

Terms: ∗ a = a′ 0 {x : A | ϕ(x)} 〈a, b〉
a ∈ α Sn

It is assumed that 1, N,Ω are types, and that the types are closed under
the operations ΩA and A × B for given types A and B. Here 1 denotes a
one-point type, Ω the type of propositions (or truth values), N the type of
natural numbers, ΩA the “powerset” of A, and A× B the cartesian product
of types A and B. Among the terms (not indicated above) there are infinitely
many variables of each type. We assume that ∗ is a term of type 1, 0 is a
term of type N , and that the terms are closed under the operations =,∈
, S, {− | −}, and 〈−,−〉, as indicated above, where it is understood that a, a′

are of the same type A, b is of type B, α is of type ΩA, n is of type N and
ϕ(x) is of type Ω. We adopt the current convention of writing t : A for “t is
a term of type A”.
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We also assume that there is a collection of theorems which include the
usual axioms and which is closed under the usual rules of inference (i.e. equal-
ity, pairing, comprehension, extensionality, and Peano’s axioms). The familiar
logical symbols are now definable as follows (see also [28])

> := ∗ = ∗
p ∧ q := 〈p, q〉 = 〈>,>〉 where p, q : Ω
p⇒ q := p ∧ q = p
∀x:Aϕ(x) := {x : A | ϕ(x)} = {x : A | >} where ϕ(x) : Ω
⊥ := ∀x:Ωx
¬p := ∀x:Ω(p⇒ x)
p ∨ q := ∀x:Ω(((p⇒ x) ∧ (q ⇒ x))⇒ x)
∃x:Aϕ(x) := ∀y:Ω(∀x:A((ϕ(x)⇒ y)⇒ y))

The usual properties of these logical connectives can now be proved (see [22]).
We will call a type theory analytic if it contains no types and terms other

than the ones it must contain according to the above definition. Thus, an
analytic type theory does not contain the type of humans or the type of
vegetables, nor does it contain terms denoting the binary relations of loving
or eating. Even the internal language of a topos (see below) is not analytic,
since it admits as types all sets (a set in a topos being a morphism 1→ ΩA,
for some object A).

Pure type theory L0 is the analytic type theory containing no theorems
other than those following from the above inductive definition. Every analytic
type theory has the form L0/θ, where θ is a set of propositions (i.e. terms of
type Ω) now considered as additional nonlogical axioms. We may even take θ
to be the set of all theorems.

1.3 Elementary Toposes
A topos, according to Lawvere, is a cartesian closed category (ccc) with pull-
backs, a subobject classifier Ω and a natural numbers object N . By a ccc
we mean a category with a terminal object 1, cartesian products A × B
and exponentiation CB , together with a canonical bijection between arrows
(A × B) → C and arrows A → CB . As Lawvere himself pointed out [26],
the prime example of a ccc is the proof theory of the positive intuitionistic
propositional calculus, with

1 = T , A×B = A ∧B , CB = B ⇒ C

According to the so-called Curry-Howard isomorphism, the associated proof
theory can also be described by the typed lambda calculus (with surjective
pairing); hence it is quite natural that ccc’s, typed lambda calculi, and the
proof theory of positive intuitionistic propositional calculi turn out to be
equivalent (see [22]).

A subobject classifier in a ccc with pullbacks is an object Ω together with
a canonical (monic) arrow T : 1 → Ω and a canonical bijection between



4 J. Lambek and P. J. Scott

subobjects B of A and their characteristic morphisms χB : A → Ω .3 This
generalizes the familiar set-theoretic bijection between subsets of a set A and
characteristic functions A → Ω, where Ω is a two-element set. Viewed as
usual classical sets, Ω and the powerset ΩA are Boolean algebras, whereas in
toposes, Ω and ΩA carry the more general structure of a Heyting algebra. It
is therefore not surprising that the “internal logic” of a topos is in general
intuitionistic.

According to Lawvere, a Natural Numbers Object (NNO) in a ccc is an
object N , together with arrows 0 : 1 → N and S : N → N such that, given
arrows a : 1→ A and f : N → N , there is a unique arrow h : N → A making
the following diagram commute:

1
0 - N

S - N

A

h

? f -

a
-

A

h

?

In the case of a topos, this yields Lawvere’s categorical formulation of the
well-known Peano axioms for set theory [24], which is seen here by putting
h(n) = fn(a). In the case of cartesian closed categories (and their equivalent
typed lambda calculi), this leads to notions of higher-type “iteration” arising
in proof theory, recursive function theory, and theoretical computer science.

