Next: Index
Up: Algorithms for the
Previous: Open Questions
References
- 1
-
A. Abian (1971), Fixed point theorems of the mappings of
partially ordered sets, Reniconti del circolo mathematico di Palermo 20,
139-142
- 2
-
S. Abian and A. B. Brown
(1961),
A theorem on partially ordered
sets with
applications to fixed point theorems, Canad. J. Math. 13, 78-82
- 3
-
A. V. Aho, J. E. Hopcroft and J. D. Ullman (1983),
Data structures and algorithms, Addison-Wesley, Reading, MA
- 4
-
K. Baclawski (1976),
Homology and combinatorics of ordered sets,
Ph. D. thesis, Harvard Univ.
- 5
-
K. Baclawski (1977),
Galois connections and the Leray spectral sequence,
Adv. in Math. 25, 191-215
- 6
-
K. Baclawski (1996),
A fixed point algorithm for ordered sets,
submitted to the proceedings of the Rotafest
- 7
-
K. Baclawski and A. Björner (1979), Fixed points in
partially ordered sets, Adv. Math. 31, 263-287
- 8
-
K. Baclawski and A. Björner (1981), Fixed points
and complements in finite lattices, J. Combin. Theory, Ser. A 30, 335-338
- 9
-
H. J. Bandelt and M. van de Vel (1987), A fixed cube theorem
for median graphs, Discrete Math. 67, 129-137
- 10
-
M. F. Bélanger, J. Constantin, G. Fournier (1994),
Graphes et ordonnes démontables, propriété de la
clique fixe,
Discrete Math. 130, 9-17; previously:
Université de Sherbrooke, Rapport no. 44 (1986, revised 1988)
- 11
-
A. Björner (1981), Homotopy type of posets and lattice
complementation, J. Combin. Theory Ser. A 30, 90-100
- 12
-
A. Björner (1982), problem presented in I. Rival (ed.),
Ordered sets, D. Reidel, p. 838
- 13
-
A. Björner and I. Rival (1980),
A note on fixed points in semimodular lattices,
Discrete Math. 29, 245-250
- 14
-
B. Bollobás (1979),
Graph theory,
Graduate texts in mathematics nr. 63,
Springer Verlag, New York
- 15
-
R. Brown (1982), The fixed point property and cartesian
products, Amer. Math. Monthly, November issue, 654-678
- 16
-
S. Carl and S. Heikkilä (1990),
On a parabolic boundary value problem with discontinuous nonlinearity,
Nonlinear Anal. 15, 1091-1095
- 17
-
S. Carl and S. Heikkilä (1992),
An existence results for elliptic differential inclusions with
discontinuous nonlinearity,
Nonlinear Anal. 18, 471-479
- 18
-
J. Constantin and G. Fournier (1985), Ordonnes
escamotables et points fixes, Discr. Math. 53, 21-33
- 19
-
E. Corominas (1990), Sur les ensembles ordonnés projectifs
et la propriété du point fixe, C. R. Acad. Sci. Paris 311 Série 1,
199-204
- 20
-
P. Cousot and R. Cousot (1979),
Constructive Versions of Tarski's Fixed
Point Theorems, Pacific J. Math. 82, 43-57
- 21
-
P. Cousot and R. Cousot (1979),
A Constructive Characterization of the
Lattices of all Retractions, Preclosure, Quasi-closure and Closure
Operators on a Complete Lattice, Portugaliae Mathematica 38,
185-198
- 22
-
H. Crapo (1966),
The Möbius function of a lattice,
Journal Comb. Theory 1, 126-131
- 23
-
P. Crawley and R. P. Dilworth (1973),
Algebraic theory of lattices,
Prentice Hall, Englewood Cliffs, NJ
- 24
-
Anne C. Davis (1955), A Characterization of Complete Lattices,
Pacific J.
