
Towards Design Recovery from Observations

Hasan Ural1 and Hüsnü Yenigün2

1 School of Information Technology and Engineering (SITE)
University of Ottawa, 800 King Edward Avenue

Ottawa, Ontario, Canada, K1N 6N5
2 Faculty of Engineering and Natural Sciences

Sabancı University, Tuzla, Istanbul, Turkey 34956

Abstract. This paper proposes an algorithm for the construction of an
MSC graph from a given set of actual behaviors of an existing concurrent
system which has repetitive subfunctions. Such a graph can then be
checked for safe realizability and be used as input to existing synthesis
techniques.

1 Introduction

A concurrent system consists of two or more processes communicating among
themselves via message exchanges. Each individual functionality (i.e., intended
or actual behavior) of such a system can be viewed as a sequence of subfunc-
tions. Often, depictions of individual intended behaviors of a concurrent system
are given by designers as Message Sequence Charts (MSCs) [1, 2]. An individual
MSC is a visual description of a series of message exchanges among commu-
nicating processes in a concurrent system where the local view of the message
exchanges is a total order with respect to each process but the global view is
a partial order. A tuple consisting of a local view for each process of the mes-
sage exchanges depicted in an MSC uniquely determines that MSC. Thus, an
MSC represents a partial order execution of a concurrent system which stands
for a set of linearizations (total order executions of the system) determined by
considering all possible interleavings of concurrent message exchanges implied
by the partial order.

Formal semantics associated with MSCs provides a basis for their analysis
such as detecting timing conflicts and race conditions [3], non–local choices [4],
model checking [5], and checking safe realizability [6] (revised version appeared
as [7]). Safe realizability is a property that characterizes whether behaviors rep-
resented by a given set of MSCs can be realizable by some deadlock-free imple-
mentation of communicating processes. [7] shows that if the given set of MSCs
is safely realizable then an approach similar to existing synthesis algorithms can
be used to synthesize a deadlock-free design. If it is not, then unspecified (and
possibly unwanted) MSCs that are implied can be detected and fed back to the
design process. While checking for safe realizability of a given set of MSCs that
does not imply any repetitive system subfunctions can be done in polynomial

D. de Frutos-Escrig and M. Núñez (Eds.): FORTE 2004, LNCS 3235, pp. 133–149, 2004.
c© IFIP International Federation for Information Processing 2004



134 Hasan Ural and Hüsnü Yenigün

time [7], that of a given bounded MSC graph is in EXPSPACE [8], which is later
shown to be EXPSPACE–complete [9].

Design representations are helpful not only for implementing software sys-
tems, but also for software maintenance, e.g. to detect and eliminate errors in
a system, to extend the capability of a system, or to adapt a system to differ-
ent operating environments. Further, the developers of a new software system
whose functionality contains some of the functionality of an existing system can
benefit by using the related part of the design of the existing system. However,
up-to-date or complete designs of many existing systems may not always be
available.

One of the aims of the reverse engineering [10, 11] is to recover the design of an
existing system from the run time behavior of its implementation. In this paper,
we consider the reverse engineering of designs of existing concurrent systems
from given sets of observations of their implementations. Here, a given set of
observations consists of individual linearizations of a set of MSCs that is not
given. We propose an algorithm for constructing an MSC graph from a given
set of observations of an existing concurrent system as a representation of the
system’s design.

We assume that every repetitive subfunction of the system (if any) is repre-
sented in the given set of observations at least twice: once with no occurrence
or one occurrence, and once with two or more consecutive occurrences. This as-
sumption stems from the fact that some repetitive subfunctions can be skipped
during executions, whereas others cannot.

When the resulting graph is acyclic, it is guaranteed that the system’s func-
tionality is free from repetitive subfunctions. Otherwise, the resulting MSC graph
is cyclic due to the existence of repetitive subfunctions in system’s behavior. In
either case, the resulting MSC graph may then be checked for safe realizability
and, when found safely realizable, can be used directly as input to the existing
automated synthesis techniques.

The rest of the paper is organized as follows: Section 2 introduces the ter-
minology and notation used throughout the paper. Section 3 gives the formal
definition of the problem. Section 4 presents the construction of an MSC graph
from a given set of observations. Section 5 discusses some open problems and
gives the concluding remarks.

2 Preliminaries

The notation we will be using is directly adopted from [7]. A concurrent system
P is a set of processes P = {P1, P2, . . . , Pn}, communicating with each other by
passing messages from an alphabet Σ, over infinite slot (not necessarily FIFO)
buffers. An event labeled as snd(i, j, a) denotes the transmission of a message a ∈
Σ by the process Pi to the process Pj . Similarly, an event labeled as rcv(j, i, a)
denotes the reception of a message a by the process Pj , which must have been
sent by Pi.



Towards Design Recovery from Observations 135

We use [n] to denote the set {1, 2, . . . , n}. Let Σ̂s
i = {snd(i, j, a)|j ∈ [n], a ∈

Σ}, Σ̂r
i = {rcv(i, j, a)|j ∈ [n], a ∈ Σ}, and Σ̂i = Σ̂s

i ∪ Σ̂r
i be the set of send

event labels, the set of receive event labels, and the set of event labels of the
process Pi, respectively. Then we define, Σ̂s = ∪i∈[n]Σ̂

s
i , Σ̂r = ∪i∈[n]Σ̂

r
i , and

Σ̂ = Σ̂s ∪ Σ̂r, as the set of send event labels, set of receive event labels, and the
set of event labels, respectively.

