
Discriminative Multinominal Naive Bayes for Text Classification

Abstract

Multinominal Naive Bayes (MNB) algorithm has been
widely used in text classification due to its computational
advantage and simplicity. However, the previous research
shows that MNB is not as effective as other discriminative
classifiers, and ascribe the poor performance of MNB to
its mismatch objective function: MNB maximizes likelihood
rather than conditional likelihood or accuracy. In this pa-
per, we propose a new text classification algorithm, called
Discriminative Multinominal Naive Bayes (DMNB), which
takes into account both the likelihood and the classifica-
tion objectives during the frequency counting. Our empir-
ical studies show that DMNB performs competitively with
the state-of-the-art discriminative classifiers, such as Sup-
port Vector Machine (SVM) and Logistic Regression (LR) in
terms of accuracy, without losing the advantages of MNB,
namely its computational efficiency.

1 Introduction

Text classification (TC) is the task of assigning prede-
fined categories or classes to text documents, and plays an
important role in text mining applications. For example,
content based recommenders train a TC model based on a
few pages viewed by the user, and then make recommenda-
tions by classifying the text content into like (viewed) or not
like categories. This application requires the TC algorithms
to exhibit:

1. Effectiveness. Effectiveness should be achieved given
a small training dataset, since the online recommenda-
tion is often based on a few user viewed pages.

2. Efficiency. While linear time complexity is manda-
tory, minimum computational cost is desired for fast
user response time in online recommendation.

3. Online learning ability. As the user views pages one
at a time, batch learning is often not suitable in this
scenario.

These characteristics are similarly desirable in other
applications of text mining. Multinominal Naive Bayes

(MNB) has been widely used in text classification applica-
tions [6] due to its computational efficiency and simplicity.
To learn a model, MNB only needs to scan each data point
once, and learning can be done in an online manner. MNB
has no explicit regularization parameters and thus is robust
in practice.

The conventional wisdom is that the MNB may not be
effective due to its mismatched objective function: MNB
maximizes likelihood rather than the classification objec-
tive, e.g. conditional likelihood or accuracy [2]. As a result,
the previous research shows that MNB is not as effective as
other discriminative classifiers [10] that directly maximize
the classification objective. However, though tremendous
effort have been spent on improving the efficiency of dis-
criminative classifiers [5, 11, 3], none of them can compete
with MNB in computational efficiency.

In [9] the authors proposed a parameter learning
method, called Discriminative Frequency Estimate (DFE),
for Bayesian networks (BN), and showed DFE can be as
effective as gradient descent methods but more efficient.
While the simplest BN is a naive Bayes (NB), NB is not
generally used in text classification. One important reason
is that the training and prediction time complexity of NB is
related to the number of unique words |V | in the corpus T .
In contrast, the time complexity of MNB is only related to
the average number of unique words n appearing in docu-
ments in T . Note that we have n << |V | due to the sparsity
of text data.

In this paper, we propose a new text classification al-
gorithm, called Discriminative Multinominal Naive Bayes
(DMNB), which adapts the parameter learning method DFE
of [9], to a Multinominal Naive Bayes model used for text
classification. Our empirical studies show that the accuracy
of DMNB is competitive with other discriminative classi-
fiers, such as SMO and Logistic regression (LR) [7, 11, 3] in
relatively large training datasets, and may outperform them
in small datasets. The computational comparison shows that
DMNB is significantly faster than any other known discrim-
inative classifiers, including SV Mperf [5], which is cur-
rently being considered as the fastest SVM algorithm for
text classification.



2 Related Work

In [6] authors conducted systematic empirical studies for
comparing two different naive Bayes models: multi-variate
Bernoulli and MNB, and concluded that the MNB consis-
tently performs better than multi-variate Bernoulli in text
datasets with large vocabulary size. Research presented
in [10] confirmed the above conclusions, and further com-
pared MNB with other classifiers. Their results also suggest
that MNB significantly underperforms other discriminative
classifiers, such as SVM with a linear kernel.

