next up previous contents index
Next: Index Up: Algorithms for the Previous: Open Questions

References

1
A. Abian (1971), Fixed point theorems of the mappings of partially ordered sets, Reniconti del circolo mathematico di Palermo 20, 139-142

2
S. Abian and A. B. Brown (1961), A theorem on partially ordered sets with applications to fixed point theorems, Canad. J. Math. 13, 78-82
3
A. V. Aho, J. E. Hopcroft and J. D. Ullman (1983), Data structures and algorithms, Addison-Wesley, Reading, MA
4
K. Baclawski (1976), Homology and combinatorics of ordered sets, Ph. D. thesis, Harvard Univ.
5
K. Baclawski (1977), Galois connections and the Leray spectral sequence, Adv. in Math. 25, 191-215
6
K. Baclawski (1996), A fixed point algorithm for ordered sets, submitted to the proceedings of the Rotafest
7
K. Baclawski and A. Björner (1979), Fixed points in partially ordered sets, Adv. Math. 31, 263-287
8
K. Baclawski and A. Björner (1981), Fixed points and complements in finite lattices, J. Combin. Theory, Ser. A 30, 335-338
9
H. J. Bandelt and M. van de Vel (1987), A fixed cube theorem for median graphs, Discrete Math. 67, 129-137
10
M. F. Bélanger, J. Constantin, G. Fournier (1994), Graphes et ordonnes démontables, propriété de la clique fixe, Discrete Math. 130, 9-17; previously: Université de Sherbrooke, Rapport no. 44 (1986, revised 1988)
11
A. Björner (1981), Homotopy type of posets and lattice complementation, J. Combin. Theory Ser. A 30, 90-100
12
A. Björner (1982), problem presented in I. Rival (ed.), Ordered sets, D. Reidel, p. 838
13
A. Björner and I. Rival (1980), A note on fixed points in semimodular lattices, Discrete Math. 29, 245-250
14
B. Bollobás (1979), Graph theory, Graduate texts in mathematics nr. 63, Springer Verlag, New York
15
R. Brown (1982), The fixed point property and cartesian products, Amer. Math. Monthly, November issue, 654-678
16
S. Carl and S. Heikkilä (1990), On a parabolic boundary value problem with discontinuous nonlinearity, Nonlinear Anal. 15, 1091-1095
17
S. Carl and S. Heikkilä (1992), An existence results for elliptic differential inclusions with discontinuous nonlinearity, Nonlinear Anal. 18, 471-479
18
J. Constantin and G. Fournier (1985), Ordonnes escamotables et points fixes, Discr. Math. 53, 21-33
19
E. Corominas (1990), Sur les ensembles ordonnés projectifs et la propriété du point fixe, C. R. Acad. Sci. Paris 311 Série 1, 199-204
20
P. Cousot and R. Cousot (1979), Constructive Versions of Tarski's Fixed Point Theorems, Pacific J. Math. 82, 43-57
21
P. Cousot and R. Cousot (1979), A Constructive Characterization of the Lattices of all Retractions, Preclosure, Quasi-closure and Closure Operators on a Complete Lattice, Portugaliae Mathematica 38, 185-198
22
H. Crapo (1966), The Möbius function of a lattice, Journal Comb. Theory 1, 126-131
23
P. Crawley and R. P. Dilworth (1973), Algebraic theory of lattices, Prentice Hall, Englewood Cliffs, NJ
24
Anne C. Davis (1955), A Characterization of Complete Lattices, Pacific J. Math. 5, 311-319
25
R. DeMarr (1963), Common fixed points for commuting contraction mappings, Pac. J. Math. 13, 1139-1141
26
M. Donalies (1997), M.S. thesis, Hampton University, in progress
27
B. Dreesen, W. Poguntke and P. Winkler (1985), Comparability invariance of the fixed point property, Order 2, 269-274
28
D. Duffus (1984), Automorphisms and products of ordered sets, Algebra Universalis 19, 366-369
29
D. Duffus and T. Goddard (1996), The complexity of the fixed point property, submitted to Order
30
D. Duffus, W. Poguntke and I. Rival (1980), Retracts and the fixed point problem for finite partially ordered sets, Canad. Math. Bull. 23, 231-236
31
D. Duffus and I. Rival (1976), Crowns in dismantlable partially ordered sets, Coll. Math. Soc. Janos Bolyai 18, 271-292
32
D. Duffus and I. Rival (1979), Retracts of partially ordered sets, J. Austral. Math. Soc. (Series A) 27, 495-506
33
D. Duffus and I. Rival (1981), A structure theory for ordered sets, Discr. Math. 35, 53-118