A word w over an alphabet Σ̂ is a finite sequence of elements from that
alphabet. For two words w and w′, juxtaposition of the two words, ww′, denotes
the concatenation of w and w′. w′ is said to be a prefix of w, if there exists
w′′ such that w = w′w′′. For an integer k ≥ 0, w(k) denotes the concatenation
of k copies of w, where w(0) is defined to be the empty word. We will use the
notation w� to denote concatenation of 0 or more copies, and w+ to denote
concatenation of 1 or more copies of the word w.

Given a word w over Σ̂ and an event label α ∈ Σ̂, let #(w, α) be the number
of occurrences of α in w. w is said to be well–formed if ∀prefix w′ of w, ∀i, j ∈ [n]
and ∀a ∈ Σ, #(w′, snd(i, j, a)) − #(w′, rcv(j, i, a)) ≥ 0. In other words, every
receive event must be preceded by a matching send event. w is said to be complete
if ∀i, j ∈ [n] and ∀a ∈ Σ, #(w, snd(i, j, a)) = #(w, rcv(j, i, a)). That is, every
message a sent by Pi to Pj must be received by Pj , within the word.

Given a word w and a set K, we use w|K (projection onto K) to denote the
word that is derived by removing all the elements in w that are not in K. We use
the same notation to denote the restriction of the domain of a binary relation R
onto a set K. That is, R|K is the projection of R onto K.

Again, we directly adopt the formal definition of an MSC as introduced in [7].
A Σ–labeled MSC M for a concurrent system P is composed of the following
components1:

(i) A finite set S of send events and a finite set R of receive events. Let
E = S ∪ R.

(ii) A mapping l : E → Σ̂ that maps each event to a label such that l(S) ⊆ Σ̂S

and l(R) ⊆ Σ̂R.
(iii) A bijection f : S → R mapping each send event e with its matching receive

event such that if l(e) = snd(i, j, a) then l(f(e)) = rcv(j, i, a).
(iv) A mapping p : E → [n] such that if l(e) = snd(i, j, a) then p(e) = i, and

if l(e) = rcv(i, j, a) then p(e) = i. p simply gives the process on which e
occurs. Let Ei = {e ∈ E|p(e) = i} be set of events of Pi for i ∈ [n].

(v) For each i ∈ [n], a total order ≤i on Ei, such that when the relation ≤ is
defined to be

≤� ∪i∈[n] ≤i ∪{(s, f(s))|s ∈ S}
the transitive closure ≤� of ≤ is a partial order on E.

The total order ≤i on Ei gives a strict execution order of the events of Pi as
seen on the vertical process lines of Pi in the visual representation of the MSC.
1 Note that, this definition of MSCs does not include the notion of co–region (the

region on a process line in which the events of the processes are not ordered) in
MSCs which is also omitted in this paper.



136 Hasan Ural and Hüsnü Yenigün

The pairs (s, f(s)) ∈ ≤ correspond, in the visual representation, to the message
passing arrows from the process line of p(s) to the process line of p(f(s)).

Throughout the paper, Σ and P are assumed to be fixed and all the MSCs
mentioned will be Σ–labeled and defined on P . Let M denote the set of all
Σ–labeled MSCs for P .

Let |E| denote the cardinality of the set E. A permutation of the events E of
an MSC as e1e2 . . . e|E| is valid when ∀i, j ∈ [|E|], ei ≤� ej implies i ≤ j. In other
words, the total order induced by the given permutation on E is consistent with
the partial order ≤�. A word w on Σ̂ is a linearization of an MSC M if there exists
a valid permutation e1e2 . . . e|E| of M such that w = l(e1)l(e2) . . . l(e|E|). The
language of an MSC M , denoted by L(M), is the set of all linearizations of M .
Two MSCs M and M ′ are considered to be equal, M = M ′, iff L(M) = L(M ′).

Note that, by definition, if w ∈ L(M), then w is well–formed and complete.
Further note that, ∀w, w′ ∈ L(M), w|Σi = w′|Σi . In other words, the projections
of the words in L(M) onto the event labels of a process is unique. This follows
from the fact that all the valid permutations of M must respect the total order
≤i which is included in ≤�. In fact, this unique word, which will be denoted
by M |i, is the concatenation of the labels of the events that appear on the
vertical line of Pi in the visual representation of M . Therefore, as shown in [7],
given a well–formed and complete word w, there exists a unique MSC M , such
that w ∈ L(M), under a non–degeneracy assumption (that there is no message
overtaking between same labeled events) which we also adopt in this paper. We
will denote this unique MSC by msc(w). We also let w = L(msc(w)).

Due to this fact, an MSC can be characterized by the sequence of sequences
of the event labels that appear on the processes, i.e. M = 〈M |i | i ∈ [n]〉. Given
such a sequence, the actual MSC can be constructed easily as explained in [7].
Roughly, the procedure is to scan each M |i starting from the beginning. During
this scanning, a send event with a label snd(i, j, a) is matched with the first
not–yet–matched receive event with a label rcv(j, i, a) in M |j .

Proposition 1. Let M and M ′ be two MSCs. M = M ′ iff for each process Pi,
M |i = M ′|i.

Proof. The proof follows from the fact that MSCs are fully characterized by their
projections onto the event labels in the processes as explained above. 
�

Consider the visual representation of an MSC M and imagine that we draw
a line through M by crossing each process line exactly once, and without crossing
any message arrows. Such a line divides M into two parts Mp (the part above
the cutting line) and Ms (the part below the cutting line). Mp and Ms can be
shown to be MSCs again. In fact, Mp and Ms are, what we are going to call
below, a prefix of M and a suffix of M , respectively.