To improve the performance of MNB, [8] proposed
Complement Naive Bayes (CNB). The authors point out that
MNB may select poor weights for decision boundary when
the class distribution in training data is imbalanced. They
suggested while learning the conditional probability of one
class, CNB uses the frequency information pertaining to all
other classes,

[11] investigates a number of linear classifiers, including
logistic regression, support vector machines and MNB. The
authors pointed out that the regularization and numerical
optimization procedures are critical for the performance of
logistic regression, and then suggested to solve the numeri-
cal optimization problem by a cyclic coordinate descent al-
gorithm which minimizes the classification error by learn-
ing parameters one after the other. [3] proposed a large scale
logistic regression algorithm for text classification based on
[11]. Their empirical studies showed that their approach
produces compact predictive models which are competitive
with SVM classifiers or ridge logistic regression combined
with feature selection in terms of their efficiency.

Although recent years have seen the introduction of
many text classification algorithms, text mining practition-
ers find the need for an effective, efficient and online learn-
ing algorithm. This paper attempts to provide one such so-
lution.

3 Text Document Representation

In this section we provide a brief introduction to text
classification. In doing so we limit our discussion to the
bag-of-words representation and binary classification prob-
lem.

In text classification, a labeled document d is represented
as d = {w1, w2, · · ·, wi, c}, where wi is the word frequency
in the document d, and c is the class label of the document d.
The set of unique words appearing in the whole document
collection is often called dictionary V . We use the bold-
face lower case letters w for the set of word frequencies in
a document d, and thus a document can also be represented
as {w, c}. We use T to indicate the training data and the su-
perscript dt for the tth document in a dataset T . In general,
we use a “hat” (ˆ) to indicate parameter estimates.

Text representation often uses the bag-of-words ap-
proach. By ignoring the ordering of the words in docu-
ments, a word sequence can be transferred into a bag of
words. In this way, only the frequency of a word in a docu-
ment is recorded, and structural information about the docu-
ment is ignored. In the bag-of-words approach, a document
is often stored using the “sparse” format; that is: only the
non-zero words are stored. This is because the “sparse” for-
mat can significantly reduce the storage space [4].

Text classification is often considered different from tra-
ditional machine learning because of its high-dimensional
and sparse data charactersitics[4]. The high-dimensional
data poses computational constraints, while the sparse data
indicates that the number of features may be larger than the
number of labeled examples. Thus, finding an algorithm
which is both efficient and can generalize well is a chal-
lenge for this application domain.

4 Multinominal Naive Bayes

The task of text classification can be approached from a
Bayesian learning perspective, which assumes that the word
distributions in documents are generated by a specific para-
metric model, and the parameters can be estimated from the
training data. Equation 1 shows Multinominal Naive Bayes
(MNB) model [6] which is one such parametric model com-
monly used in text classification:

P (c|d) =
P (c)

∏n
i=1 P (wi|c)fi

P (d)
(1)

where fi is the number of occurrences of a word wi in a
document d, P (wi|c) is the conditional probability that a
word wi may happen in a document d given the class value
c, and n is the number of unique words appearing in the
document d.

The parameters in Equation 1 can be estimated by a gen-
erative parameter learning approach, called maximum like-
lihood or frequency estimate (FE) , which is simply the rel-
ative frequency in data [2]. FE estimates the conditional
probability P (wi|c) using the relative frequency of the word
wi in documents belonging to class c

P̂ (wi|c) =
fic

fc
, (2)

where fic is the number of times that a word wi appears
in all documents with the class label c, and fc is the total
number of words in documents with class label c in T .

For convenience in implementation, the FE parameter
learning method only needs to update the word frequen-
cies fic, which can be easily converted to P (wi|c) during
the prediction process. To compute the frequencies from
a given training data set we go through each training doc-
ument, and increase the entry for fic in a word frequency



table by 1 or a constant. By scanning the training data set
once we can obtain all the required frequencies and then
compute the corresponding conditional probabilities.