1.4 Comparing Type Theories and Toposes
In [22] we compared two categories: the category of type theories, by which
we mean intuitionistic type theories with axiom of infinity or, equivalently,
Peano’s axioms, and the category of toposes, which we understand to be
elementary toposes with natural numbers object. As morphisms in the for-
mer we took “translations” between type theories, and in the latter, so-called
“logical morphisms” between toposes (we ignored the alternative “geometric
morphisms” arising from the Grothendieck tradition; for that, see [29, 30]).
We introduced functors between the two categories as follows. One functor L
assigns to any topos T its “internal language” L(T ) (an intuitionistic type
theory); the other functor T assigns to any type theory L, the topos T (L)
“generated” by it, a kind of Lindenbaum-Tarski category constructed from
the language. Let us briefly recall these two constructions.

The types of L(T ) are the objects of T and the closed terms of type A in
L(T ) are the arrows a : 1 → A in T . In particular, propositions of L(T ) are
the arrows p : 1 → Ω in T . We say that p holds in T , p is true in T , or p is
a theorem of the type theory L(T ), if and only if p = T; that is, if p equals
the distinguished arrow T : 1 → Ω. Thus L(T ) has a “semantic” definition

3 This bijection is induced by pulling back the arrow T : 1→ Ω along χB : A→ Ω.
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of theorem; it differs from logicians’ more familiar (freely generated) type
theories, in which terms are defined inductively from a small set of primitives,
and in which “theorems” are introduced with the help of a recursive proof
predicate. The internal language of a topos has some interesting properties.
For example, L(T ) satisfies the unique existence property: if ∃!x:Aϕ(x) holds
in T , then there is a closed term of type A, namely an arrow a : 1 → A
in T , such that ϕ(a) holds in T . As Bertand Russell would have said: “a is
the unique x : A such that ϕ(x)”. We sometimes denote such a unique a by

ι

x:A.ϕ(x) .
The topos T (L) generated by the type theory L has as objects closed terms

α of type ΩA (modulo provable equality), and as morphisms α → β, where
α : ΩA and β : ΩB , we choose those binary “relations” (closed terms) ϕ :
ΩA×B (again, modulo provable equality) such that the following is provable
in L:

∀x:A(x ∈ α⇒ ∃!y:B(y ∈ β ∧ (x, y) ∈ ϕ))

Intuitively, T (L) is the category of “sets” and “functions” formally definable
within the higher-order logic L: its objects are the “sets” α, β, . . . in L and
its morphisms are the “provably functional relations” ϕ in L between such
objects, all modulo provable equality.

We proved quite formally that there are two natural transformations ε :
LT → id and η : id → TL rendering the functor T to be left adjoint to
L. Moreover, we showed that η was an isomorphism, so that every topos is
equivalent to the topos generated by its internal language. We pointed out in
an exercise that a slight tightening of the definition of translation would also
make ε an isomorphism; this was carried out by Lavendhomme and Lucas
[23]. However, returning to our more natural notion of translation, we showed
that, for any type theory L, the translation L → LT (L) is a conservative
extension.

A type theory L may be interpreted in a topos T by means of a translation
of languages L → L(T ) or, equivalently, by a logical morphism T (L) → T ,
recalling that T is left adjoint to L. In some sense, every such interpretation
may be viewed as a “model” of L in T . By abuse of language, one often
refers to T itself as the model. In particular, this view is justified for models
of pure type theory L0, the initial object in the category of type theories
and translations. For in this case, there is a unique translation from L0 to
any type theory. In particular, for any topos T , there is a unique translation
Lo → L(T ), thus a unique logical morphism T (L0) → T . F = T (L0) is thus
initial in the category of toposes and logical morphisms and is known as the
free topos. Hence any elementary topos (with Natural Numbers Object) serves
as a model of L0.
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1.5 Models and Completeness
Following Leon Henkin’s presentation of classical type theory [16], we adopt
a more restrictive notion of model. A model of a type theory L is a topos T
satisfying three properties (for formulas in L(T )):

(a) consistency: ⊥ is not true ;
(b) disjunction property: if p ∨ q is true in T , then so is p or q;
(c) existence property: if ∃x:Aϕ(x) is true in T , then so is ϕ(a) for some

closed term a of type A in L(T ) , that is, for some morphism a : 1 → A
in T .