Formally, given two MSCs M and M ′, with the set of events respectively E
and E′, M ′ is said to be a prefix (resp. suffix) of M , iff:



Towards Design Recovery from Observations 137

(i) E′ ⊆ E.
(ii) e ∈ E′ implies ∀e′ ∈ E, if e′ ≤� e then e′ ∈ E′ (resp. e ∈ E′ implies

∀e′ ∈ E, if e ≤� e′ then e′ ∈ E′)

(iii) e ∈ E′ ∩ S implies f(e) ∈ E′ (resp. e ∈ E′ ∩ R implies f−1(e) ∈ E′,
where f−1 is the inverse of the bijection f)

(iv) S′ = S ∩ E′, R′ = R ∩ E′, l′ = l|E′ , f ′ = f |E′ , p′ = p|E′ , and ∀i ∈ [n],
≤′

i=≤i |E′ .

The imaginary cutting line mentioned in the intuitive explanation above is
the one that crosses Pi’s line right below (resp. right above) the largest (resp.
the smallest) event e ∈ E′

i with respect to the total order ≤i.
Let M , Mp and Ms be MSCs with the corresponding set of events E, Ep

and Es such that Mp is a prefix of M , Ms is a suffix of M , Ep ∩ Es = ∅ and
E = Ep ∪ Es. Then, M is said to be the sequential composition of Mp and Ms,
denoted by the juxtaposition of Mp and Ms as MpMs. Given two MSCs M ′ and
M ′′, L(M ′M ′′) = {w|w ∈ w′w′′, w′ ∈ L(M ′), w′′ ∈ L(M ′′)}.

For an integer k ≥ 0, M (k) denotes the sequential composition of k copies
of M , where M (0) is defined to be the empty MSC, i.e. an MSC with the empty
set of events. We will use the notation M� to denote sequential composition of
0 or more copies, and M+ to denote sequential composition of 1 or more copies
of the MSC M .

While describing the scenarios that a concurrent system must perform, a set
of MSCs can be used. However, when this set gets large, it is usually presented in
a more structured way by using High Level MSCs, or HMSCs, which is formally
equivalent to an MSC graph given below. An MSC graph is a labeled transition
system G = (V, v0, vf , T ), where V is a finite set of nodes, v0, vf ∈ V are the
entry and exit nodes (respectively). The relation T ⊆ V ×M×V gives the edges
between the nodes with the labels from M. A path in G is a sequence of edges

(v1, M1, v2)(v2, M2, v3)(v3, M3, v4) · · · (vm, Mm, vm+1)

Such a path is said to start at node v1 and end at node vm+1. The language of
a path is given by the concatenation of the language of the MSCs that appear on
the edges, L(M1)L(M2) · · ·L(Mm). Given an ordered pair of nodes (v, v′), the
language of the pair (v, v′), denoted by L(v, v′), is the union of the languages of
all the paths that start at v and end at v′. The language of a node v, denoted by
L(v), is L(v, vf ). The language of an MSC graph G is defined as L(G) = L(v0).

We will use the notation v
M−→ v′ to denote (v, M, v′) ∈ T .

3 Problem Definition

Each function implemented by a concurrent system can be viewed as a combi-
nation of some subfunctions. For example, in a file transfer function of a com-
munication protocol, we may have connection establishment (CE), data transfer



138 Hasan Ural and Hüsnü Yenigün

v0 v vf
MCE MCR

MDT

Fig. 1. An example MSC Graph

(DT), connection release (CR) subfunctions. If one could identify the subfunc-
tions as they are being executed, then a typical execution would consist of the
following steps:

CE, DT, DT, ..., DT, CR (1)

Based on the size of the data being transferred, the subfunction DT would be
executed repeatedly, as many times it is required to transfer the amount of data
at hand. If we consider how one would start describing such a function at an
abstract level when the system was first built, it is not unreasonable to imagine
that an MSC graph similar to the one given Figure 1 had been used.

In the context of reverse engineering, several attempts appeared in the lit-
erature to recover the design of an implementation from a given set of obser-
vations [12, 13, 14, 15, 16, 17]. However, if the sequence given in (1) is reverse
engineered with the current techniques, the existence of repetitions of DT will
cause problems. In general, it is not possible to decide if the repetitions of DT
in (1) are due to a loop or due to the sequential appearance of DT in the design.
Current techniques favor the latter and therefore, do not attempt to recover
a design with the loops. In this paper, we will introduce a method that will help
recover designs with loops.

As observations, we consider the execution logs (logs of message transmis-
sions and receptions of the processes) of an implementation Imp of a concurrent
system. In other words, if Σ is the set of messages used for the communication
between the processes of Imp, then an observation is a well–formed and com-
plete word over Σ̂. We assume that an observation w ∈ Σ̂� corresponds to a
complete execution of a single function of Imp, and the functions are assumed
to start from the initial system state, and end back at the initial system state,
without going through the initial system state. That is, if w is an observation and
the system is at the initial state, then after performing the message exchanges
given in w (in the order they appear in w), the system goes back to the initial
state right after the last member of w (which must be a reception since w is
complete) is realized. Furthermore, at no point in w, the system must be in the
initial system state, since otherwise the prefix of w up to that point would be
considered as a separate observation.

