
HAVE 2005 - IEEE International Workshop on
Haptic Audio Visual Environments and their Applications
Ottawa, Ontario, Canada, 1–2 October, 2005

Automatic Alignment and Graph Map Building of Panoramas

Mark Fiala
National Research Council of Canada, NRC 1200 Montreal RD, Ottawa, Canada K1A-0R6

e-mail: mark.fiala@nrc-cnrc.gc.ca

Gerhard Roth
National Research Council of Canada, NRC 1200 Montreal RD, Ottawa, Canada K1A-0R6

e-mail: gerhard.roth@nrc-cnrc.gc.ca

Abstract – Panoramic cameras can capture a
�������

view from a point
providing new capabilities for multimedia, tele-presence and robotic
applications. For example, virtual walk-throughs of an environment
can be created from a sequence of panoramic images, where perspec-
tive views are created according to a user’s position and view direc-
tion. For this and other applications, the panoramic images need to be
aligned to one another and a topological or metric map created. An
automatic method to achieve this would remove a lot of tedious prepa-
rations for multimedia systems and enable robotic positioning sys-
tems. This paper presents three methods to address these problems;
finding the relative orientation between panoramas, using the essen-
tial matrix is created to determine the relative rotation and transla-
tion direction, and an image search based algorithm to detect when
the camera path crosses over itself for creating a topological map.
The SIFT feature detector is used to find correspondences between
panoramic images. Experimental results are shown for determining
the rotation and cross-overs.
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I. INTRODUCTION

Panoramic image sensors, capable of capturing a large sec-
tion of a spherical view, open new possibilities over conven-
tional narrow field of view cameras. Panoramic cameras have
been around for several years, however only recently have
ones been available with a sufficient resolution to be used in
multimedia applications. One application is for virtual walk-
throughs [7] and tele-presence [6] where an HMD presents a
perspective view in the direction sensed by an orientation sen-
sor (Fig.1). This gives the user the ability to look around a pre-
captured or virtual scene and naturally see the view they would
see if present at the remote, recorded, or virtual location.

Recently, multi-sensor cameras have arrived which enable a
high enough pixel density per solid angle to allow virtual per-
spective views to be created with a resolution that human users
expect to see. These cameras also enable new 3D automatic
modeling and robotic applications.

This paper is part of the NAVIRE project at the University of
Ottawa [1], it is motivated by the need to automatically align

Fig. 1. Immersive viewing of panoramas. User can look around each
panorama in the set, and move between them. The viewpoint is either at

locations where the panoramas were captured or from panoramas
interpolated with image based rendering.

panoramas for use in the cube explorer system. The multi-
sensor panoramic camera can quickly capture many images,
however it is time consuming to align them and assign them to
a map. While a metric cartesian description of panorama points
may be desirable, it is sufficient in many cases to have only
the orientation (rotation matrix or azimuth angle relative to a
global reference) and a translation direction between panora-
mas. Also, a topological description of panorama locations is
needed so that the user can navigate along these paths expe-
riencing this captured media. If the translation direction can
be found, a ”quasi-cartesian” map can be made, a topologi-
cal graph with known directions between nodes. Initially the
panorama sequence is merely in linear list, this needs to be
converted to a graph where intersections are automatically de-
tected.

We address this by defining it as two problems; 1) for a pair
of panoramas find the relative rotation, or rotation and transla-
tion direction, and 2) detect from a sequence the event of the
camera crossing its own path. A solution to the former is pro-
vided by finding either a rotation matrix or essential matrix be-
tween panorama images, and the latter is solved by combining
image search techniques to detect similar images..
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Both solutions use point correspondences between
panoramic images provided by natural feature detectors.
These methods are useful for 3D modeling, such as preparing
a large image set for bundle adjustment by breaking it into
connected units, and for mobile robot navigation.

The panoramas are encoded in cube form, with 6 sides each
of which is a perspective projection.

Structure from motion attempts to find 3D structure and
camera positions from a sequence of images of an unknown
scene captured from unknown positions. This relies on being
able to find correspondences between images and rigid motion
assumptions [10]. Sato [14] and others [8] have demonstrated
the use of natural features, such as SIFT features to simultane-
ously find the camera extrinsic parameters and 3D locations of
the features in panoramic images.

Herein we present an approach to find information neces-
sary for the creation of an aligned topological map without
having to create 3D information as in structure from motion
techniques.