One advantage of the Multinominal Naive Bayes model
is that it can make predictions efficiently. Given a word
wi with frequency zero in a test document, the conditional
probability P (wi|c) (the βi parameter in Equation 8 as we
will shortly discuss) can be ignored. Thus, to make predic-
tions, MNB only needs to go through words with a non-
zero count. This is commonly used in conjunction with the
sparse representation of the text data. In contrast, other
classifiers such as Bayesian networks, require one to go
through all the words in the vocabulary of training data.
Since in text classification the size of vocabulary is often
much larger than the document length, MNB can make
predictions much faster than these classifiers. In the next
section we show that our training time can also benefit from
the same principle.

While MNB is efficient in text classification, its param-
eter learning method FE is known to suffer from objective
function mismatch problem [2]. The FE method is a genera-
tive learning approach because its objective function, shown
in Equation 3 , is the log likelihood logP (W, C):

LL(T ) =
|T |∑
t=1

logP̂ (ct|wt) +
|T |∑
t=1

logP̂ (wt) (3)

The first term in this equation measures how well the clas-
sifier model estimates the probability of the class given the
words. The second term measures how well the classifier
model estimates the joint distribution of the words in docu-
ments.

On one hand, this mismatched objective function may
mislead the learning process given a large number of words
in documents. As the number of words grows larger, the
value of P (w) is decreased exponentially in n. While P (w)
is close to zero, the absolute value of |logP (w)|will be very
large. However, the first term |logP (c|w)| will remain the
same and thus the second term dominates the LL(T ) score.
As a result, maximizing the LL(T ) may not always lead to
an accurate classifier.

One the other hand, learning LL(T ) can fully utilize the
information in data. If the MNB model is correct for the un-
derlying data, the discriminative learning that directly maxi-
mize P (c|w) ignores useful information P (w). This would
not be a problem if we have sufficient data. Unfortunately,
the text data is often high-dimensional and sparse, and clas-
sifiers learned without P (w) may not generalize well. We
will verify this hypothesis in our experiments.

As a result, a parameter learning method that can inte-
grate the advantages of generative learning and discrimina-
tive learning is desired for text classification.

5 Discriminative Multinominal Naive Bayes

We now introduce Discriminative Multinominal Naive
Bayes (DMNB), which applies the parameter learning
method proposed in [9] to a Multinominal naive Bayes
model. The motivation of DMNB is to maintain the fre-
quency information while considering the discriminative
nature of classification and thus is an integration of gen-
erative and discriminative learning.

The DMNB algorithm iterates through the training doc-
uments. For each document dt, DMNB first computes the
posterior probability P̂ (c|dt) and then updates the corre-
sponding word frequencies using the difference between the
true P (c|dt) and the posterior P̂ (c|dt). This difference is
the prediction loss of the training document dt and is de-
fined in Equation 4.

L(dt) = P (c|dt)− P̂ (c|dt). (4)

Since in practice the true value of P (c|dt) is unknown we
assume P (c|dt) = 1, where c is the class label of document
dt, which is known for all the documents in the training set.

Algorithm 1 shows the details of this process. fic is a
word frequency, where i indicates the word wi and c is the
class label of a given document dt. This frequency is zero
for all unseen words.

Algorithm 1 Discriminative Multinominal Naive Bayes

1. Create an empty frequency table

2. For t from 1 to |T | Do

• Estimate the probability parameters using Equa-
tion 3 and the appropriate existing fic

• Compute the posterior probability P̂ (c|dt) using
Equation 1.

• Compute the loss L(dt) using Equation 4.

• For each non-zero word wi in the document dt

– Update fic=fic+L(dt).

Since in the beginning all word frequencies fic are 0,
the multiplicative term in Equation 1 will be 1, resulting
in a predicted P̂ (c|d) of 1

|C| for each class , after applying
probability normalization. In each step, if the current pa-
rameters cannot accurately predict P (c|d) for a document
d, the corresponding entries fic of the table Fic storing all
the word frequencies are increased significantly. If the cur-
rent parameter can perfectly predict P (c|d), no entries will
be changed.