Suppose that we are given a set of observations O. In Section 2, it is shown
that a well–formed and complete word corresponds to a unique MSC. Consider
the MSC msc(w) corresponding to an observation w ∈ O, and a word w′ ∈
L(msc(w)) but w′ /∈ O. Since the individual processes are behaving, from their
local point of view, exactly in the same way for both w and w′, although not given
as an observation, w′ must also be an observation of Imp. Only the interleaving
preferences between the processes change from w to w′. Therefore, the given set



Towards Design Recovery from Observations 139

of observations O, together with these implied observations, actually corresponds
to a wider set which is:

O =
⋃

w∈O

w =
⋃

w∈O

L(msc(w))

Since each given observation in w ∈ O actually corresponds to an MSC msc(w),
we consider our input to be the set of MSCs M = {msc(w) | w ∈ O}, and we
will consider an observation to be an MSC from now on unless stated otherwise.

In our view of a function being composed of subfunctions, we also consider
a subfunction to be specified by an MSC. This can be justified by considering
that all the messages sent within a subfunction will be consumed within the same
subfunction. In an observation M , which is given as a single MSC, the MSCs
corresponding to the subfunctions are not apparent. However, our purpose is not
to identify the MSCs of all the subfunctions one by one, but rather to identify
those MSCs that correspond to repetitive subfunctions.

Note that, if there are any loops in the design of Imp, and if an observation
M ∈ M is generated by more than one iteration of some loop, then there must
be some repeated pattern in M where the pattern being repeated is generated
by the iterations of the loop. However, the converse is not correct in general, i.e.,
a repeated pattern seen in an observation is not necessarily due to a loop.

To be able to infer a loop in the design by looking at observations, we demand
some evidence. We do not readily accept that a repeated pattern seen in a single
observation is due to a loop. However, if the same pattern is seen different number
of repetitions within the same context, then we assume this is a sufficient evidence
for the existence a loop. Below is the formal definition of the notion of this
evidence.

Definition 1. An MSC M is said to be the basic repetitive MSC of MSC M ′

if M ′ = M (k) for some k ≥ 2 and there does not exist a basic repetitive MSC
of M .

Definition 2. Two MSCs M1 and M2 are said to infer M to be repetitive within
the context Mp–Ms if all the following are satisfied:

(i) M does not have a basic repetitive MSC;
(ii) M1 = MpM

(k)Ms for some k ≥ 2;
(iii) M is not a suffix of Mp;
(iv) M is not a prefix of Ms;
(v) either M2 = MpMs (in which case M is said to be while–repetitive)

or M2 = MpMMs (in which case M is said to be repeat–repetitive).

Note that Definition 2 captures the essence of two different repetitive sub-
functions, one which can be skipped, whereas the other cannot be skipped during
the execution of the system. In order to differentiate these two different types,
we call them as while and repeat repetitive respectively, by using an analogy to
standard programming loop types.



140 Hasan Ural and Hüsnü Yenigün

What we require in observations to infer a loop is that, there must be an
observation in which the loop is iterated k ≥ 2 times, and there must also be
another observation in which the same loop iterated the least possible number
of times (which is 0 for a while loop, and 1 for a repeat loop). Furthermore,
these two observations must have exactly the same prefix before the iterations
of M , and exactly the same suffix after the iterations of M , that is they must
appear within the same context. Under such an evidence, M will be assumed to
be generated by a loop in the design, or more precisely, by the matching loops
(sending and receiving matching messages) in the processes.

Suppose that M is found to be while–repetitive under the evidence of two
observations M1 and M2 with the prefix Mp and suffix Ms, and suppose that M
is indeed generated by a loop in the design. Then the state right before the
execution of M , and right after the execution of M are the same. Hence, any
MSC in the form MpM

�Ms must be realizable by Imp. A similar argument can
be applied to show that when M is found to be repeat-repetitive, any MSC in
the form MpM

+Ms must be realizable by Imp.
Since we assume that Imp does not go through the initial system state during

the execution of an observation, Mp and Ms in Definition 2 must not be empty.
This can be justified by the following observation. If M is repetitive, then the
state just before and just after an iteration of M are the same. If Mp is empty,
then M starts its execution from the initial state, since the observations start
from the initial state. After the first iteration of M , the system will again be
at the initial state. However, this is the definition of a function in our setting,
hence M and Ms must be given as separate observations. Similarly, if Ms is
empty, then the state after an iteration, hence before an iteration of M is the
initial state, since observations are assumed to end at this state. In this case, Mp

and M must be given as separate observations.
It is also important to note that, an iteration of a loop in an observation is

allowed only to provide the required evidence to infer a loop. Further, each repet-
itive subfunction is inferred only once using the given observations. Moreover,
in order to establish the relative ordering of two or more loops l1, l2, . . . , ln in an
MSC graph, k ≥ 2 iterations of at least two loops li and lj need to be given in
the same observation such that the relative ordering of a pair of loops li and lk
can be determined from the relative ordering of two pairs of loops li and lj ,
and lj and lk, 1 ≤ i, j, k ≤ n, and by transitivity.

4 Problem Solution

When a pair of MSCs M1 and M2 is identified within the given set M, such
that M1 and M2 infers M to be repetitive within the context Mp–Ms, then M1

and M2 will be represented in the output MSC graph by using either one of
the following templates, depending on whether it is while–repetitive (left) or
repeat–repetitive (right).



