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Enhancing Learning Objects with an 
Ontology-based Memory  
Amal Zouaq and Roger Nkambou, IEEE Member 

Abstract— The reusability in learning objects has always been a hot issue. However, we believe that current approaches to e-

Learning failed to find a satisfying answer to this concern. This paper presents an approach that enables to capitalize existing 

learning resources by first, creating “content metadata” through text mining and natural language processing and second, by 

creating dynamically learning knowledge objects, i.e. active, adaptable, reusable and independent learning objects. The 

proposed model also suggests integrating explicitly instructional theories in an on-the-fly composition process of learning 

objects. Semantic web technologies are used to satisfy such an objective by creating an ontology-based organizational memory 

able to act as a knowledge base for multiple training environments. 

Index Terms— Applications and Expert Knowledge-Intensive Systems, Computer-managed instruction, Intelligent Web 

Services and Semantic Web, Knowledge Management.  
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1. INTRODUCTION

iven the large amount of learning objects (LOs) and 
their continuous growth, the issue of storing, search-
ing and indexing learning objects is not a trivial one. 

Most of the approaches [10], [21] suggested the use of 
standard metadata to index learning objects. Even if 
metadata allows the description of LOs characteristics 
(language, version, educational purpose, etc.), we believe 
that this kind of annotation is not sufficient to effectively 
guide a learner or a teacher towards the right content.  

In fact, the vision of learning object repositories (LORs) 
that consider learning objects as static content aggrega-
tions seems outdated. This is a particularly acute issue 
since the corporate world has also adopted learning ob-
jects as a mean to insure the training of its members at a 
reduced cost. The just-in time just-enough learning con-
cept requires a very fine-grained model of competences 
and learning materials. In this context, reusability must be 
an important parameter in LOs. According to Polsani [34]: 
“A Learning Object is an independent and self-standing 
unit of learning content that is predisposed to reuse in 
multiple instructional contexts”. Aside from the reusabil-
ity dimension, this definition implies a number of impor-
tant factors that should be considered when talking about 
learning objects:  

•The independent dimension that implies the auton-
omy of the LO in term of data and behaviour, which con-
trasts with the current vision of LO in the e-Learning 
community; 

•The pedagogical dimension that should be taken into 
account when creating a learning object but which should 
not be embedded in the LO itself to allow for multiple 
instructional adaptations. 

The current packaging approach of LO fails to consider 
these two dimensions. Therefore, new processes must be 
set up in order to create active learning objects, able to 
manage their own conceptual structures and to take into 
account learning instructional theories. 

How can these structures be easily set-up? In fact, 
learning objects themselves can provide a solid founda-
tion for obtaining such structures. This can be done 
through a capitalization process of learning object con-
tent, which consists in disaggregating it into small in-
structional units and generating valuable structures such 
as concept maps and domain ontologies. The generation 
of such structures necessitates LO content mining. 

This paper presents an approach for building Learning 
Knowledge Objects (LKO), i.e. active, independent and 
theory-aware LOs. LKOs are built through a reverse en-
gineering process of existing textual learning resources. 
This vision is implemented in the Knowledge Puzzle Pro-
ject through text mining, natural language processing and 
semantic annotation leading to an ontology-based organ-
izational memory (OM).    

The objectives of the project are: 
•To produce a memory with new semantic structures 

to store fine-grained resources; 
•To propose a new transformation process to feed the 

memory from LOs or other types of educational re-
sources; 

•To propose a new flexible composition process of 
LKOs thanks to the OM; 

•To propose solutions for LKO deployment in training 
environments, including standard-based Learning Man-
agement Systems (LMS). 

The paper is organized as follows: First, we discuss the 
state-of-the-art on LOs sharing and reusing issues. Sec-
ond, we present the structure of the OM followed by the 
explanation of the capitalization process (the process that 
aims to feed the OM). Third, we explain how the OM is 
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exploited for LKOs composition and how resulting LKOs 
are deployed in standard and non-standard learning en-
vironments.  Finally, we illustrate the value of the ap-
proach through a semantic evaluation and some results 
before concluding. 

