ELG3175 Introduction to Communication Systems

Lecture 11

Final Topic on AM: Vestigial Sideband (VSB)
Motivation

- For wideband information signals, SSB is difficult to implement.
- For frequency discrimination, the filter must have a sharp cutoff near the frequency $f_c$ so as to be able to eliminate one band without distorting the other.
- When we use phase discrimination, we require Hilbert transformers which are difficult to implement if the signal $m(t)$ has a large bandwidth.
VSB Modulation

• When SSB is difficult to implement, we use vestigial sideband (VSB) modulation.
• VSB is implemented by frequency discrimination but the filtering process does not completely eliminate the unwanted band.
• In fact, some of the desired band is also partially filtered out.
VSB Modulator

- A VSB modulator and its filter’s frequency response are shown below.
- The response of the VSB filter is denoted as $H_{VSB}(f)$.
- We notice a transition band around the frequency $f_c$.

\[
m(t) \times A_c \cos(2\pi f_c t) \xrightarrow{H_{VSB}(f)} s_{VSB}(t)
\]
In the example given, we consider a system which retains the upper sideband as the principal band and the lower sideband contributes the vestigial sideband part. However, either sideband can be used to form the principal band in practice.
• In the example given, the filter has a gain of $K$ for all frequencies $|f| > f_c + x$ (passband).

• For the frequencies $f_c < |f| < f_c + x$, which reside in the principal band, the gain is less than $K$, so some loss compared to the passband occurs.

• For the frequencies $f_c - x < |f| < f_c$, the filter’s gain is not 0, therefore some of the other sideband’s frequency components are passed by the filter and $s_{VSB}(t)$ has a vestigial sideband.

• The bandwidth of $s_{VSB}(t) = B_m + x$. Generally, since we are trying to reduce the bandwidth compared to DSB-SC, $x$ is smaller than $B_m$. 
\[ S_{VSB}(f) \]

\[
S_{VSB}(f) = S_{DSB-SC}(f)H_{VSB}(f)
\]

\[
= \frac{A_c}{2} M(f - f_c)H_{VSB}(f) + \frac{A_c}{2} M(f + f_c)H_{VSB}(f)
\]

\[
= \frac{A_c}{4} M_+(f - f_c)H_{VSB}^+(f) + \frac{A_c}{4} M_-(f - f_c)H_{VSB}^+(f)
\]

\[
+ \frac{A_c}{4} M_+(f + f_c)H_{VSB}^-(f) + \frac{A_c}{4} M_-(f + f_c)H_{VSB}^-(f)
\]

where

\[
H_{VSB}^+(f) = \begin{cases} 
H_{VSB}(f) & f > 0 \\
0 & f < 0 \end{cases}
\]

and

\[
H_{VSB}^-(f) = \begin{cases} 
0 & f > 0 \\
H_{VSB}(f) & f < 0 \end{cases}
\]

We note that \( H_{VSB}^-(f) = H_{VSB}^{+\ast}(-f) \) due to Hermitian symmetry in the frequency response of real systems.
Demodulation of VSB

- We use the same demodulator as DSB-SC

If we want $z(t) = G \, m(t)$, then we need to impose a constraint on the frequency response of the modulator’s filter $H_{VSB}(f)$. 

\[ s_{VSB}(t) \times x(t) \times A_r \cos(2\pi f_c t) \rightarrow \text{LPF} \rightarrow z(t) = G \, m(t) \]

\[ S_{VSB}(f) \times X(f) \times Z(f) \]
\[ X(f) = \frac{A_r}{2} S_{\text{VSB}}(f - f_c) + \frac{A_r}{2} S_{\text{VSB}}(f + f_c) \]

\[ = \frac{A_c A_r}{8} M_+ (f - 2f_c) H^+_{\text{VSB}}(f - f_c) + \frac{A_c A_r}{8} M_- (f - 2f_c) H^+_{\text{VSB}}(f - f_c) \]

\[ + \frac{A_c A_r}{8} M_+ (f) H^-_{\text{VSB}}(f - f_c) + \frac{A_c A_r}{8} M_- (f) H^-_{\text{VSB}}(f - f_c) \]