A. Panoramic Cameras

A panoramic image is a sampling of plenoptic function from
a single (or approximately single) point in space and because
of its wide view needs to be treated differently than standard
perspective images. The challenges of working with this alter-
nate image type is offset by the benefits afforded by being able
to see in all azimuth directions simultaneously.

Previous work such as [7], [3], [2], [9] and many others
use a single image sensor (CCD or CMOS 2D array) and a
combination of lenses and mirrors (a catadioptric system) to
capture the light from all azimuth angles and a range of ele-
vation angles. The GRASP webpage 1 details many of these
systems. Fiala showed the limited resolution for several cata-
dioptric configurations [6], the whole panorama is contained
in an annular region in a single image, the image resolution is
poor even with a high resolution modern digital video system.

The use of multiple image sensors provides a much better
result, a higher resolution can be achieved with a significantly
simpler optical system if multiple sensors are employed. The
Ladybug camera from Point Grey Research 2 (Fig.2) contains
six closely located and synchronized 1024x768 CCD imagers.
[11] and [15] are two examples using this novel sensor.

B. Cube format

A panoramic image collects all or part of the light incident
on a point in space. People typically think of such a data set as
a spherical image, however this does not lend itself to efficient

�
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Fig. 2. (Left) Ladybug multi-sensor panoramic camera. (Right) Virtual
perspective view created by warping a section of the panoramic image from

the Ladybug.

handling. If a six-sided cube format is instead used, virtual per-
spective images can be more readily handled. The cost of in-
creased storage space (nearly doubled,

�
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��� 	
) over a spheri-

cal representation is offset by the benefits of fast rendering with
standard graphics hardware [4] and the ease of vision and im-
age processing operations developed for perspective projection
images, such as intermediate view generation by image based
rendering.

Fig. 3. Data contained in a ”cube”, six perpendicular perspective images
are stored representing all light rays incident to a world point. This cube is

one of the ones used in the experiments in this paper, it was captured from the
Point Grey Ladybug camera.

Rendering this cube from a virtual camera located at the
cube center that can rotate (but not translate), reproduces all
views seen from that point without noticing the cube bound-
aries. This can be useful for immersively viewing the cube
scene with an HMD and orientation tracker as in [7]. An ex-
ample cube is shown in Fig.3 in a flattened out form. The view
seen in the HMD screen is a perspective view that can see up
to three cube sides at once, the view is rendered with simple
texture mapping.



C. SIFT Feature Extraction from Panoramic Images

Interest points are used to find correspondences between
images, or in our application, panoramas. Interest points are
image points that have a strong set of local gradients that dis-
tinguish that point. The ideal interest point is a corner in a
checkerboard which has a set of orthogonal gradients that iden-
tify it’s location and orientation. Typically, an interest point op-
erator finds hundreds to thousands of points in a given image
in a fraction of a second to a few seconds. The most advanced
interest points operators return a sub-pixel location plus an ori-
entation and scale. The local image patch at the given scale
and orientation around this interest point is then normalized
and from this patch a descriptor vector is computed. This vec-
tor should describe the interest point region uniquely, so that
similar interest points have a small Euclidian distance between
their descriptors.

Currently one of the best known and most successful inter-
est point detectors is the SIFT operator [12] which uses a Dif-
ference of Gaussians (DOG) detector to isolate the location,
scale and orientation of each interest point. Using the dom-
inant orientation of each interest point, a descriptor is com-
puted from the gradients of the image patch around the interest
points at this computed scale and orientation. A normalized
histogram of these image gradients is found and a
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vector of these gradient orientations is used as the descriptor
for this interest point. An image section annotated with SIFT
features (square boxes) is shown below in Fig.4 Many SIFT
features will find matches in panoramic images taken from
similar locations, providing pairs of corresponding points be-
tween a pair of panoramic images.

Fig. 4. SIFT features found in the front face of a cube panorama captured
from the Ladybug panoramic camera. A SIFT feature (overlaid as squares)

consists of a sub-pixel image location, a scale and orientation, and a 128 byte
feature vector describing the neighborhood of the point.

Correspondences between image frames are accomplished

by comparing these keypoint descriptors, so the comparison
is done quickly with this abstract data rather than further pro-
cessing between images (such as correlating image patches to
find correspondences). The keypoint descriptors are 128 bytes
vectors, the euclidean distance between a SIFT feature in one
image, and a potential match in another image is found. A
match is declared if the ratio of distances between the closest
and second closest keypoint descriptor in the other image [12].