Following Alexander Grothendieck, we now call such a topos a local topos.
Peter Freyd observed that the above three linguistic properties can be

expressed categorically as follows:

(a) the terminal object 1 is not initial;
(b) 1 is indecomposable;
(c) 1 is projective.

Local toposes of interest also have another property.

(d) all numerals are standard; that is, all the arrows 1 → N have the form
Sn0 for some natural number n.

As we mentioned earlier, Russell and Whitehead (as well as Gödel and
Henkin) dealt with classical type theory. This theory differs from intuitionistic
type theory by the addition of a single axiom β (the law of excluded middle),
which we may write as:

∀x:Ω(¬¬x⇒ x)

or, equivalently,
∀x:Ω(x ∨ ¬x)

A topos is said to be Boolean if its internal language is classical. In particular,
this implies that Ω ∼= 1 + 1 (the coproduct). Boolean local toposes may be
characterized as follows (see [31]):
Proposition 1.5.1 A topos T is Boolean local iff it satisfies

(i) Consistency: T 6= F : 1→ Ω .
(ii) Universal Property: If ϕ(x) is a formula in L(T ) such that ϕ(a) holds
in T for all closed terms a : A in L(T ), then ∀x:Aϕ(x) holds in T .
The second property can be expressed in categorical language by saying
that the terminal object 1 of T is a generator : if f, g : A → B and
fa = ga for all a : 1→ A, then f = g.

Proof. Assuming that T is Boolean and local, the universal property follows
from the existence property, using negation.

Conversely, assume that T satisfies properties (i) and (ii) above. Among
the subobjects of 1 are the (isomorphism classes of) monomorphisms 0 ↪→ 1
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and 1 ↪→ 1, with characteristic morphisms F : 1→ Ω and T : 1→ Ω, respec-
tively. Here 0 is the initial object of T . By (i), these are distinct subobjects
of 1. We claim there are no others. For let m : A ↪→ 1 be any subobject of
1. If there is an arrow a : 1 → A, clearly ma = 11, hence mam = m1A, so
am = 1A and m is an isomorphism A ∼= 1. If there is no arrow 1 → A, we
claim A ∼= 0. For trivially ϕ(a) then holds in T for all closed terms a of type
A; hence ∀x:Aϕ(x) holds in T , whatever formula ϕ(x) we take. In particular,
for any object B, let ϕ(x) be the formula ∃!y:Bψ(x, y), where ψ(x, y) is, for
example, x 6= x ∧ y = y. Then clearly ψ defines an arrow A → B. Since 1 is
a generator, there is at most one such arrow A→ B, and thus A is an initial
object.

Therefore 1 has exactly two subobjects, and so there are exactly two arrows
T,F : 1→ Ω. Thus the topos T is two-valued. Hence for all arrows p : 1→ Ω,
¬¬p = p, hence ¬¬ = 1Ω , since 1 is a generator. Hence the formula ∀x:A¬¬x =
x holds in T , so T is Boolean.

Once T is Boolean, the universal property gives rise to the existence prop-
erty (by negation). Similarly the conjunction property (which holds in any
topos) gives rise to the disjunction property by de Morgan’s law. Thus T is
local.

Remark 1.5.2 In general in toposes, Boolean does not imply 2-valued; how-
ever it does in the presence of the disjunction property. Conversely, 2-valued
does not imply Boolean, but it does if 1 is a generator.

Gödel’s completeness theorem was originally enunciated for classical first
order logic, but was extended by Henkin to higher order as follows (in our
terminology):

A proposition holds in T (L), the topos generated by a classical type
theory L, if and only if it is true in all models of L, i.e. in all Boolean
local toposes.

Of course, if L is inductively generated, such propositions are usually called
provable, and the Completeness Theorem asserts the equivalence between
provability in L and truth in all models.

What about Gödel’s more famous Incompleteness Theorem, which he him-
self had originally stated for classical type theory? An examination of its proof
in our setting (carried out in the next section) shows it actually asserts the
following:

In a consistent analytic type theory L whose theorems are recursively
enumerable, in order to characterize provability in L, it is not suffi-
cient to look only at local toposes which also satisfy the ω-property:
if ϕ(Sn0) is true for all natural numbers n, then ∀x:Nϕ(x) is also true
in the model.