2. RELATED WORKS 

Sharing learning objects has always been a great con-
cern in the e-Learning community. Several solutions have 
been proposed [21], [23]. For example, the SeLeNe plat-
form [23] aims at providing a distribution infrastructure 
to enable LO sharing in a peer network. SeLeNe also pro-
vides some basic functions that allow the creation of 
complex LOs from simple ones.  

The importance of sharing LOs is closely linked to the 
notion of reuse and retrieval. Searching and composing 
LOs to fulfill a learning goal is not an easy task.  Some 
research works proposed extensions to LO structure to 
better guide the user to a specific point of the LO. These 
extensions include manually created relationships be-
tween a LO and its parts [40] as well as semantic links 
between LOs and domain knowledge [25], [37]. These last 
years, the semantic web [6] has provided interesting per-
spectives to this idea of modeling domain knowledge 
through the establishment of domain ontologies. We be-
lieve that LO composition should be guided by a concep-
tual knowledge space such as domain ontologies that 
could emerge automatically from the LO content. Putting 
LOs in a knowledge space allows a better search and 
eases the composition process. It also permits the discov-
erability of the real learning object content while standard 
metadata based-search mainly focuses on LO’s external 
characteristics (language, version, author…). Moreover, e-
Learning standards (SCORM, IMS-LD…) currently do not 
include an ontological base that could offer a common 
knowledge space that can benefit to multiple learning 
environments including intelligent tutoring systems.  

Since learning content is often in textual format, our 
project focuses especially on this type of content. The 
question is how to create a knowledge space associated 
with this content. Classical knowledge engineering tools 
constitute a solution but the cost associated with the in-
volvement of domain experts is a significant limitation. 
To alleviate the knowledge acquisition bottleneck, pro-
ducing this knowledge space can be supported by auto-
matic techniques for learning a domain ontology from 
text. However, this is an important and difficult issue. 
Few research works tried to tackle this problem such as 
Text-to-Onto [26] and Onto-Learn [30]. Evenly, educa-
tional data mining is becoming a very important area in 
the Artificial Intelligence in Education community [19], 
[29], but very few works are concerned with domain on-
tology learning for educational purposes. Most of the 
works focus on learner model mining: several techniques 
are used to extract relevant data mainly from databases 
and learning sessions log files. Some works focus on 
learner or group classification, clustering or sorting [3], 
[16] when others focus on sequential pattern mining to 
depict some significant patterns indicating gaming, suc-

cess or failure [4], [22], [31]. Another important issue is to 
be able to set up a framework in which LO should result 
from an automatic composition process capable of fulfill-
ing a specific competence need. Current approaches fail 
to provide such a capability at a fine-grained level. Fur-
thermore, they do not embark learning theories’ princi-
ples in the composition process whereas several works 
including [5], [28] have underlined the importance of 
these principles in instructional design. In fact, we believe 
that instructional theories can also provide the LO de-
signer with formal principles for the aggregation of assets 
in the LO. However, these theories are not currently 
really considered during LO creation. Even if several pro-
jects have integrated instructional and learning theory in 
learning scenario design or high level learning objects 
composition [17], [38], they do not rely on relevant and 
small instructional units but on whole learning objects. 
These resources sometimes already carry an implicit the-
ory that is not accessible to learning objects crawlers or 
indexers. Therefore, it is important to enable the explicit 
integration of learning theory in the LO design right at 
the time of the competence need and not before.  

To sum up, while a variety of approaches to LO design 
are proposed in the literature, they lack a global vision 
about learning object that corresponds to Polsani’s defini-
tion [34]. This vision necessitates the incorporation of 
various techniques including text mining and learning 
object composition and decomposition. The Knowledge 
Puzzle aims at providing this integrated approach. 

3. ORGANIZATIONAL MEMORY 
STRUCTURE 

The Knowledge Puzzle is an integrated framework 
that intends to capitalize learning objects content through 
the constitution of an organizational memory (OM).  Fig. 
1 depicts the detailed technical architecture of the com-
ponents that create the OM content. 