Math. 5, 311-319
- 25
-
R. DeMarr (1963),
Common fixed points for commuting contraction mappings,
Pac. J. Math. 13, 1139-1141
- 26
-
M. Donalies (1997), M.S. thesis, Hampton University, in progress
- 27
-
B. Dreesen, W. Poguntke and P. Winkler (1985), Comparability invariance of
the fixed point property, Order 2, 269-274
- 28
-
D. Duffus (1984), Automorphisms and products of ordered sets,
Algebra Universalis 19, 366-369
- 29
-
D. Duffus and T. Goddard (1996),
The complexity of the fixed point property,
submitted to Order
- 30
-
D. Duffus, W. Poguntke and I. Rival (1980),
Retracts and the
fixed point problem for finite partially ordered sets, Canad. Math. Bull.
23, 231-236
- 31
-
D. Duffus and I. Rival (1976), Crowns in dismantlable
partially ordered sets, Coll. Math. Soc. Janos Bolyai 18, 271-292
- 32
-
D. Duffus and I. Rival (1979), Retracts of partially
ordered sets, J. Austral. Math. Soc. (Series A) 27, 495-506
- 33
-
D. Duffus and I. Rival (1981), A structure theory
for ordered sets, Discr. Math. 35, 53-118
- 34
-
D. Duffus, I. Rival and M Simonovits
(1980), Spanning retracts
of a Partially Ordered Set, Discr. Math. 32, 1-7
- 35
-
D. Duffus, V. Rödl, B. Sands, R. Woodrow (1992),
Enumeration of order-preserving maps, Order 9, 15-29
- 36
-
D. Duffus and N. Sauer (1987), Fixed points of products
and the strong fixed point property, Order 4, 221-231
- 37
-
P. Edelman (1979), On a fixed point theorem for partially ordered
sets, Discr. Math. 15, 117-119
- 38
-
K. Ewacha, I. Rival (1994), private communication on the number
of 12-element cores with the fixed point property
- 39
-
J. D. Farley (1993), The uniqueness of the core, Order 10,
129-131
- 40
-
J. D. Farley (1995), Perfect sequences of cc posets,
submitted to Discrete Mathematics
- 41
-
D. C. Fisher and A. E. Solow (1990),
Dependence Polynomials,
Discrete Math. 82, 251-258
- 42
-
T. Fofanova (1980), On the fixed point property of partially
ordered sets, Colloq. Math. Soc. Janos Bolyai 33, 401-406
- 43
-
T. Fofanova and A. Rutkowski (1987), The fixed point property
in ordered sets of width two, Order 4, 101-106
- 44
-
T. Fofanova, I. Rival, A. Rutkowski (1994),
Sets of dimension 2 and the fixed point property, preprint
- 45
-
M. R. Garey and D. S. Johnson (1979), Computers and intractability:
A guide to the theory of NP-completeness, Freeman, San Francisco
- 46
-
M. Gikas (1986), Fixed points and structural problems in ordered sets,
Ph. D. dissertation, Emory University
- 47
-
K. Grant, R. Nowakowski, I. Rival (1995),
The endomorphism
spectrum of an ordered set, Order 12, 45-55
- 48
-
S. Hazan, V. Neumann-Lara (1995),
Fixed points of posets and clique graphs,
to appear in Order
- 49
-
S. Heikkilä (1990),
On fixed points through a generalized
iteration method with applications to differential and integral equations
involving discontinuities, Nonlinear Anal. 14, 413-426
- 50
-
S. Heikkilä (1990), On differential equations in ordered
Banach spaces with applications to differential systems and random
equations, Differential Integral Equations 3, 589-600
- 51
-
S. Heikkilä (1992),
On extremal solutions of operator equations in ordered normed spaces,
Applicable Analysis 44, 77-97
- 52
-
S. Heikkilä (1992),
Fixed point results in ordered normed spaces with
applications to abstract and
differential equations,