It is clear that DMNB has the same computational prop-
erties as MNB: it is roughly as fast as MNB and also sup-
ports online learning. Compared to MNB, the only extra



cost of DMNB is the computation of L(d), which requires
going through each non-zero word in a document. The sin-
gle pass through the training data does not increase the time
complexity of DMNB. As we will show later, one itera-
tion through the training set T will be enough for DMNB
to converge in text classification tasks. Moreover, DMNB
can still learn parameters in an incremental way similar to
MNB. Consequently, DMNB preserves the simplicity and
computational advantages of MNB.

6 An Illustrative Example

In this section, we use an example to illustrate how the
prediction generated from an MNB model will be distorted
due to the dependencies between words, and then show how
DMNB overcomes the dependency problem.
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Figure 1. Data used for frequency estimation
examples

Figure 1 shows a text classification task which intends to
identify whether a document belongs to class “Evaluation
(E)” or “Classification (C)”. The first 3 documents are used
for training and the last document is used for testing. There
are 4 words in the training vocabulary.

Assuming a multinominal naive Bayes model, the
parameters P̂ (c) and P̂ (wi|c) can be learned from the
training data using the frequency estimate method. The
probability estimates for Figure 1 are :

P̂ (c = E) = 1
3

P̂ (c = C) = 2
3

P̂ (w1 = NB|c = E) = 1
3

P̂ (w1 = NB|c = C) = 1
5

To predict the class of the last document we only need to
compute the posterior probability ratio:

P̂ (c = E|w1 = NB)
P̂ (c = C|w1 = NB)

=
1
3 × 1

3
2
3 × 1

5

=
1
2
× 5

3
(5)

The posterior probability ratio is 5
6 , which indi-

cates that the probability of the document belonging to
Classification is larger than Evaluation and thus the

MNB model will assign the class label “Classification” to
the last document according to Equation 1. Note that as we
discussed in Section 3, an MNB model only needs to take
into account non-zero words to make a prediction, rather
than every word in the vocabulary (4 words in this case).

Now, we introduce dependency into this example by re-
placing the word “NB” with “naive Bayes” for the 4 docu-
ments in Figure 1. We re-calculate the parameters and pre-
diction for the resulting datasets.

P̂ (c = E|w1 = naive, w2 = Bayes)
P̂ (c = C|w1 = naive, w2 = Bayes)

=
1
3 × 1

4 × 1
4

2
3 × 1

6 × 1
6

=
1
2
× (

6
4
)2

where 1
2 is still the prior probability ratio, and 6

4 is the
ratio of the conditional probabilities P̂ (w1 = naive|c) and
P̂ (w2 = bayes|c) respectively.

Since the posterior probability ratio is 9
8 , which indicates

that the probability of belonging to Evaluation is larger
than Classification, the MNB model will assign the class
label “Evaluation” to the last document. The problem here
is the dependency between words “naive” and “bayes”. This
dependency results in overestimating the probability that
the test document belongs to the “Evaluation” class. This is
clearly a problem caused by the violation of independence
assumption of MNB.

To make a correct classification for the test document
in Figure 1, the posterior probability P̂ (c = E|w1 =
naive, w2 = bayes) should be less than 0.5, and DMNB
can achieves this goal. Since both MNB and DMNB sup-
port online learning, their classification model can be up-
dated for each given training instances. Figure 2 shows
how the estimated probability P̂ (c = E|w1 = naive, w2 =
bayes) changes for MNB and DMNB respectively, as the
number of training instances used increases. For the pur-
pose of this demonstration we have re-read the training
data over multiple pass, thus effectively simulating having
a larger number of instances.

In each step t, both algorithms take a document, and up-
date the corresponding word frequencies. Note, both MNB
and DMNB allow many pass through the training data, and
thus t can be more than 3 by scanning the training data many
times. With the increased number of documents used, the
estimated probability P̂ (c = E|w1 = naive, w2 = bayes)
in DMNB converges to approximately 0.35 , which leads to
a correct classification. However, MNB converges to 0.52,
and thus makes a wrong prediction.