Towards Design Recovery from Observations 141

v0 v vf
Mp Ms

M
v0 v v′ vf

Mp M Ms

M

An algorithm that will find such pairs of MSCs, must identify the context
part, i.e. common prefix Mp and the common suffix Ms, and must also check if
the part remaining in the middle has a basic repetitive MSC. Before presenting
such an algorithm, we need to introduce the following notions on MSCs. A com-
mon prefix of two MSCs M1 and M2, is an MSC M , such that M is a prefix
of both M1 and M2. The maximal common prefix of M1 and M2 is a common
prefix M of M1 and M2 with the largest number of events. Similarly, M is said to
be a common suffix of M1 and M2 if it is a suffix of both M1 and M2. The com-
mon suffix of M1 and M2 with largest number of elements is called the maximal
common suffix of M1 and M2.

Suppose that M = MpMs. Given M and Mp, it is trivial to find Ms, by
simply removing all the events in Mp from the first part of M . Similarly, when
we are given M and Ms, removing all the events in Ms starting from the last
part of M will give Mp. In both of these algorithms, we need to match the labels
of the events. Let us assume that these algorithms are called as “remove prefix”
and “remove suffix”, respectively.

We can now present an algorithm that can check if two given MSCs identify
a repetitive MSC. Without loss of generality, we assume that M1 has more events
than M2.

Recall that, in order to infer M to be repetitive from M1 and M2, we must
have M1 = MpM

(k)Ms and either M2 = MpMs or M2 = MpMMs. The max-
imal common prefix of M1 and M2 will be consisting of Mp, followed by an
optional single occurrence of M . In either case, however, M ′′

2 in Algorithm 1
given in Figure 2 must be empty (line 7). At line 10 and 11, we check if M ′′

1 has
a basic repetitive MSC, by using the algorithm “basic repetitive MSC”, which
is explained in Section 4.1. For the time being, assume that it returns the basic
repetitive MSC of its input MSC, if there exists one, or returns the empty MSC
otherwise. If such an M does not exist, we may still infer a repetitive MSC. This
corresponds to the case where M1 = MpM

(2)Ms and M2 = MpMMs. In this
specific case, the maximal common prefix Mmp would be MpM . Line 12 checks
this singularity, and the correct left context is calculated at line 13.

However, if M ′′
1 has a basic repetitive MSC M , then we decide if it is while–

repetitive or repeat–repetitive, between the lines 18–23. Note that when M is
found to be repeat–repetitive (line 19-20), M will be a common suffix of the
maximal common prefix of M1 and M2. In order to find the correct left context,
line 19 extracts this common suffix from Mmp.

Note that, there may be multiple ways for dividing M1 and M2 to iden-
tify Mp, M and Ms. For example, let M1 = MaMbMcMbMcMbMd and
let M2 = MaMbMd. In this case, it is possible to infer MbMc as while–repetitive
within the context Ma– MbMd. However, it is also possible to infer McMb as



142 Hasan Ural and Hüsnü Yenigün

1: Mmp = maximal common prefix(M1, M2);
2: M ′

1 = remove prefix(Mmp, M1);
3: M ′

2 = remove prefix(Mmp, M2);
4: Ms = maximal common suffix(M ′

1, M ′
2);

5: M ′′
1 = remove suffix(Ms, M ′

1);
6: M ′′

2 = remove suffix(Ms, M ′
2);

7: if M ′′
2 is not empty or Mmp is empty or Ms is empty then

8: M1 and M2 do not infer a repetitive MSC
9: else

10: M = basic repetitive MSC(M ′′
1 );

11: if M is empty then
12: if M ′′

1 is a suffix of Mmp then
13: Mp = remove suffix(Mmp, M ′′

1 );
14: M1 and M2 infer M ′′

1 to be repeat–repetitive within the context Mp–Ms

15: else
16: M1 and M2 do not infer a repetitive MSC
17: end if
18: else if M is a suffix of Mmp then
19: Mp = remove suffix(Mmp, M);
20: M1 and M2 infer M to be repeat–repetitive within the context Mp–Ms

21: else
22: M1 and M2 infer M to be while–repetitive within the context Mmp–Ms

23: end if
24: end if

Fig. 2. Algorithm 1 – Checking if M1 and M2 infers an MSC M to be repetitive

while–repetitive within the context MaMb–Md. By convention, we prefer to keep
preamble of the loop as long as possible, hence use the latter alternative. Note
that, this is only a convention as both MaMb(McMb)�Md and Ma(MbMc)�MbMd

have the same language. Algorithm 1 implements this convention by extracting
the maximal common prefix of M1 and M2 at line 1.

We explain four elementary functions and the algorithm ba-
sic repetitive MSC referenced in Algorithm 1 in the following subsections.

4.1 Finding the Basic Repetitive MSC

In this subsection, we explain how to check the existence of and find the basic
repetitive MSC M of a given MSC M ′.

Recall that M |i denotes the sequence of event labels of process Pi in the
MSC M . If M ′ = M (k), it is obvious that for each process Pi, we have

M ′|i = M |iM |i · · ·M |i︸ ︷︷ ︸
k times

In other words, we must see these repeating patterns in the events of the
processes as well. Checking if a word w′ consists of repetitions of another word w



Towards Design Recovery from Observations 143

is a well–known and well–studied problem (e.g. see [18]) in pattern matching and
text processing. If w′ = w(r), then r is called the power of w in w′ (we are only
interested in integer powers, although the general theory of repetitions in words
considers rational powers as well), and w is called a root of w′. If w cannot be
written as a repetition of another word, then it is called as primitive. Linear
time algorithms exist to find the primitive root of a word. Note that a word is
always a root of itself with power 1.