\[ + \frac{A_c A_r}{8} M_+ (f + f_c) H^+_{\text{VSB}}(f + f_c) + \frac{A_c A_r}{8} M_- (f + f_c) H^+_{\text{VSB}}(f + f_c) \]

\[ + \frac{A_c A_r}{8} M_+ (f + 2f_c) H^-_{\text{VSB}}(f + f_c) + \frac{A_c A_r}{8} M_- (f + 2f_c) H^-_{\text{VSB}}(f + f_c) \]
\[ Z(f) = \frac{A_c A_r}{8} M_+(f) H_{VSB}^-(f - f_c) + \frac{A_c A_r}{8} M_-(f) H_{VSB}^-(f - f_c) \]
\[ + \frac{A_c A_r}{8} M_+(f) H_{VSB}^+(f + f_c) + \frac{A_c A_r}{8} M_-(f) H_{VSB}^+(f + f_c) \]
\[ Z(f) = \frac{A_c A_r}{8} M_+(f) (H_{VSB}^-(f - f_c) + H_{VSB}^+(f + f_c)) \]
\[ + \frac{A_c A_r}{8} M_-(f) (H_{VSB}^-(f - f_c) + H_{VSB}^+(f + f_c)) \]

We want \( Z(f) = G M(f) \), where \( G \) is a constant. If we ensure that
\[ H_{VSB}^-(f - f_c) + H_{VSB}^+(f + f_c) = K \]
\[ Z(f) = \frac{A_c A_r K}{8} M_+(f) + \frac{A_c A_r K}{8} M_-(f) = \frac{A_c A_r K}{4} M(f) \]
• Therefore $z(t) = (A_c A_r K/4) m(t)$.

• Let us replace $H_{VSB}^-(f)$ by $H_{VSB}^{+*}(-f)$ and $f$ by $\Delta f$ and we get

$$H_{VSB}^{+*}(f_c - \Delta f) + H_{VSB}^+(f_c + \Delta f) = K$$

(This criteria only need be true over the frequency range of the VSB signal).
Possible USB filters

- Filters with linear transition bands
- Raised cosine filters
Example

• The signal $m(t) = 2\cos(2\pi 10t) + 3\cos(2\pi 30t)$. We wish to transmit this signal using VSB with carrier $c(t) = 5\cos(2\pi 500t)$. The VSB filter’s response is shown below. Find $s_{VSB}(t)$ as well as its bandwidth.

\[1\]

480 500 520
Solution

- Since VSB uses frequency discrimination, it is probably best to work in the frequency domain.
- Let us find $M(f)$ and $S_{DSB-SC}(f)$.

\begin{align*}
M(f) & \quad | \quad S_{DSB-SC}(f) \\
-30 \quad -10 & \quad 10 \quad 30 & \quad -530 \quad -510 \quad -490 \quad -470 & \quad 470 \quad 490 \quad 510 \quad 530 \\
1 & \quad 1.5 & \quad 2.5 & \quad 3.75
\end{align*}
Next we find $S_{VSB}(f) = S_{DSB-SC}(f)H_{VSB}(f)$.

- $H_{VSB}(470) = 0$
- $H_{VSB}(490) = 1/4$
- $H_{VSB}(510) = 3/4$
- $H_{VSB}(530) = 1$

\[ s_{VSB}(t) = 7.5\cos(2\pi530t) + 3.75\cos(2\pi510t) + 1.25\cos(2\pi490t) \]
Example 2

• Show that we can demodulate $s_{VSB}(t)$ of the previous example to obtain $G \ m(t)$.

• $s_{VSB}(t)\cos(2\pi 500t) = 7.5\cos(2\pi 530t) \cos(2\pi 500t) + 3.75\cos(2\pi 510t)\cos(2\pi 500t) + 1.25\cos(2\pi 490t)\cos(2\pi 500t) = 3.75\cos(2\pi 30t) + 3.75\cos(2\pi 1030t) + 1.875\cos(2\pi 10t) + 1.875\cos(2\pi 1010t) + 0.625\cos(2\pi 10t) + 0.625\cos(2\pi 990t)$.

• After lowpass filtering $z(t) = 3.75\cos(2\pi 30t) + 1.875\cos(2\pi 10t) + 0.625\cos(2\pi 10t) = 3.75\cos(2\pi 30t) + 2.5\cos(2\pi 10t) = 1.25m(t)$. 