The crucial role of the ω-property was first pointed out by David Hilbert.
Classically, though not intuitionistically, it is equivalent to what we call the
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ω∗ property: if ∃x:Nϕ(x) is true in the model, then so is ϕ(Sn0) for some
natural number n. For a local topos, the ω∗ property follows from the existence
property, provided we assume that all numerals are standard. In fact, for a
local topos, the ω∗-property is equivalent to the condition that all numerals
are standard.

1.6 Gödel’s incompleteness theorem
In any analytic type theory L0/θ, we may effectively enumerate all terms of
a given type. This may be done with the help of the well-known method of
Gödel numbering, or even just by putting the terms into alphabetical order.
In particular, let pn be the nth proposition (closed term of type Ω) and αn
be the nth numerical predicate (closed term of type ΩN ).

The analytic type theories we are usually interested in also possess a recur-
sive proof predicate, ensuring that the set of theorems is recursively enumer-
able 4. If θ contains all the axioms and is closed under the rules of inference,
θ is the set of theorems of L0/θ and is recursively enumerable by a primitive
recursive function g. Thus pg(n) denotes the nth theorem of L0/θ. Note that
the set of numerical predicates in the internal language of the “usual” cate-
gory of sets cannot be enumerated, recursively or otherwise, as follows from
Cantor’s theorem. This serves as an inspiration for the theorems of Gödel and
Tarski, as we shall see.

Here is our formulation of Gödel’s incompleteness theorem, which includes
both the classical and intuitionist cases.
Theorem 1.6.1 In a consistent analytic type theory L whose theorems are
recursively enumerable, there is a proposition q which does not hold in any
model in which all numerals are standard, yet its negation ¬q is not provable.
Thus, ¬q must hold in every Boolean model in which all numerals are standard.
Hence, if L has at least one model in which the numerals are standard, neither
q nor ¬q is a theorem.
Proof. For a type theory L, we write `L to denote provability in L. Recall
that any primitive recursive function f can be numeralwise represented by a
formula ϕ(x, y) in L0 such that

for all m ∈ N, `L0 S
f(m)0 = ι

y:N .ϕ(Sm0, y)

where ι

y:N .ϕ(x, y) denotes “the unique y : N such that ϕ(x, y)” (Russell’s
definite description operator, which we can introduce as an abbreviation in
L0). Recall that provability in L0 implies provability in any type theory. The
representability of the primitive recursive functions in L0 is shown in our
book, [22] (Remark 3.6, p. 266).

Consider the two primitive recursive functions f and g, represented by ϕ
and ψ, respectively, where f enumerates the propositions Sm0 6∈ αm (already
4 The set of theorems (of an analytic type theory) is the set of propositions formally

provable from the logical and nonlogical axioms, using the rules of inference of
L0.
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considered by Cantor) and g enumerates the theorems of L. Thus, for any
m ∈ N,

`L Sm0 6∈ αm iff for some n ∈ N, f(m) = g(n) . (1.1)

Putting χ = ϕ ∧ ψ, we may write the RHS of (1.1) as:

for some n ∈ N, `L χ(Sm0, Sn0), (1.2)

which implies
`L ∃y:Nχ(Sm0, y), (1.3)

that is,
`L Sm0 ∈ αk, where αk := {x : N | ∃y:Nχ(x, y)}. (1.4)

Therefore
`L Sm0 6∈ αm implies `L Sm0 ∈ αk

Putting m = k, we infer by consistency that Sk0 6∈ αk is not a theorem of L.
Let us try to reverse the above reasoning. Clearly (1.4)⇒(1.3). The impli-

cation (1.2)⇒(1.3) may be reversed if we pass to the internal language L′ of
any model of L in which all numerals are standard, which thus inherits the
existence and disjunction properties. We thus obtain

`L′ Sm0 ∈ αk implies `L′ ∃y:Nχ(Sm0, y)

implies for some n ∈ N `L′ χ(Sm0, Sn0)
by the Existence Property in L′

implies for some n ∈ N f(m) = g(n),

hence `L Sm0 6∈ αm by (1.1).

Again, putting m = k and recalling that Sk0 6∈ αk is not a theorem of L,
we infer that not `L′ Sk0 ∈ αk, hence Sk0 ∈ αk does not hold in any model
where the numerals are standard.

The theorem follows if we take q to be (Sk0 ∈ αk).