Proposition 2. Given an MSC M ′, let ri be the power of the primitive root of
M ′|i, where i ∈ [n], and let r = gcd(r1, r2, . . . , rn). M ′ has a basic repetitive
MSC iff r ≥ 2.

Proof. Assume that M ′ has a basic repetitive MSC, i.e. M ′ = M (k) for some M
and k ≥ 2. Since the projections onto the processes must be the same, M ′|i =
M |(k)

i . Therefore, ri = kr′i where r′i is the power of the primitive root of M |i
(note that M |i is not necessarily primitive). Therefore k is a common divisor
of r1, r2, . . . , rn, and hence r = gcd(r1, r2, . . . , rn) ≥ k ≥ 2.
For the proof of the reverse direction, assume that r ≥ 2. Consider an MSC M ,
where M |i is the first |E′

i|/r event labels in M ′|i. Note that M ′ = M (r), since
process wise projections are the same. It remains to show that M does not have
a basic repetitive MSC. In fact this must be true, since if M = M ′′(r′) for some
r′ ≥ 2, then we must have M ′ = M ′′(rr′). However in this case, rr′, which is
strictly greater than r would be a common divisor of r1, r2, . . . , rn, contradicting
with the fact that r = gcd(r1, r2, . . . , rn). 
�

4.2 Functions on Maximal Common Prefix–Suffix,
and Prefix–Suffix Removal

Finding the maximal common prefix of two words is trivial, and based on scan-
ning and comparing the elements of the words starting from the beginning and
stopping when a difference is seen.

Finding the maximal common prefix of two MSCs is not as trivial as the
case of words, since we require the prefix to be an MSC as well. Let M ′ and
M ′′ be two MSCs. Consider again the sequence of event labels M ′|i and M ′′|i
of process Pi on M ′ and M ′′. Note that M ′|i and M ′′|i are words. Let wi be the
maximal common prefix of the words M ′|i and M ′′|i. Note that the sequence
of event labels 〈wi | i ∈ [n]〉 does not necessarily characterize an MSC. How-
ever, this problem can be solved by removing some of the suffixes of wi’s. Recall
the procedure explained shortly in Section 2, for building an MSC based on
a sequence of sequence of event labels. This procedure can be adapted to elim-
inate the problematic suffixes in wi’s while finding the maximal common prefix
in the following way. Initially, all the event labels in wi’s are unmarked. Then
perform a scan on each wi starting from the beginning. For each send event
label of the form snd(i, j, a) in wi, find the first unmarked event label of the
form rcv(j, i, a) in wj . If such an unmarked event could be found in wj , mark
both snd(i, j, a) and rcv(j, i, a) instances under consideration, and proceed to



144 Hasan Ural and Hüsnü Yenigün

the next send event in wi. When we mark two such events, they are called as
marking pairs. It is necessary to remember this association since, if and when
one of them is removed, the other will also be removed in the second phase of
this procedure. If no such an unmarked event could be found in wj , then leave
snd(i, j, a) and all the remaining events in wi as unmarked. After this marking
phase, we have an iterative suffix removal phase. For each wi, the suffix of wi

that starts with the first unmarked event label is removed. Note that, some of
the event labels in such a suffix may be marked. While removing such a marked
event label, the mark of its marking pair (which must also be present in some wj

as marked) is removed. This iteration continues until all the event labels in all
the wi’s are marked. The remaining event labels characterize an MSC which is
the maximal common prefix. Finding the maximal common suffix of two MSCs
can be performed in a similar way, by adapting the approach in the procedure
explained above.

Given an MSC M and a prefix M ′ of M , removing the prefix M ′ can be
performed by removing the event label sequence M ′|i from the first part of
M |i for each process Pi. Similarly, the removal of a suffix M ′ of M would be
performed by removing the event label sequence M ′|i from the last part of M |i
for each process Pi.

4.3 Forming the Final MSC Graph

Algorithm 2 given in Figure 4 is used to produce an MSC graph based on a given
set of MSCs M. It has two phases. The first phase considers every pair of
MSCs M1 and M2 in M and checks whether M1 and M2 infer a repetitive MSC.
The output of the first phase is an MSC graph with a special structure. For each
pair of MSCs that infer a repetitive MSC, a separate subgraph, that is disjoint
with the rest of the graph except at v0 and vf , is created. Such a subgraph
has a different structure depending on whether the inferred MSC is while— or
repeat–repetitive, which are shown in Figure 3 at the top and in the middle, re-
spectively. If an MSC M does not infer a repetitive MSC by pairing with another
MSC, then a subgraph which consists of only (v0, M, vf ) is created, as shown
at the bottom in Figure 3. We will call these subgraphs as paths below. These
paths will be referenced using the labels of the edges. The loops in the labels of
the paths will be represented by using �. The second column of Figure 3 gives
the label template associated with each path type.

As an example for the execution of the first phase, let us suppose that initially
we have three MSCs

Ma = M1M2M2M3M4M5,

Mb = M1M2M2M3M4M4M5,

Mc = M1M3M4M5.

Ma and Mb infer M4 to be repeat–repetitive within the context M1M
(2)
2 M3–M5.

Hence

Md = M1M
(2)
2 M3M4M

�
4 M5



Towards Design Recovery from Observations 145

Path types Path labels

v0 · vf MpM�Ms

v0 · · vf MpMM�Ms

v0 vf M

Mp
M

Ms

Mp M M
Ms

M

Fig. 3. Three different path types

is inferred as a path in G. Similarly, Ma and Mc infer M2 to be a while-repetitive
within the context of M1–M3M4M5. So

Me = M1M
�
2 M3M4M5

is inferred as a path in G.