This example illustrates that while both DMNB and
MNB tend to converge with increased training effort, com-
puting the frequencies in a discriminative fashion tends to
result in a more accurate classification in an efficient man-
ner



Figure 2. The y-axis is the predicted probabil-
ity. The x-axis is the tth document fed into the
algorithms.

7 Relation with Linear Classifier

The MNB model can be written as a linear classifier us-
ing the following transformation:

P (+|d)
P (−|d)

=
P (+)
P (−)

n∏

i=1

(
P (wi|+)
P (wi|−)

)fi (6)

Taking the logarithm of both sides of Equation 6, we get the
following:

log
P (+|d)
P (−|d)

= log
P (+)
P (−)

+
n∑

i=1

filog
P (wi|+)
P (wi|−)

(7)

Rewriting Equation 7 using y = log P (+|d)
P (−|d) , xi = fi,

β0 = log P (+)
P (−) and βi = log P (wi|+)

P (wi|−) , we have the formula
for well known linear classifier:

ŷ = β0 +
n∑

i=1

βixi (8)

Here, the prediction will be positive if ŷ > 0, and negative
otherwise.

We note that the DFE parameter learning method in
DMNB is different from the stochastic gradient descent
(SGD). Figure 3 illustrates the difference of three param-
eter learning methods: Frequency Estimate, Discrimina-
tive Frequency Estimate , and Stochastic Gradient Descent.
The FE method updates the frequency table for each fea-
ture using constant 1 and thus parameters are determined
by the likelihood information P (wi|c). The DFE method

updates the frequency table for each feature using the cur-
rent error and thus the final parameters are determined by
the likelihood information and the prediction error. Note
that updating each feature with the same weight can pre-
serve the likelihood information P (wi|c). In contrast, the
SGD method updates the parameters for each feature with
different weights. Because of the constraint of probability
axioms, the SGD method needs a probability normalization
step, and thus ignores P (wi|c).
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Figure 3. An illustration for different parame-
ter learning methods. et is the tth instance, xi

is the ith word, and errt is the prediction error
for et based on the current parameters.

Thus, DFE can be viewed as a combination of FE and
SGD: it considers both the likelihood information and pre-
diction error, while FE and SGD only consider one of the
two. If we view the parameter learning as a hypothesis
searching procedure, Figure 3 shows that FE only searches
a small hypothesis space, DFE searches a larger space, and
SGD searches the largest space. More precisely, the search
space of FE is a subset of DFE, and the search space of DFE
is a subset of SGD. However, the larger search space re-
quires more learning time. Thus, the questions is: whether
the best hypothesis that can generalize well lies in the space
that a parameter learning method can possibly search. Sec-
tion 8.4 investigates this point.

8 Experiments

This section provides empirical comparisons of DMNB
and its competitors in terms of accuracy given different
number of training data, and computational cost.

8.1 Dataset and Classifiers

We use 19 text classification benchmark data sets from
the WEKA collection. These data sets are mainly from
Reuters, TREC and OHSUMED, and have been widely
used in text classification research [1]. All multi-class
datasets are transformed into binary by keeping the largest
two classes, but all conclusions in this paper were also ver-
ified in case of multi-class problems. All experiments were
performed on an Intel Pentium(R) 3.40GHz computer with
4G of RAM.



Table 1. Dataset Descriptions
Dataset NumIns Vocabulary DocLength Positive
Fbis 893 2001 194 0.43
La1 1681 13196 151 0.56
La2 1664 12433 148 0.54
New3 1264 26833 278 0.44
Oh0 375 3183 56 0.48
Oh10 330 3239 56 0.5
Oh15 311 3101 60 0.49
Oh5 293 3013 58 0.49
Ohscal 3071 11466 56 0.47
Re0 927 2887 56 0.34
Re1 701 3759 54 0.47
Tr11 206 6430 288 0.35
Tr12 147 5805 349 0.36
Tr21 272 7903 502 0.84
Tr23 136 5833 463 0.33
Tr31 579 10129 261 0.60
Tr41 417 7455 191 0.41
Tr45 288 8262 335 0.55
Wap 537 8461 128 0.36
NumIns: the number of instances
Vocabulary: the vocabulary size
DocLength: the average length of documents in words
Positive: the percentage of the positive instances

The following summarizes the learning algorithms used
in our experiments. All implementations, including our
DMNB algorithm, are currently available in WEKA.