Corollary 1.6.2 Assuming that the “usual” category of sets S is a Boolean
local topos in which all numerals are standard, the set of propositions of L0

which hold in S is not recursively enumerable. Hence S cannot be construed as
the topos generated by an analytic type theory whose theorems are recursively
enumerable.
Remark 1.6.3 The assumption that all numerals are standard is redundant,
if we define “standard numerals” to be the arrows 1 → N in the “usual”
category S of sets. Thus Gödel’s proposition ¬q is true in S but not provable.
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1.7 Reconciling Foundations
1.7.1 Constructive Nominalism
Gödel’s incompleteness theorem seemed to show that Formalism and Pla-
tonism are mutually incompatible philosophies of mathematics. Indeed, this
is what Gödel himself had in mind. He believed that the ω-property must
hold in the Platonic universe of mathematics, later to be called “the model
in the sky” by William Tait [34]. The contradiction disappears if one aban-
dons classical mathematics for a moderate form of Intuitionism. According to
the Brouwer-Heyting-Kolmogorov interpretation of formal intuitionistic arith-
metic, the validity of a universal statement ∀x:Nϕ(x) does not follow from the
collection of its numerical instances ϕ(Sn0), for each n ∈ N, unless the va-
lidity of all these instances has been established in a uniform way. For all we
know, a proof of ϕ(Sn0) may increase in length and complexity with n. No
such objection applies to the ω∗- property.

Although the formulation of Gödel’s incompleteness theorem remains valid
for intuitionistic higher order logic, this is no longer the case if the ω-property
is replaced by the ω∗-property. In fact, a statement in pure intuitionistic higher
order logic is provable if and only if it holds in F = T (L0), the free topos.
Recall, this is the initial object in the category of all toposes and logical mor-
phisms, and is constructed linguistically as the topos generated from pure
intuitionistic type theory L0. As has been pointed out repeatedly [22, 19], the
free topos should satisfy moderate adherents of various traditional philosoph-
ical schools in the foundations of mathematics:

– Platonists, because as an initial object it is unique up to isomorphism;

– Formalists, or even nominalists, because of its linguistic construction;

– Constructivists, or moderate intuitionists, because the underlying type the-
ory is intuitionistic;

– Logicists, because this type theory is a form of higher order logic, although
it must be complemented by an axiom of infinity, say in the form of Peano’s
axioms.

This eclectic point of view has been called “constructive nominalism” in [8].
Proofs that the free topos is local have been obtained by Boileau and Joyal

[3, 4], and by us [21, 22]. Our ultimate proof was based on what is called the
Freyd Cover, obtained by “glueing” F into the “usual” category of sets. Freyd
showed that every locally small topos T gives rise to a local topos T̂ in which
all numerals are standard, together with a logical functor G : T̂ → T . The
condition that T is locally small ensures that each set of arrows HomT (A,B)
lives (as an object) in this category S of sets; the latter is presumed to be local
and such that all numerals are standard. But what is this “usual” category
of sets? We shall return to this question; for now, the reader may have to use
her intuition to identify S.

Returning to Freyd’s argument [11], let T = F , the free topos. Then, by
initiality, there is a unique logical functor F : F → F̂ . Thus we obtain a
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logical functor GF : F → F , which must equal idF , again by initiality. It
follows that F inherits (from F̂ , hence from S) the properties of being local
and that all numerals are standard.

1.7.2 What is the category of sets?
We saw above that we were able to construct a local topos in which all numer-
als are standard, which should satisfy moderate intuitionists. Unfortunately,
Freyd’s proof assumed the existence of the “usual” category of sets S, which
is itself assumed to be a local topos in which all numerals are standard. The
category S may be said to live, if not in the world of mathematics, then in
the world of metamathematics. If the metamathematician is herself an intu-
itionist, she might believe that this category of sets could be the free topos
itself. But then we reach a circularity: to prove the free topos is a model in
which numerals are standard, we must assume an ambient category of sets S
which itself has that property, and of course we cannot then postulate that to
be the free topos. One is reminded of Lewis Carroll [5].

What if the metamathematician believes in classical logic? In that case,
she must assume the existence of a model topos S in which the terminal object
is a generator, and in which all numerals are standard, the “usual” category
of sets. While the existence of such model toposes can be shown with the
help of the axiom of choice [22], can even a single one be “constructed”?
For example, consider classical type theory L1 = L0/β, where the formula
β = ∀x:Ω(¬¬x⇒ x) is added to L0 as a new axiom. The Boolean topos T (L1)
generated by L1 is the initial object in the category of all Boolean toposes. Is
T (L1) a model? Unfortunately it is not local, by the Incompleteness Theorem
for L1. Indeed, the disjunction property fails for any undecidable sentence q,
since we can prove in L1 that ` q ∨ ¬q. Indeed, we conjecture that no such
classical model topos can be constructed, at least if we require it to satisfy
reasonable properties.