Note that the subgraph generated from M1 and M2 is guaranteed to represent
both M1 and M2, i.e. the language of M1 and M2 are included in the language
of the generated subgraph. Thus, M1 and M2 are marked for deletion since we
generated a new path from them. However, if for an MSC M1, there does not
exist an MSC M2 which infers a repetitive MSC, then M1 will simply be put
into G and left unmarked. At the end of the first phase, there is no other loop
left to be inferred. However, all possible relative positions of these loops must be
represented in the final MSC graph G′ which is constructed in the second phase
of Algorithm 2.

The MSC graph G constructed by the first phase can be nondeterministic. In
other words, there may be two different paths with a nonempty common prefix.
In general, there is no guarantee that the system state is the same after the
execution of the same prefix along these different paths, since the observations
only give the message exchanges, and the local actions within the processes are
hidden from the observer. There needs to be some evidence in the observations
that allow some paths to be merged. Especially when a given observation M is
used in the generation of two different paths p1 and p2 with labels M1 and M2

respectively, the execution of p1 and p2 also corresponds to the execution of M .
Hence the system state along p1 and p2 that correspond to the execution of M
must be same, and therefore p1 and p2 need to be merged.

The second phase of Algorithm 2 performs the merging of paths using Al-
gorithm 3 given in Figure 5. Since we need to know the actual observations
from which a path p is generated, the first phase of the algorithm associates this
information to the generated path p by src(p).

In the example above, after the first phase, MSCs Ma, Mb and Mc are marked
and thus removed, and we have the paths corresponding to Md and Me added
to G. In the second phase, there are two paths Md and Me in G. Since the
sources of these two paths have a nonempty intersection, they will be in the
same partition, which is actually the only partition of paths in this example.



146 Hasan Ural and Hüsnü Yenigün

1: /* phase 1: infer loops and form G*/
2: initially all the MSCs in M are unmarked
3: generate the initial and the final nodes v0 and vf in G
4: for each pair M1, M2 ∈ M do
5: if M1 and M2 infers an MSC M to be repetitive within a context Mp–Ms then
6: mark both M1 and M2

7: if M is while–repetitive then
8: generate a new path p in G given below, where v is a new node

p = {(v0, Mp, v), (v, M, v), (v, Ms, vf )}
9: else

10: generate a new path p in G given below, where v and v′ are new nodes
p = {(v0, Mp, v), (v, M, v′), (v′, M, v′), (v′, Ms, vf )}

11: end if
12: let src(p) = {M1, M2}
13: end if
14: end for
15: for each unmarked MSC M do
16: generate a new path p = {(v0, M, vf )}
17: let src(p) = {M}
18: end for
19: /* phase 2: merge paths and form G′ */
20: let G′ be an empty graph
21: obtain a partition Π of the set of paths such that two paths p, p′ are in the same

subset P of Π iff ∃ a sequence of paths p1, p2, . . . , pk where pj ∈ P , 1 ≤ j ≤ k,
p = p1, p′ = pk, and for 1 ≤ i < k, src(pi) ∩ src(pi+1) �= ∅

22: for all P ∈ Π do
23: insert merge(P ) into G′

24: end for

Fig. 4. Algorithm 2 – Building the MSC graph based on a set of MSCs M

Hence, the for loop at lines 22–24 in Algorithm 2 will iterate only once, and will
insert the merging of Md and Me into G′.

In Algorithm 3, we consider every path as a set of three edges : (v0, Mp, v1),
(v1, M, v1) and (v1, Ms, vf ). Mp, M and Ms will be referred to as the prefix, loop
and the suffix labels of the path, respectively. Note that, if the path is generated
for a repeat repetitive subfunctionality, then we consider the first iteration of
the loop as embedded in the prefix label.

Note that, G′ produced by the second phase will effectively have the loops
in G placed in their relative order, which also includes placing a loop into another,
i.e. nesting of the loops. Deciding the relative orders of the loops in different
paths in the merged path is based on having a common observation used in the
generation of these paths. For instance, see the example given above.

Note that, Algorithm 3 depends on tracing MpMs on the path pm (which
is actually an MSC graph) accumulated so far. Given an MSC M and an MSC
graph G, it is known that deciding if M ∈ L(G) is NP–complete [8, 19]. For-



Towards Design Recovery from Observations 147

1: let p be a path in P whose prefix label is the shortest among other paths in P
2: let pm = p
3: let src(pm) = src(p)
4: let P = P − {p}
5: while P is not empty do
6: let p be a path in P such that src(p) ∩ src(pm) �= ∅ and the prefix label of p is

the shortest among other such paths in P .
7: src(pm) = src(pm) ∪ src(p)
8: P = P − {p}
9: trace the concatenation of the prefix label Mp and the suffix label Ms of p in pm

(by skipping ε edges)
10: if during this trace Mp ends in the middle of an edge in pm then
11: insert a new node v in the middle of that edge in pm

12: insert a new edge (v, M, v) in pm where M is the loop label of p
13: else
14: let v be the node at which the trace of Mp has ended
15: if during the trace of Mp, v is visited exactly once then
16: insert a new edge (v, M, v) in pm where M is the loop label of p
17: else
18: let (v, M ′, v′) be the edge which is not used during the trace of Mp

19: remove the edge (v, M ′, v′)
20: insert a new node v′′ in pm

21: insert a new edge (v′′, M ′, v′)
22: insert a new edge (v, ε, v′′)
23: insert a new edge (v′′, M, v′′)
24: end if
25: end if
26: end while
27: return (pm)

Fig. 5. Algorithm 3 – Merging paths in a partition P

tunately, in principle, tracing of MpMs on pm corresponds to the case given in
Theorem 6 of [8] with a time complexity of O(|pm| × |MpMs|).