34
D. Duffus, I. Rival and M Simonovits (1980), Spanning retracts of a Partially Ordered Set, Discr. Math. 32, 1-7
35
D. Duffus, V. Rödl, B. Sands, R. Woodrow (1992), Enumeration of order-preserving maps, Order 9, 15-29
36
D. Duffus and N. Sauer (1987), Fixed points of products and the strong fixed point property, Order 4, 221-231
37
P. Edelman (1979), On a fixed point theorem for partially ordered sets, Discr. Math. 15, 117-119
38
K. Ewacha, I. Rival (1994), private communication on the number of 12-element cores with the fixed point property
39
J. D. Farley (1993), The uniqueness of the core, Order 10, 129-131
40
J. D. Farley (1995), Perfect sequences of cc posets, submitted to Discrete Mathematics
41
D. C. Fisher and A. E. Solow (1990), Dependence Polynomials, Discrete Math. 82, 251-258
42
T. Fofanova (1980), On the fixed point property of partially ordered sets, Colloq. Math. Soc. Janos Bolyai 33, 401-406
43
T. Fofanova and A. Rutkowski (1987), The fixed point property in ordered sets of width two, Order 4, 101-106
44
T. Fofanova, I. Rival, A. Rutkowski (1994), Sets of dimension 2 and the fixed point property, preprint
45
M. R. Garey and D. S. Johnson (1979), Computers and intractability: A guide to the theory of NP-completeness, Freeman, San Francisco
46
M. Gikas (1986), Fixed points and structural problems in ordered sets, Ph. D. dissertation, Emory University
47
K. Grant, R. Nowakowski, I. Rival (1995), The endomorphism spectrum of an ordered set, Order 12, 45-55
48
S. Hazan, V. Neumann-Lara (1995), Fixed points of posets and clique graphs, to appear in Order
49
S. Heikkilä (1990), On fixed points through a generalized iteration method with applications to differential and integral equations involving discontinuities, Nonlinear Anal. 14, 413-426
50
S. Heikkilä (1990), On differential equations in ordered Banach spaces with applications to differential systems and random equations, Differential Integral Equations 3, 589-600
51
S. Heikkilä (1992), On extremal solutions of operator equations in ordered normed spaces, Applicable Analysis 44, 77-97
52
S. Heikkilä (1992), Fixed point results in ordered normed spaces with applications to abstract and differential equations, Journal of Mathematical Analysis and Applications 163, 422-437
53
S. Heikkilä (1995), On recursions, iterations and well-orderings, Nonlinear Times and Digest 2, 117-124
54
S. Heikkilä, V Lakshmikantham, Y. Sun (1992), Fixed point results in ordered normed spaces with applications to abstract and differential equations, J. Math. Anal. Appl. 163, 422-437
55
S. Heikkilä and V. Lakhshmikantham (1994), On first order differential equations in ordered Banach spaces, WSSIAA3, 293-301
56
S. Heikkilä and V. Lakhshmikantham (1994), Monotone iterative techniques for discontinuous nonlinear differential equations, Marcel Dekker Inc., New York, 1994
57
S. Heikkilä and V. Lakhshmikantham (1995), On mild solutions of first order discontinuous semilinear differential equations in Banach spaces, Applicable Analysis 56, 131-146
58
S. Heikkilä and H. Salonen (1995), Applications of a recursion method to game theory and to mathematical programming, preprint
59
C. Hoede and X. Li (1994), Clique polynomials and independent set polynomials of graphs, Discrete Math. 125, 219-228
60
H. Höft (1987), Bound sets in partial orders and the fixed point property, Can. Math. Bull. 4, 421-427
61
H. Höft and M. Höft (1976), Some fixed point theorems for partially ordered sets, Can. J. Math. 28, 992-997
62
H. Höft and M. Höft (1988), Fixed point invariant reductions and a characterization theorem for lexicographic sums, Houston Journal of Mathematics 14 no. 3, 411-422
63
H. Höft and M. Höft (1991), Fixed point free components in lexicographic sums with the fixed point property, Demonstratio Mathematica XXIV, 294-304
64
M. Höft (1987), A fixed point theorem for multifunctions and an application, Alg. Univ. 24, 283-288