1. DMNB: Discriminative Multinominal Naive Bayes
proposed in this paper. One iteration, which means
scanning the training data once, is used in our experi-
ments.

2. MNB: Multinominal Naive Bayes [6] as implemented
in WEKA.

3. CNB: Complement Naive Bayes [8] as implemented
in WEKA.

4. LR: A large scale logistic regression classifier for text
classification [11, 3]. The prior for each parameter is
Gaussian and the number of iteration is 100, which is
recommended in [11].

5. SMO: SMO in WEKA [7]. We use linear kernel for
SVM due to its popularity and high performance in
text classification [10]. The normalization option is
turned off to improve the training time. Setting param-
eter C = 1 resulted in overall best performance in case
of our datasets.

8.2 Performance Measurements

While DMNB performs overall best given different per-
formance measures, including accuracy, F-measure and
AUC, our discussions in this paper mainly focuses on ac-
curacy due to the limited space.However, we also show the
results of comparisons using F-measure and AUC as a ref-
erence.

Tables 2, 3 and 4 show the results of the two-tailed t-test
with a 95% confidence interval for accuracy, F-measure and
AUC. Each entry l/t/w means that the algorithm in a given
row when compared to the algorithm in the corresponding
column, loses in l, ties in t, and wins in w data sets. Tables
5, 6 and 7 give the detailed experimental results of each al-
gorithm on each data set for these three performance mea-
sures. All statistics and their standard deviations are based
on 5 runs of 10-fold stratified cross validation.

8.3 Accuracy

We summarize the highlights briefly bellow:

1. DMNB is competitive with other state-of-the-art dis-
criminative text classifiers, SMO and LR. Discrimi-
native classifiers generally performs better than gener-
ative classifiers. Based on the average scores and the
summary shown in Table 2, we can rank these classi-
fier types as follows:

{DMNB,SMO, LR} > {MNB,CNB} (9)

where > indicates better performance. When the per-
formance difference is insignificant we group the clas-
sifier types together. Our results are consistent with
[10]. For the sake of completeness, we also ran
these experiment with SV Mperf [5] , and observed
that SV Mperf performs similarly with DMNB and
SMO.

2. The poor performance of MNB is related to the num-
ber of words that appear in the documents. For ex-
ample, in two datasets “Tr21” and “Tr23”, the accu-
racy achieved by the generative classifiers (MNB and
CNB) are 20-30% lower than the discriminative clas-
sifiers. A quick examination of Table 1 reveals that
“Tr21” and “Tr23” have the largest document length
among all datasets. This observation supports our pre-
vious analysis in Section 5; the maximum likelihood
estimate may not perform well given a large number
of words in a document. We note that the multinomi-
nal model is not influenced by words with zero count
in a document, and thus provide the average document
length as a better estimation for the number of features
for a dataset.



Table 2. Summary of Accuracy Comparisons.

MNB CNB LR SMO
DMNB 0/14/5 0/14/5 0/17/2 0/18/1
MNB 0/19/0 4/13/2 4/15/0
CNB 4/13/2 4/15/0
LR 2/17/0

Table 3. Summary of F-measure Compar-
isons.

MNB CNB LR SMO
DMNB 0/14/5 0/14/5 0/18/1 0/17/2
MNB 0/19/0 4/13/2 4/15/0
CNB 4/13/2 4/15/0
LR 1/18/0

8.4 Accuracy in Small Datasets

We conducted experiments in 19 datasets, and only
present the results for 12 representative datasets due to the
limited space. Figures 4 shows the relationship between the
number of training instances and the average testing accu-
racy, which is obtained on the remaining of the data that
is not used for training. The total number of runs is 1000.
For training, we sampled datasets with 16, 32, 64, and 128
instances.