Journal of Mathematical Analysis and Applications 163, 422-437
- 53
-
S. Heikkilä (1995),
On recursions, iterations and well-orderings,
Nonlinear Times and Digest 2, 117-124
- 54
-
S. Heikkilä, V Lakshmikantham, Y. Sun (1992), Fixed point
results in ordered normed spaces with applications to abstract and
differential equations, J. Math. Anal. Appl. 163, 422-437
- 55
-
S. Heikkilä and V. Lakhshmikantham (1994),
On first order differential equations in ordered Banach spaces,
WSSIAA3, 293-301
- 56
-
S. Heikkilä and V. Lakhshmikantham (1994),
Monotone iterative techniques for discontinuous nonlinear differential
equations, Marcel Dekker Inc., New York, 1994
- 57
-
S. Heikkilä and V. Lakhshmikantham (1995),
On mild solutions of first order discontinuous semilinear
differential equations in Banach spaces,
Applicable Analysis 56, 131-146
- 58
-
S. Heikkilä and H. Salonen (1995),
Applications of a recursion method to game theory and to mathematical
programming,
preprint
- 59
-
C. Hoede and X. Li (1994),
Clique polynomials and independent set polynomials of graphs,
Discrete Math. 125, 219-228
- 60
-
H. Höft (1987),
Bound sets in partial orders and the fixed
point property, Can. Math. Bull. 4, 421-427
- 61
-
H. Höft and M. Höft (1976),
Some fixed point
theorems for partially ordered sets, Can. J. Math. 28, 992-997
- 62
-
H. Höft and M. Höft (1988),
Fixed point
invariant
reductions and a characterization theorem for lexicographic sums,
Houston Journal of Mathematics 14 no. 3, 411-422
- 63
-
H. Höft and M. Höft (1991),
Fixed point free components in lexicographic sums with the
fixed point property, Demonstratio Mathematica XXIV,
294-304
- 64
-
M. Höft (1987),
A fixed point theorem for multifunctions
and an application, Alg. Univ. 24, 283-288
- 65
-
S. Homer and M. Peinado (1996),
On the performance of polynomial time clique approximation algorithms
on very large graphs, to appear in a DIMACS volume
JMP
E. Jawhari, D. Misane and M. Pouzet (1986), Retracts:
Graphs and ordered sets from the metric point of view,
in ``Combinatorics and ordered sets", Contemp. Math. 57,
175-226
- 66
-
B. Jónsson (1982),
Arithmetic of ordered sets,
in Ordered Sets (ed. I. Rival), D. Reidel, Dordrecht, 3-41
- 67
-
D. Kelly (1985),
Comparability graphs, in Graphs and Order (ed. I. Rival),
D. Reidel, Dordrecht, 3-40
- 68
-
B. Knaster (1928),
Un theoreme sur les fonctions d'ensembles,
Ann. Soc. Polon. Math. 6, 133-134
- 69
-
B. Larose (1991),
On finite projective ordered sets,
preprint
- 70
-
B. Li (1993),
The core of a chain complete poset with no
one-way infinite fence and no tower, Order 10, 349-361
- 71
-
B. Li (1995),
The ANTI-order for caccc posets - Part I,
to appear in Discrete Mathematics
- 72
-
B. Li (1995),
The ANTI-order for caccc posets - Part II,
to appear in Discrete Mathematics
- 73
-
B. Li and E. C. Milner (1992),
The PT order and the fixed
point property, Order 9, 321-331
- 74
-
B. Li and E. C. Milner (1993),
A chain complete poset with
no infinite antichain has a finite core, Order 10, 55-63
- 75
-
B. Li and E. C. Milner (1995),
From finite posets to chain complete posets having no infinite antichain,
Order 12, 159-171
- 76
-
B. Li and E. C. Milner (1995),
The ANTI-order and the fixed point property,
to appear in Discrete Mathematics
- 77
-
B. Li and E. C. Milner (1995),