65
S. Homer and M. Peinado (1996), On the performance of polynomial time clique approximation algorithms on very large graphs, to appear in a DIMACS volume JMP E. Jawhari, D. Misane and M. Pouzet (1986), Retracts: Graphs and ordered sets from the metric point of view, in ``Combinatorics and ordered sets", Contemp. Math. 57, 175-226
66
B. Jónsson (1982), Arithmetic of ordered sets, in Ordered Sets (ed. I. Rival), D. Reidel, Dordrecht, 3-41
67
D. Kelly (1985), Comparability graphs, in Graphs and Order (ed. I. Rival), D. Reidel, Dordrecht, 3-40
68
B. Knaster (1928), Un theoreme sur les fonctions d'ensembles, Ann. Soc. Polon. Math. 6, 133-134
69
B. Larose (1991), On finite projective ordered sets, preprint
70
B. Li (1993), The core of a chain complete poset with no one-way infinite fence and no tower, Order 10, 349-361
71
B. Li (1995), The ANTI-order for caccc posets - Part I, to appear in Discrete Mathematics
72
B. Li (1995), The ANTI-order for caccc posets - Part II, to appear in Discrete Mathematics
73
B. Li and E. C. Milner (1992), The PT order and the fixed point property, Order 9, 321-331
74
B. Li and E. C. Milner (1993), A chain complete poset with no infinite antichain has a finite core, Order 10, 55-63
75
B. Li and E. C. Milner (1995), From finite posets to chain complete posets having no infinite antichain, Order 12, 159-171
76
B. Li and E. C. Milner (1995), The ANTI-order and the fixed point property, to appear in Discrete Mathematics
77
B. Li and E. C. Milner (1995), Isomorphic ANTI-cores of caccc posets, to appear in Discrete Mathematics
78
J. Lindenstrauss and L. Tzafriri (1973), Classical Banach spaces, Springer Lecture Notes in Mathematics 338, Springer Verlag, New York
79
A. Lubiw (1981), Some NP-complete problems similar to graph isomorphisms, SIAM Journal of Computing 10, 11-21
80
T. McKee and E. Prisner (1996), An approach to graph-theoretic homology, submitted to the Proceedings of the Eigth Quadrennial International Conference in Graph Theory, Combinatorics, Algorithms and Applications, Kalamazoo, MI
81
R. Möhring (1989), Computationally tractable classes of ordered sets, in: I. Rival (ed.), Algorithms and Order, Kluwer Acad. Publ., Dordrecht, 105-193
82
R. Nowakowski, I. Rival (1979), A fixed edge theorem for graphs with loops, J. Graph Theory 3, 339-350
83
R. Nowakowski, P. Winkler (1983), Vertex-to-vertex pursuit in a graph, Discrete Math. 43, 235-239
84
A. Pelczar (1961), On the invariant points of a transformation, Annales Polonici Mathematici XI, 199-202
85
D. Pickering, M. Roddy (1992), On the strong fixed point property, Order 9, 305-310
86
D. Pickering, M. Roddy and J. Stadel (1991), The strong fixed point property for small sets, Order 8, 29-32
87
N. Polat (1993), Finite invariant sets in infinite graphs, Period. Math. Hungar. 27, 125-136
88
N. Polat (1994), Invariant graphs for a family of endomorphisms - a survey, papier de recherche no. 19, IAE de Lyon
89
N. Polat (1995), Retract-collapsible graphs and invariant subgraph properties, J. Graph Theory 19, 25-44
90
T. Poston (1971), Fuzzy Geometry, Ph.D. Thesis, University of Warwick
91
D. Quillen (1978), Homotopy properties of the poset of nontrivial p-subgroups of a group, Adv. Math. 28, 101-128
92
A. Quilliot (1983), Homomorphismes, points fixes, rétractions et jeux de poursuite dans les graphes, les ensembles ordonnés et les espaces métriques, Thèse de doctorat d'état, Univ. Paris VI
93
A. Quilliot (1983), An application of the Helly property to the partially ordered sets, J. Comb. Theory (A) 35, 185-198
94
A. Quilliot (1985), On the Helly property working as a compactness criterion for graphs, J. Comb. Theory (A) 40, 186-193
95
I. Rival (1976), A fixed point theorem for finite partially ordered sets, Journal of Combinatorial Theory (A) 21, 309-318
96
I. Rival (1980), The problem of fixed points in ordered sets, Ann. Discrete Math. 8, 283-292
97
I. Rival (1982), The retract construction, in: I. Rival (ed.), Ordered Sets, D. Reidel, 97-122