In our experiments, SIFT features were found for each
panoramic image by merely processing each cube side sepa-
rately and amalgamating the SIFT keypoint list. Finding SIFT
features in a panorama by simply processing each side image
assumes functionality of the SIFT operator up to a 45 degree
normal angle, as assumption that worked in our experiments.
One could express the panorama in different views to give to
the feature detector if this was a problem.

II. ALIGNING PANORAMIC IMAGES

Each cube panorama is captured from a point in space, the
cube side images are a representation of the plenoptic function
for a given world point � ���	��

� as a certain orientation. Two
different cube panoramas will have different world points and
orientations, expressed by a translation vector � and rotation
matrix � . In many applications, only the rotation � is needed,
for example when rectifying cube panoramas for use in stereo
matching for model-making and image based rendering of in-
termediate images. Another application is when only GPS data
is available providing position but not reliable orientation. For
building a cube map for an interactive walk-through, it is de-
sirable to know this � and � . However with only two cubes
captured with an unknown distance between them, only the di-
rection of translation can be calculated (i.e. the translation up
to a scale factor).

Herein both cases are considered for a pair of cubes; that
of calculating only the rotation matrix, and that of calculating
both the rotation matrix and the direction of translation.

In both cases, a set of correspondences are needed. A point
in a panorama can be expressed as a direction vector � ������
�� .
In our experiments, the coordinates � ����
�� within each cube
side image is mapped to a vector � ������

� according to which
side it is on. Each cube is processed by finding SIFT features
on its 6 sides, producing a list of SIFT features (Fig.4) for the
cube. Each SIFT feature has a vector � ������

� as well as the
128 byte keypoint descriptor. Each SIFT feature list from the
first cube is compared to that of the second, by comparing the
keypoint descriptors creating a list of corresponding 3D vector
pairs (Fig.5). Each vector pair �
�������������������! ����� ����� #" contains
the direction of a feature in the environment as seen in the first
and second cube. This list of corresponding vector pairs is cre-
ated between a pair of cubes, and used to calculate either just
the rotation matrix, or both the rotation matrix and the direction
of translation.



Fig. 5. Matches of SIFT features between cube panoramas. Section of
forward view shown. (Top) SIFT features and matches overlaid over first cube
panorama, (bottom) second cube panorama with SIFT features and matches

overlaid.

For the rotation matrix case, the translation is neglected and
the difference between two cube panoramas assumed to be due
only to rotation. This assumption was found to hold with trans-
lations present in our experiments (1 metre translations in a
room 16 metres long). Each vector pair � � � � ��� � � ��� 
 � and�  � � �  �  �  
 � would then satisfy Eqns.1,2. With many
matches (such as the 1000+ SIFT vector pairs found per cube
pair) a least squares fit can be found for the elements of � .

With the second case, that of finding both rotation and di-
rection of translation, an essential matrix

�
is instead found. It

maps a vector � � in the first cube to a plane in the second cube
that the corresponding vector �  must lie upon. The plane is
defined by the normal vector � ( �  x � ��� ), where � � ��� � � .� can be interpreted as being perpendicular to ��� � � � � � � and
the translation vector � . The rotation and translation vectors
are encompassed in the standard essential matrix by a cross
product operation 3.

Thus an essential matrix
�

is found that satisfies Eqns. 3,4
from all the vector pairs between two cube panoramas, this can
be solved using least squares and SVD methods, and the ro-
tation � matrix and translation � vector extracted from

�
as	

A 3x3 matrix containing elements of 
 arranged so a multiplication is the
same as a cross product, is pre-multiplied by the 3x3 � to provide the 3x3
essential matrix �

per existing methods 4. This is a more general case of the es-
sential matrix found as part of a fundamental matrix which re-
lates points in one standard (non-panoramic) perspective view
with lines in another view. With panoramas in the cube format,
there is no camera calibration matrix and the direction vector
can simply be taken from the position of a pixel on the cube.

�  � �
� � (1)�� �  
�  
�� 
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�
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�� �� � �

� �
���

��
(4)

A. Experiments

Two experiments were performed with the first case of cube
alignment: calculating the rotation matrix only. The first ex-
periment was with three cube panoramas taken at the same lo-
cation with varying azimuth (heading) angles, a rotation matrix
� was found between cubes 1 & 2, and between 2 & 3. SIFT
features were found, matched creating lists of corresponding
vector pairs, each list was converted to a rotation matrix as per
Eqn. 2. The azimuth between cubes 2 & 3 was added to that
found between cubes 1 & 2, and cubes 2 & 3 were thus aligned
to face the same direction as cube 1. Forward views of the
original and aligned cubes are shown in Fig.6.