Figure 4 shows that DMNB performs consistently best in
all training data size range, while SMO and LR can perform
worse in small training dataset. Additionally we observed
that:

1. If the data does not follow the underlying assump-
tion in Equation 1, MNB achieves low accuracy in
training data. In datasets “Tr21”, “Tr23”, and “Tr45”,
given 128 training instances, MNB achieves training
accuracy of 74%, 78%, and 93% respectively, while
DMNB and other discriminative classifiers obtain
100% training accuracy. As a result, in these three
datasets, MNB underperforms the other classifiers in

Table 4. Summary of AUC Comparisons.
MNB CNB LR SMO

DMNB 0/12/7 0/9/10 0/7/12 0/11/8
MNB 0/9/10 0/11/8 0/12/7
CNB 3/14/2 4/15/0
LR 3/16/0

testing accuracy as well, and this shows that DMNB
overcomes the deficiency caused by the naive assump-
tion in the MNB model.

2. In the remaining 16 datasets, all methods obtain 100%
training accuracy. However, MNB and DMNB con-
sistently achieve better testing accuracy compared to
SMO and LR, when the number of training instances
is small , i.e. 16 - 32. This results show that when the
data approximately follows the underlying assumption
of the MNB model, both MNB and DMNB general-
ize better than the other methods that directly optimize
the classification objectives.

8.5 Computational Cost

Figure 5. Training time comparisons in 19
datasets. X axis is the number of instances in
training data, and Y axis is the training time
required by an algorithm.

We measured the training time for each of the above
mentioned algorithms. Figure 5 shows the average training
time for 5 runs of 10-fold stratified cross validation. From
this figure it is clear that the three naive Bayes algorithms
are faster than LR and SMO, while DMNB has similar
training time cost with MNB. For example, in the largest
dataset “Ohscal” with 2763 training instances, DMNB is
only two times slower than MNB, but 300 times faster than
LR and approximately 100 times faster than SMO. For the
sake of completeness, we also compare DMNB to the lat-
est linear SVM classifiers SV Mperf [5], and observed that
the C implementation of SV Mperf is 5-30 times slower
than the Java implementation of DMNB. However, we only
present detailed SMO results in the paper due to its popu-
larity.



Figure 4. The Y axis is the testing accuracy, and the X axis is the number of training instances. In
each group, the first bar is DMNB, the second bar is MNB, the third bar is SMO, and the fourth bar is
LR

As our analysis in the last paragraph of Section 5,
both DMNB and MNB have the same time complexity
O(mn), where m is the number of instances and n is the
average number of words appearing in documents. In con-
trast, SMO is O(m1.8), and as Figure 5 shows the training
time of SMO does not increases linearly with the number
of training instances

9 Conclusions

In this paper, we have analyzed a widely used text classi-
fication model, Multinominal Naive Bayes, and its parame-
ter learning method. The main contribution of our work is
the new DMNB text classification algorithm, which main-
tains the computational efficiency, online learning, and sim-
plicity of MNB while improving its accuracy. Our exper-
iments show that the DMNB algorithm perform compet-
itively with other state-of-the-art text classification algo-
rithms, but often achieves better testing accuracy with small

training data.
Finally, the implementation of DMNB is

now part of WEKA machine learning tools, and
can be downloaded from the following link:
http://www.cs.waikato.ac.nz/ml/weka/.
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Table 6. Comparisons of F-measure