Isomorphic ANTI-cores of caccc posets,
to appear in Discrete Mathematics
- 78
-
J. Lindenstrauss and L. Tzafriri (1973),
Classical Banach spaces, Springer Lecture Notes in Mathematics 338,
Springer Verlag, New York
- 79
-
A. Lubiw (1981),
Some NP-complete problems similar to graph isomorphisms,
SIAM Journal of Computing 10, 11-21
- 80
-
T. McKee and E. Prisner (1996),
An approach to graph-theoretic homology,
submitted to the Proceedings of the Eigth Quadrennial International
Conference in Graph Theory, Combinatorics, Algorithms and Applications,
Kalamazoo, MI
- 81
-
R. Möhring (1989),
Computationally tractable classes of ordered sets,
in: I. Rival (ed.), Algorithms and Order, Kluwer Acad. Publ.,
Dordrecht, 105-193
- 82
-
R. Nowakowski, I. Rival (1979),
A fixed edge theorem
for graphs with loops, J. Graph Theory 3, 339-350
- 83
-
R. Nowakowski, P. Winkler (1983),
Vertex-to-vertex pursuit in a graph,
Discrete Math. 43, 235-239
- 84
-
A. Pelczar (1961),
On the invariant points of a transformation,
Annales Polonici Mathematici XI, 199-202
- 85
-
D. Pickering, M. Roddy (1992),
On the strong fixed point
property, Order 9, 305-310
- 86
-
D. Pickering, M. Roddy and J. Stadel (1991),
The strong
fixed point property for small sets, Order 8, 29-32
- 87
-
N. Polat (1993),
Finite invariant sets in infinite graphs,
Period. Math. Hungar. 27, 125-136
- 88
-
N. Polat (1994),
Invariant graphs for a family of endomorphisms - a survey,
papier de recherche no. 19, IAE de Lyon
- 89
-
N. Polat (1995), Retract-collapsible graphs and invariant
subgraph properties, J. Graph Theory 19, 25-44
- 90
-
T. Poston (1971),
Fuzzy Geometry,
Ph.D. Thesis,
University of Warwick
- 91
-
D. Quillen (1978),
Homotopy properties of the poset of nontrivial
p-subgroups of a group, Adv. Math. 28, 101-128
- 92
-
A. Quilliot (1983),
Homomorphismes, points fixes, rétractions et jeux de poursuite
dans les graphes, les ensembles ordonnés et les espaces métriques,
Thèse de doctorat d'état,
Univ. Paris VI
- 93
-
A. Quilliot (1983), An application of the Helly property to the
partially ordered sets, J. Comb. Theory (A) 35, 185-198
- 94
-
A. Quilliot (1985), On the Helly property working as a compactness
criterion for graphs, J. Comb. Theory (A) 40, 186-193
- 95
-
I. Rival (1976),
A fixed point theorem for finite partially
ordered sets, Journal of Combinatorial Theory (A) 21, 309-318
- 96
-
I. Rival (1980),
The problem of fixed points in
ordered sets, Ann. Discrete Math. 8, 283-292
- 97
-
I. Rival (1982),
The retract construction, in: I. Rival
(ed.), Ordered Sets, D. Reidel, 97-122
- 98
-
I. Rival ed. (1982),
Ordered sets, Dordrecht-Reidel,
Boston
- 99
-
I. Rival (1984),
Unsolved problems, Order 1, 103-105
- 100
-
I. Rival ed. (1984),
Graphs and order,
Dordrecht-Reidel, Boston
- 101
-
I. Rival (1985),
Unsolved problems: The fixed point property, Order 2, 219-221
- 102
-
I. Rival ed. (1989), Algorithms and order,
Kluwer, Dordrecht-Boston
- 103
-
I. Rival and A. Rutkowski (1991),
Does almost every isotone self-map have a
fixed point?, in: Extremal Problems for Finite
Sets, Bolyai Soc. Math. Studies 3,
Viségrad, Hungary, 413-422
- 104
-
M. Roddy (1994), Fixed points and products,
Order 11, 11-14
- 105
-
G.-C. Rota (1964),
On the foundations of combinatorial theory I: Theory of
Möbius functions, Z. Wahrscheinlichkeitstheorie verw. Gebiete 2,