98
I. Rival ed. (1982), Ordered sets, Dordrecht-Reidel, Boston
99
I. Rival (1984), Unsolved problems, Order 1, 103-105
100
I. Rival ed. (1984), Graphs and order, Dordrecht-Reidel, Boston
101
I. Rival (1985), Unsolved problems: The fixed point property, Order 2, 219-221
102
I. Rival ed. (1989), Algorithms and order, Kluwer, Dordrecht-Boston
103
I. Rival and A. Rutkowski (1991), Does almost every isotone self-map have a fixed point?, in: Extremal Problems for Finite Sets, Bolyai Soc. Math. Studies 3, Viségrad, Hungary, 413-422
104
M. Roddy (1994), Fixed points and products, Order 11, 11-14
105
G.-C. Rota (1964), On the foundations of combinatorial theory I: Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie verw. Gebiete 2, 340-368
106
G.-C. Rota (1971), On the combinatorics of the Euler characteristic, Studies in Pure Mathematics (Rado Festschrift issue), 221-233
107
A. Rutkowski (1985), Multifunctions and the fixed point property for products of ordered sets, Order 2, 61-67
108
A. Rutkowski (1986), Cores, cutsets and the fixed point property, Order 3, 257-267
109
A. Rutkowski (1986), The fixed point property for sums of posets, Demonstratio Math. 4, 1077-1088
110
A. Rutkowski (1989), The fixed point property for small sets, Order 6, 1-14
111
A. Rutkowski (1991), Some observations concerning the fixed point property for ordered sets, Bulletin of the Polish Academy of Sciences 39, 271-278
112
A. Rutkowski, B. Schröder (1994), Retractability and the fixed point property for products, Order 11, 353-359
113
A. Rutkowski, B. Schröder (1994), A fixed point theorem with applications to truncated lattices, preprint
114
B. Schröder (1992), On the number of nondismantlable sets with the fixed point property, Order 8, 325-329
115
B. Schröder (1992), The strong fixed point property for lexicographic sums, Order 9, 311-319
116
B. Schröder (1993), Fixed point property for 11-element sets, Order 10, 329-347
117
B. Schröder (1995), On retractable sets and the fixed point property, Algebra Universalis 33, 149-158
118
B. Schröder (1993), On the fixed point property for ordered sets that have tex2html_wrap_inline12482 as a retract, to appear in Order 13
119
B. Schröder (1995), The uniqueness of cores for chain-complete ordered sets, submitted to Order
120
B. Schröder (1996), The fixed clique property, submitted to Order
121
B. Schröder (1996), Problems related to fixed cliques in graphs, Graph Theory Notes of New York XXX, 42-46
122
B. Schröder (1996), Fixed cliques and generalizations of dismantlability, submitted to the Proceedings of the Eigth Quadrennial International Conference in Graph Theory, Combinatorics, Algorithms and Applications, Kalamazoo, MI
123
R. E. Smithson (1971), Fixed points of order-preserving multifunctions, Proc. Amer. Math. Soc. 28
124
E. H. Spanier (1966), Algebraic Topology, Springer Verlag, New York
125
R. P. Stanley (1979), Balanced Cohen-Macauley Complexes, Trans. Amer. Math. Soc. 249, 139-157
126
R. E. Stong (1966), Finite topological spaces, Trans. Amer. Math. Soc. 123, 325-340
127
A. Tarski (1955), A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math. 5, 285-309
128
W. T. Trotter (1992), Combinatorics and partially ordered sets: dimension theory, Johns Hopkins University Press, Baltimore
129
J. W. Walker (1984), I sotone relations and the fixed point property for posets, Discrete Math. 48, 275-288
130
J. Wang (1996), Average case computational complexity, to appear in: A. Selman and L. Hemaspaandra (eds.), Complexity theory retrospective II, Springer Verlag
131
S. Willard (1970), General Topology, Addison Wesley, Reading, MA
132
S. Williamson (1992), Fixed point properties in ordered sets, Ph. D. dissertation, Emory University
133
J. S. W. Wong (1967), Common fixed points of commuting monotone maps, Canad. J. Math. 19, 617-620
134
W. Xia (1992), Fixed point property and formal concept analysis, Order 9, 255-264



Bernd.S.W.Schroder