Dataset DMNB MNB CNB LR SMO
Fbis 1.00±0.01 0.99±0.01 0.99±0.01 1.00±0.00 1.00±0.00
La1 0.98±0.01 0.98±0.01 0.98±0.01 0.98±0.01 0.98±0.01
La2 0.98±0.01 0.98±0.01 0.98±0.01 0.98±0.01 0.98±0.01
New3 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 1.00±0.01
Oh0 0.99±0.02 0.99±0.01 1.00±0.01 0.97±0.03 0.99±0.02
Oh10 0.97±0.03 0.97±0.03 0.97±0.03 0.97±0.03 0.96±0.03
Oh15 0.99±0.01 0.99±0.02 0.99±0.02 0.99±0.02 0.98±0.03 •
Oh5 1.00±0.01 1.00±0.01 1.00±0.01 0.99±0.01 0.99±0.01
Ohscal 0.95±0.01 0.93±0.01 • 0.93±0.01 • 0.89±0.02 • 0.93±0.02 •
Re0 0.95±0.03 0.92±0.03 • 0.92±0.03 • 0.94±0.03 0.94±0.03
Re1 1.00±0.01 1.00±0.01 1.00±0.01 0.99±0.01 1.00±0.01
Tr11 0.99±0.03 0.99±0.03 0.99±0.03 0.97±0.04 0.99±0.02
Tr12 0.92±0.12 0.95±0.08 0.95±0.08 0.91±0.09 0.96±0.06
Tr21 0.98±0.06 0.70±0.09 • 0.70±0.09 • 0.96±0.02 0.97±0.02
Tr23 0.96±0.07 0.74±0.10 • 0.73±0.10 • 0.91±0.11 0.95±0.08
Tr31 0.99±0.02 0.99±0.01 0.99±0.01 1.00±0.01 1.00±0.01
Tr41 0.99±0.01 0.99±0.02 0.99±0.02 0.98±0.02 0.99±0.02
Tr45 0.99±0.01 0.91±0.05 • 0.91±0.05 • 0.98±0.02 0.99±0.01
Wap 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.01
Average 0.98 0.95 0.95 0.97 0.98
• significantly worse, and ◦ better, comparing to DMNB.

Table 7. Comparisons of AUC

Dataset DMNB MNB CNB LR SMO
Fbis 1.00±0.00 1.00±0.01 • 0.99±0.01 • 1.00±0.00 1.00±0.00
La1 1.00±0.00 0.99±0.01 • 0.98±0.01 • 0.98±0.01 • 0.98±0.01 •
La2 1.00±0.00 0.99±0.01 • 0.97±0.01 • 0.98±0.01 • 0.98±0.01 •
New3 1.00±0.00 1.00±0.00 • 0.99±0.01 • 0.99±0.01 • 1.00±0.01
Oh0 1.00±0.00 1.00±0.00 1.00±0.01 0.97±0.03 • 0.99±0.02 •
Oh10 1.00±0.01 0.99±0.02 0.97±0.03 • 0.97±0.03 • 0.96±0.03 •
Oh15 1.00±0.00 1.00±0.00 0.99±0.02 0.99±0.02 • 0.98±0.03 •
Oh5 1.00±0.00 1.00±0.00 1.00±0.01 0.99±0.01 1.00±0.01
Ohscal 0.99±0.00 0.98±0.01 • 0.93±0.01 • 0.90±0.02 • 0.93±0.01 •
Re0 0.99±0.01 0.98±0.01 • 0.94±0.03 • 0.95±0.03 • 0.95±0.02 •
Re1 1.00±0.00 1.00±0.00 1.00±0.01 0.99±0.01 1.00±0.01
Tr11 1.00±0.01 0.99±0.01 0.99±0.01 0.98±0.04 0.99±0.02
Tr12 0.97±0.07 0.96±0.07 0.96±0.06 0.92±0.07 0.97±0.05
Tr21 0.97±0.06 0.92±0.08 • 0.74±0.07 • 0.78±0.11 • 0.89±0.10 •
Tr23 0.99±0.03 0.94±0.08 0.81±0.09 • 0.93±0.08 • 0.96±0.06
Tr31 0.99±0.02 1.00±0.01 0.99±0.01 0.99±0.01 1.00±0.01
Tr41 1.00±0.00 1.00±0.01 0.99±0.01 0.99±0.02 • 0.99±0.01
Tr45 1.00±0.00 1.00±0.01 0.92±0.04 • 0.98±0.02 • 0.99±0.01
Wap 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Average 0.99 0.99 0.96 0.96 0.98
• significantly worse, and ◦ better, comparing to DMNB.