5 Conclusion

We have presented an algorithm to derive an MSC graph G′ from a given set
of observations of an existing implementation of a concurrent system. This al-
gorithm is based on inferring repetitive subfunctions from a given set of obser-
vations. The language of the MSC graph G′ derived consists of all the given
observations and the inferred observations, in which the loops and their rela-
tive positions are all explored. And thus, the language of the MSC graph G′ is
a design representation of the existing system.

An interesting problem that remains open is the following. When the ev-
idences of some loops are missing in the given set of observations, generated
subgraphs may provide these missing evidences. For example, assume that ini-



148 Hasan Ural and Hüsnü Yenigün

tially we have three MSCs Ma = M1M
(2)
2 M3M5, Mb = M1M

(2)
2 M3M

(2)
4 M5,

and Mc = M1M3M
(3)
4 M5. Ma and Mb infers M4 to be while–repetitive within

the context M1M
(2)
2 M3–M5. Hence Md = M1M

(2)
2 M3M

�
4 M5 is generated. Al-

though Mc does not infer any repetitive subfunctionality with Ma or Mb, it
infers M2 to be while–repetitive within the context M1–M3M

(3)
4 M5 when it is

considered together with Me = M1M
(2)
2 M3M

(3)
4 M5 which is obtained by in-

stantiating � by 3 in Md. However, these new repetitive subfunctions must be
confirmed by the observer. Hence the question is, can and how an MSC graph,
which is a design representation of the existing system, be generated under such
missing evidences.

It will also be interesting to consider the effects of a) the number of occur-
rences of repetitive subfunctions in the given set of observations to be a fixed
value, and b) some apriori knowledge of the structure of the communicating
processes on the derivation of an MSC graph.

Acknowledgement

The authors wish to acknowledge many useful discussions with Jessica Chen.
This work was supported in part by the Natural Sciences and Engineering Re-
search Council of Canada, under grant OGP 976.

References

[1] ITU-T Recommendation Z.120. Message Sequence Charts (MSC96) (1996) 133
[2] Rudolph, E., Graubmann, P., Gabowski, J.: Tutorial on message sequence charts.

Computer Networks and ISDN Systems–SDL and MSC 28 (1996) 133
[3] Alur, R., Holzmann, G. J., Peled, D.: An analyzer for message sequence charts.

Software Concepts and Tools 17 (1996) 70–77 133
[4] Ben-Abdallah, H., Leue, S.: Syntactic detection of progress divergence and non–

local choice in message sequence charts. In: 2nd TACAS. (1997) 259–274 133
[5] Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: 10th

International Conference on Concurrency Theory, Springer Verlag (1999) 114–129
133

[6] Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. In:
22nd International Conference on Software Engineering. (2000) 304–313 133

[7] Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts.
IEEE Transactions on Software Engineering 29 (2003) 623–633 133, 134, 135,
136

[8] Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC
graphs. In: Automata, Languages and Programming, 28th International Collo-
quium, ICALP, LNCS 2076. (2001) 134, 146, 147

[9] Lohrey, M.: Safe realizability of high–level message sequence charts. In: 13th
International Conference in Concurrency Theory, CONCUR 2002. (2002) 177–
192 134

[10] Chikofsky, E., Cross, J.: Reverse engineering and design recovery. IEEE Software
7 (1990) 13–17 134



Towards Design Recovery from Observations 149

[11] Lee, D., Sabnani, K.: Reverse engineering of communication protocols. (In: IEEE
ICNP’93) 208–216 134

[12] Koskimies, K., Makinen, E.: Automatic synthesis of state machines from trace
diagrams. Software–Practice & Experience 24 (1994) 643–658 138

[13] Rajagopal, M., Miller, R.E.: Synthesizing a protocol converter from executable
protocol traces. IEEE Transactions on Computers 40 (1991) 487–499 138

[14] Zafiropulo, P., West, C., Rudin, H., Cowan, D.D., Brand, D.: Towards analyzing
and synthesizing protocols. IEEE Transactions on Communications 28 (1980)
651–660 138

[15] Saleh, K., Boujarwah, A.: Communications software reverse engineering: A semi–
automatic approach. Information & Software Technology 38 (1996) 379–390 138

[16] Saleh, K., Probert, R. L., Manonmani, I.: Recovery of communication protocol
design from protocol execution traces. (In: IEEE ICECCS’96) 265–272 138

[17] Chen, X. J., Ural, H.: Construction of deadlock–free designs of communication
protocols from observations. The Computer Journal 45 (2002) 162–173 138

[18] Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press (1994)
143

[19] Muscholl, A., Peled, D., Su, Z.: Deciding properties of message sequence charts.
In: Foundations of Software Science and Computation Structures. (1998) 146


	Towards Design Recovery from Observations
	Introduction
	Preliminaries
	Problem Definition
	Problem Solution
	Finding the Basic Repetitive MSC
	Functions on Maximal Common Prefix--Suffix,  and Prefix--Suffix Removal
	Forming the Final MSC Graph

	Conclusion