1.8 What is truth?
What is truth? This question, once raised by Pilate, received different answers
from different mathematicians.

Hilbert famously proposed the problem of showing that mathematical
statements are true if and only if they can be proved. Like all of us, he assumed
the set of proofs to be recursive.

Brouwer once asserted that mathematical statements are true if and only
if they are known. In retrospect, he should have said “can be known”, if truth
is to be independent of time.

Gödel believed that a (classical) mathematical statement is true if and only
if it holds in some kind of Platonic universe, which we take to be a Boolean
local topos in which numerals are standard.

It follows from Gödel’s incompleteness theorem that Hilbert’s position
is incompatible with the assumption that the Platonic universe is classical.
However, if we assume that this universe is intuitionistic (the free topos), there
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is no contradiction. Moreover, Brouwer’s modified position is vindicated if we
interpret “knowable” as “provable”.

Tarski defines truth differently. He said “p is true” instead of asserting p.
By abuse of language, we often abbreviate p is true by p, ignoring quotation
marks, like most mathematicians. Tarski then said that a numerical predicate
τ defines truth (for a language L) provided

for all n ∈ N, `L (pn ⇔ Sn0 ∈ τ).

where we use the same conventions of Gödel numbering as in Gödel’s theorem.
Here is our formulation of Tarski’s undefinability theorem.
Theorem 1.8.1 In any consistent analytic type theory, truth (in Tarski’s
sense) is not definable by a numerical predicate.
Proof. As in the proof of Gödel’s theorem, suppose there were such a τ , and
let

pf(n) := Sn0 6∈ αn.

Then
`L (Sf(n)0 = ι

y:N .ϕ(Sn0, y))

where ϕ represents f . Put

αk := {x : N | ∃y:N (y ∈ τ ∧ ϕ(x, y))}

Then we have the following provable equivalences:

`L (Sk0 ∈ αk ⇔ Sf(k)0 ∈ τ
⇔ pf(k)

⇔ Sk0 6∈ αk)

which contradicts consistency.

We will attempt to briefly compare the different notions of truth. Let `L0

stand for provability in L0, hence for truth in the free topos F . We would like
to interpret this as truth in Brouwer’s sense. Comparing this with Tarski’s
notion of meta-truth, we would believe that, for all propositions p, (`L0 p)⇔
p. In particular, Soundness corresponds to the entailment ( (`L0 p)⇒ p ).

Most post-Gödel mathematicians still believe in soundness. However
soundness already implies consistency; for by soundness

(`L0 p ∧ `L0 ¬p)⇒ (p ∧ ¬p) .

Yet, Gödel’s second incompleteness theorem (not treated here) shows that
consistency of L0 cannot be proved in L0; hence (using the encoding methods
of the second Gödel theorem) soundness in the above sense cannot be formally
proved either.
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We may also ask whether Gödel’s notion of truth (in a classical Platonic
universe S) implies Tarski’s notion of meta-truth, i.e. whether ( (S |= p)⇒ p ).
Now this implies ( (`L1 p) ⇒ p ), where L1 = L0/β is pure classical type
theory, which is initial among all classical type theories (including the internal
language of S). Thus Tarski’s notion of meta-truth implies soundness of L1,
which again cannot be proved in L1 (when suitably encoded), by the same
argument as above.

1.9 Continuously Variable Sets
It would appear that metamathematics is an attempt by mathematicians to
lift themselves up by their own bootstraps. This had already been noted by
Lewis Carroll [5], in connection with the rule of modus ponens. It is also
evident to anyone who looks at Gentzen style deductive systems, which derive
the meaning of logical connectives from that of the meta-logical ones.

If we cannot single out a distinguished Boolean local topos as a candidate
for the classical category of sets, we may be forced to look at the totality of
all such models.

From an algebraic point of view, Gödel’s completeness theorem asserts

Every topos is a subtopos of a direct product of local toposes.

This is analogous to the familar assertion:

Every commutative ring is a subring of a direct product of local
rings.