A set of 19 images were taken with substantial rotation and
translation, the panoramic camera was moved around a path
detailed in Section III below. The path stretched over 7 me-
tres by 2.5 metres in a room of dimensions about 8 x 16 me-
tres, despite this relative large translation with respect to the
environment (and thus the SIFT features) the resulting image
sequence was able to be aligned. The error between the first
and last cube was about

� ��� , the error is propagated since only
the relative angle between each cube pair can be found. The
relative angle error between cube panoramas was smaller.

III. IMAGE SEARCH TO FIND SELF-INTERSECTIONS
(CROSS-OVER POINTS)

A cube panorama is the re-projection of a panoramic im-
age onto a six sided cube. Assume the cubes are sampled by
moving the panoramic camera along a path, and that this path
contains self-intersections. For example, the panoramic cam-
era may be moved along a figure eight pattern, and the path
crosses itself at the center of the eight. The goal is to find these
types of intersections automatically. Assume that there are ��

Section 5.3 of [13], or Chapter 5 of [5]



Fig. 6. Automatic rotational alignment of cubes. (Left column) front view
from three cube panoramas captured about ��� � apart. (Right column) front

view of corresponding cubes aligned automatically in azumith.

such cube panoramas, and that each of these images contains
the six sides of the cube. This means that each cube panorama
must be matched against every other cube panorama, which is
an

� � �  " process. For this reason such an exhaustive matching
procedure is currently practical only for � smaller than fifty.
However, in the future more sophisticated indexing methods
may make it possible to find the self intersections for very long
sequences of cube panoramas.

The result of a single match is the number of SIFT features
between the two cubes. Note that all six faces of the cube
panoramas are matched at once. The ideal result is that the
closest match to any cube panorama at an intersection point
is the image that represents the next camera position, or the
image that is the result of the intersected path.

An experiment was performed where the panoramic Lady-
bug camera was moved onto a path (Figure 7) defined by a dou-
ble figure eight. Each of the cubes are numbered from zero to
eighteen, consecutively along the path of the capture. It is clear
from the figure that there are two intersection points, the group� ��� � � � � ��� , and the group 	 � � � � � � ��
 , as well as a point of
close proximity at

� � � � �#� . A list of SIFT features is extracted
from every cube and used to exhaustively compare to all the
other cubes’ SIFT feature lists. In our experiment, adjacency
is simply determined by the best number of SIFT matches. For
each cube, an ordered list of the other cubes is made according
to how many matches were found. Ideally the first few in this
list should be the preceding and following cubes in the path,
and cubes from another part of the path with near proximity
(such as a cross-over).

We perform an exhaustive match of each cube against all
other eighteen cubes, and then we find the top two matches for

Query First Second
Image Match Match

1 18 2
2 18 1
4 15 5
5 16 4

15 4 16
16 15 5
7 12 8
8 7 13

12 7 13
13 12 8

each cube. For the cubes not near a self-intersection, the near-
est matches are the preceding and following cube as expected.
In Table III we show the first two cubes in the ordered list of
matching cubes (only the potential intersections are shown).
The table shows that the top two cube matches are indeed cor-
rect; one is the next cube in the sequence, and the other is the
cube that is on the self-intersection. This experiment demon-
strates that this exhaustive matching process is capable of find-
ing the self-intersections.

Fig. 7. Matches of SIFT features between cube panoramas. Section of
forward view shown. (Top) SIFT features in first image, (middle) overlay of
matches with SIFT features in second image, (bottom) second image with

SIFT features and matches overlaid.

IV. CONCLUSIONS

A panoramic video camera provides a linear stream or se-
quence of panoramas, it is desirable to calculate the inter-
panorama alignment and a global map without relying on other



sensors. Panoramic images were stored in cube form, and SIFT
features found on the cube sides to find correspondences be-
tween cubes. This paper presented two methods to align two
cubes, one finding only rotation by finding a rotation matrix,
and one finding both rotation and translation direction by find-
ing an essential matrix. Also, an image search based approach
was used to find cross-over (self-intersections) in the camera
path.
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