340-368
- 106
-
G.-C. Rota (1971),
On the combinatorics of the Euler characteristic,
Studies in Pure Mathematics (Rado Festschrift issue), 221-233
- 107
-
A. Rutkowski (1985),
Multifunctions and the fixed
point property for products of ordered sets, Order 2, 61-67
- 108
-
A. Rutkowski (1986),
Cores, cutsets and the fixed
point property, Order 3, 257-267
- 109
-
A. Rutkowski (1986),
The fixed point property for
sums of posets, Demonstratio Math. 4, 1077-1088
- 110
-
A. Rutkowski (1989),
The fixed point property for
small sets, Order 6, 1-14
- 111
-
A. Rutkowski (1991),
Some observations concerning
the fixed point property for ordered sets, Bulletin of the Polish
Academy of Sciences 39, 271-278
- 112
-
A. Rutkowski, B. Schröder (1994),
Retractability and the fixed point property for products,
Order 11, 353-359
- 113
-
A. Rutkowski, B. Schröder (1994),
A fixed point theorem
with applications to truncated lattices, preprint
- 114
-
B. Schröder (1992),
On the number of
nondismantlable sets with the fixed point property, Order 8, 325-329
- 115
-
B. Schröder (1992),
The strong fixed point property
for lexicographic sums, Order 9, 311-319
- 116
-
B. Schröder (1993),
Fixed point property
for
11-element sets, Order 10, 329-347
- 117
-
B. Schröder (1995),
On retractable sets and the
fixed point property, Algebra Universalis 33, 149-158
- 118
-
B. Schröder (1993), On the fixed point property for
ordered sets that have as a retract,
to appear in Order 13
- 119
-
B. Schröder (1995),
The uniqueness of cores for chain-complete ordered sets,
submitted to Order
- 120
-
B. Schröder (1996),
The
fixed clique property,
submitted to Order
- 121
-
B. Schröder (1996),
Problems related to fixed cliques in graphs,
Graph Theory Notes of New York XXX, 42-46
- 122
-
B. Schröder (1996),
Fixed cliques and generalizations of dismantlability,
submitted to the Proceedings of the Eigth Quadrennial International
Conference in Graph Theory, Combinatorics, Algorithms and Applications,
Kalamazoo, MI
- 123
-
R. E. Smithson (1971),
Fixed points of order-preserving
multifunctions, Proc. Amer. Math. Soc. 28
- 124
-
E. H. Spanier (1966),
Algebraic Topology, Springer Verlag, New York
- 125
-
R. P. Stanley (1979),
Balanced Cohen-Macauley Complexes,
Trans. Amer. Math. Soc. 249, 139-157
- 126
-
R. E. Stong (1966),
Finite topological spaces,
Trans. Amer. Math. Soc. 123, 325-340
- 127
-
A. Tarski (1955),
A lattice-theoretical fixpoint theorem and its
applications, Pacific J. Math. 5, 285-309
- 128
-
W. T. Trotter (1992),
Combinatorics and partially ordered sets: dimension
theory, Johns Hopkins University Press, Baltimore
- 129
-
J. W. Walker (1984), I
sotone relations and the fixed
point property for posets, Discrete Math. 48, 275-288
- 130
-
J. Wang (1996),
Average case computational complexity,
to appear in:
A. Selman and L. Hemaspaandra (eds.),
Complexity theory retrospective II,
Springer Verlag
- 131
-
S. Willard (1970), General Topology, Addison Wesley, Reading, MA
- 132
-
S. Williamson (1992),
Fixed point properties in ordered sets,
Ph. D. dissertation, Emory University
- 133
-
J. S. W. Wong (1967),
Common fixed points of commuting monotone maps,
Canad. J. Math. 19,
617-620
- 134
-
W. Xia (1992),
Fixed point property and formal concept
analysis, Order 9, 255-264
Bernd.S.W.Schroder