However, the latter statement can be improved to one that plays a crucial rôle
in modern algebraic geometry (see [14])

Every commutative ring is the ring of continuous global sections
of a sheaf of local rings.

It has been realized for some time that Gödel’s completeness theorem can be
improved analogously:

Every topos is equivalent to the topos of global sections of a sheaf of
local toposes .

It had also been clear that the models of any type theory, including those
of the internal language of a topos, are the points of a topological space
and that the truth of a proposition various continuously from point to point.
With any proposition in L0 one associates a basic open set consisting of all
models in which the proposition is true. After various starts towards the sheaf
representation of toposes, the result was ultimately established by Awody [1])
5

5 Having observed that the truth of a proposition varies continuously from point to
point, one of the present authors was led to announce the sheaf representation at
conferences in Sussex and Amsterdam, but he made a bad choice of the basic open
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1.10 Some intuitionistic principles
The fact that the free topos is local (and has only standard numerals) may be
exploited to prove a number of intuitionistic principles for pure intuitionistic
type theory L0, as we showed in our book [22].

Consistency: not ( `⊥) .
Disjunction Property: If `L0 p ∨ q , then `L0 p or `L0 q.
Existence Property: If `L0 ∃x:Aϕ(x) then `L0 ϕ(a) for some closed term a of

type A.
Troelstra’s Uniformity principle for A = ΩC : If `L0 ∀x:A∃y:Nϕ(x, y) then
`L0 ∃y:N∀x:Aϕ(x, y).
In the free topos F , the uniformity principle says the arrows ΩC → N are
constant (i.e. factor through some standard numeral).

Independence of premisses: If `L0 ¬p ⇒ ∃x:Aϕ(x) then `L0 ∃x:A(¬p ⇒
ϕ(x)).

Markov’s Rule: If `L0 ∀x:A(ϕ(x) ∨ ¬ϕ(x)) and `L0 ¬∀x:A¬ϕ(x), then `L0

∃x:Aϕ(x).
This says: if in pure intuitionist type theory L0 we have that ϕ is provably
decidable, and if there is a proof of ¬∀x:A¬ϕ(x), then there must also be
a constructive proof of ∃x:Aϕ(x), i.e. (by the existence property) a proof
in L0 of ϕ(a), for some closed term a of type A.

The Existence Property with a parameter of type A = ΩC : if
`L0 ∀x:A∃y:Bϕ(x, y) then `L0 ∀x:Aϕ(x, ψ(x)), where ψ(x) is some term of
type B.

A similar statement for the disjunction property with a parameter of type
A is also provable. The disjunction property and already the unique existence
property fail for parameters of type N , but hold in the internal language
L(F(x)), where F(x) is the free topos with an indeterminate x : 1 → N
adjoined. The existence property in this case amounts to showing that the
slice topos F/N is local, hence that N is projective in F . This is equivalent
to closure of the logical system under a rule of countable choice. For second
order arithmetic, there is a proof due to A. Troelstra [37] (Theorem 4.5.12)
based on methods of S. Hayashi [15] which is proof-theoretic in nature. There
is apparently not yet a clean categorical proof of such results.

sets and used a definition of “local” which employed only the disjunction property.
The first fault was rectified in a joint paper with Moerdijk [18], further expository
development occurred in our book [22], and the second fault was rectified in [20],
in which the author introduced a large number of “Henkin constants” to witness
existential statements. This was shown to be unnecessary in a more recent article
of Awodey [1], who replaced the earlier logical proofs, based on definition by
cases, by a purely categorical one. Similar ideas had also been pursued by Peter
Freyd.
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1.11 Concluding Remarks
Aside from the historical discussion of our categorical approach to the founda-
tions of mathematics, our formulation of the proof of Gödel’s Incompleteness
Theorem exploits the struggle between two primitive recursive functions. One
enumerates all theorems and the other enumerates the Cantorian formula
which excludes the nth numeral from the nth numerical predicate. In our
view, Gödel’s theorem does not assert that provability fails to capture the
notion of absolute truth in the Platonic universe. Rather, it asserts that other
models of set theory are required than those which resemble the alleged Pla-
tonic universe. In fact, we have some doubts about the constructive existence
of a Platonic universe, except in the context of intuitionistic (higher-order)
arithmetic. Even there, the proof that our candidate, the free topos, is a model
depends on the metamathematical assumption that a model of set theory ex-
ists.
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