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Main points and motivation h%

» Goal: prediction of toxicity
» Intersection of SVM and ILP
» SVM provides for dimensionality independence

» ILP kernel captures relational information



Chemistry .

* Molecular structure of toxic chemicals
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Chemistry .
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a) SVILP representation |b) Gartner/Chevaleyre representation

Fig. 1. Molecule represented using a) SVILP representation which employs a kernel based on
domain-expert informed chemical background knowledge indicated by the annotations on the fig-

ure and b) Gartner/Chevaleyre bag-of-atoms uses Multi-Instance (MI) kernel based on frequency
of occurrences of atoms and atom pairs.
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Inductive Logic Programming

» Introduced by Stephen Muggleton in 1992

Inductive Logic Programming (ILP)

Machine Learning A Logic Programming

Learning with Logic
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Inductive Logic Programming h%

» Induction — reasoning from specific to general

» Logic programs are the set of Horn clauses that follow the
rules of the first order logic:

mother(X, Y) «— parent(X, Y) A female(X) .

female(Jane). female(Ann).
male(Jack). male(John).
parent(Jane, Ann). parent(Jack, Ann).

» Questions: Is Jane a mother of Ann!?
Who is a mother of Ann!?
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Inductive Logic Programming h%

ILP is represented in logic programs which are used to
derive a solution to a problem by inducing a hypothesis
based on a set of positive and negative examples.
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Inductive Logic Programming h%

» Concept learning: given a background knowledge B and
experimental observations £ (consisting of positive £+ and
negative [L- examples) find a hypothesis H such that:

BANHI=E

» B, £ and H are each logic programs
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Inductive Logic Programming

» B, H, and E should satisfy the following conditions:

Prior Satisfiability.
Posterior Satisfiability,. BN\ H A E~ #~=

Prior Necessity. B

BNE™
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Posterior Sufficiency. B N H
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Inductive Logic Programming

» Classify the following:

Positive examples

@O A
1O A BB
QAN

Negative examples
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Inductive Logic Programming

» Classify the following:

Positive examples

A @O A
1O A B
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@O AN

Negative examples
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Inductive Logic Programming h%

» B would specify following rules:

before(X, Y) :- <when position of X is less than position of Y>

adjacent(X, Y) :- <when there is no other object between X and
Y>

» Then the resulting theory H will be:

positive :- before(circle, triangle), adjacent(triangle, circle).
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Support Vector Machines h%

» Take any problem and transform it into a high dimensional
space, so that it becomes linearly separable, but

» Calculations to obtain the separability plane can be done in
the original input space (kernel trick)

Info from CSI5387 lecture notes by Dr. Stan Matwin
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Support Vector Machines h%

» l.e. SVM learning process consists of 2 stages:

I. Map the input data, di, ..., dn € D, into some higher
dimensional space H through a non-linear mapping ¢ that
is given by ¢ - D — H.

2. Construct a linear function f in the space
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Support Vector Machines h%

» The kernel function may transform the data into a higher
dimensional space to make it possible to perform the
separation.

Separation may be easier in higher dimensions

®
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complex in low dimensions simple in higher dimensions

Info from http://www.dtreg.com/svm.htm
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Propositionalization h%

» Propositionalization — techniques to transform relational
(first order logic) representation to propositional (fixed
sized feature vectors)

» Involves construction of structural features from relational
background knowledge

» => Any propositional learner can be applied after
propositionalization

» SVILP is similar in its use of support-vector technology to
the domain-dependent bottom-up propositionalisation
approach
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Bottom-Up Propositionalization h%

» Discover fragments that occur frequently in the dataset (ex.
circle followed by triangle)

» Bottom-up approach to fragment generation: generate only
those fragments that really occur in the examples

» Algo: depth-first search for fragments for each data point
(ex. sequence)
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Support Vector ILP h%

» In short: SYM with ILP as a kernel function

» Like in ILP, assume background knowledge B, examples E
and a hypothesis H

» SVILP bases a kernel on the predictions of the clauses / in
H
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Support Vector ILP h%

» Kernel is built by forming a binary hypothesis-instance
association matrix M: hi X dj ,where hi € H and dj € D.

» For each hypothesis clause /4 in H:
h:D — {True, False).

» Conversely the T function gives the hypothesised clauses
covering any particular instance:

t(di) ={h:3h €H, (B, h|=di)}
» So the kernel function is as follows:
K(di, dj) = f(r (di) N 7 (d)))
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Results h%

» Tested on the new DSSTox dataset (as opposed to
Mutagens)

» Used 5-fold cross validation with mean squared error
(MSE) and R-squared evaluation

» Compared results with well known QSAR software
TOPKAT (Toxicity Prediction by Komputer Assisted
Technology)

» Also compared to following techniques: partial least
squares (PLS), multi instance kernels (MIK) ,an RBF kernel
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Results h%

MSE |R-squared Accuracy
ILP (CProgol5.0)] 55
CHEM| 0.811 | 0.519 CHEM 58
PLS | 0.671| 0.593 PLS 71
MIK | 0.838 | 0.503 MIK 60
SVILP| 0.574 | 0.655 SVILP 73
Fig. 8. MSE and R-squared tor Fig. 9. Accuracy for ILP, CHEM,
CHEM, PLS, MIK and SVILP. PLS, MIK and SVILP.
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Conclusion h%

» Accuracy is good, but perhaps not the best way to
evaluate the approach

» No mention of the performance time

» The kernel works within the standard ILP setting of
generalisation with respect to background knowledge
(not just atomic generalization)

» SVILP method shows significant improvement with
respect to the other methods

» Follow up work confirms this (see references)
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