The central element of this architecture is the organiza-
tional memory. We propose a reverse engineering ap-
proach to LOs and other content (textual documents) that 
leads to a four-layer memory as shown in fig. 1: the 
document pool, the ontology layer, the resource layer and 
the rule layer.  

The OM serves as the basis of a composition process, 
whose aim is to propose active, adaptable and theory-
aware learning knowledge objects (LKO). Contrary to 
classical learning object (LO), an LKO is an active open 
resource that gives access to knowledge structures (do-
main ontology and concept map) related to the targeted 
competence and (semi) automatically obtained through 
text mining.   
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Fig. 1. The Knowledge Production Component Architecture 

In general, OMs serve to store, maintain and reuse 
various chunks of knowledge in corporate and organiza-
tional contexts. As such, they constitute an interesting 
mean for what has become a necessity in today’s econ-
omy: the just in time just-enough learning aim.  

We believe that learning object repositories (LORs) are 
not well suited for this concept. In fact, the just in time 
just-enough learning suggests that learning content 
should be set up right in time (meaning at the moment 
when there is a need of bridging a competence gap) and 
with the right content (meaning that this content should 
be computed on the fly to fulfill the training need). In 
LORs, whole packaged LOs are stored regardless of the 
context in which they will be used.  Composing a learning 
content at this level of granularity is not effective. Fur-
thermore, LOs in LORs do not deal with adaptation ac-
cording to a given learner model or according to specific 
competence needs.  OMs represent a good alternative to 
solve the issue of granularity and adaptation.  They are 
normally used in the industrial world to model the organ-
izational knowledge [14], [44]; however, a recent work 
has also proposed the use of an OM in eLearning [1], [3]. 
Contrary to the work presented in [1], the Knowledge 
Puzzle framework uses text mining techniques for learn-
ing the organizational memory domain knowledge. 
Moreover, it enlarges the vision of an OM to enclose 
pedagogical knowledge and instructional theories.   

Compared with existing approaches to learning object 
composition, the interest of this layered architecture relies 
on three main points:  

First, the whole framework is guided by the ontologi-
cal layer which follows the criteria stated by [41] for im-
plementing eLearning on the semantic web: structure, 
content and pedagogy. The ontologies enable interopera-
bility and understanding among various training sys-
tems.  

Second, one of the main goals of our project is to help 
integrate the representations used by intelligent tutoring 
systems in learning objects. These representations de-
scribe the domain knowledge, the tutor model (pedagogi-
cal expertise) and the learner model. This allows us to 
consider a learning object not as a static entity, but as a 
mini intelligent tutoring system. In this way, a learning 
object, at the time of its generation, can be adapted for a 
given student, according to a given educational theory, 
and possesses a model of the domain knowledge it cov-
ers. To our knowledge, none of the existing approaches 
integrates these various models to produce eLearning 
resources.  

 Finally, even if some works advocated the use of one 
or more of the models (domain, instructional roles, com-
petence) to describe or index the learning objects [15], 
[41], none of the approaches implemented the whole 
process of stating learning objectives, generating a do-
main ontology, and stating instructional theories to guide 
the learning object composition, nor did they propose a 
clear definition of what should be a learning object in this 
semantic web era. 
The OM layers and components are described below. 
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3.1. The Document Pool 

Existing learning resources constitute the document 
pool in order to be re-factored, indexed and capitalized. 
At this stage of the project, only plain text documents can 
be automatically processed and they should be related to 
the same domain knowledge in order to produce a consis-
tent ontology.  They should also contain declarative 
knowledge about the domain. 

3.2. The Ontology Layer 

The Ontology Layer is the pillar of the OM. It struc-
tures the different kinds of resources that are needed to 
compose the Learning Knowledge Objects (LKOs). In fact, 
besides the domain ontology (that will be generated from 
learning objects’ content), a number of ontologies are nec-
essary to establish the Knowledge Puzzle integrated 
model.  The ontology layer includes the following ontolo-
gies: 

•The document Ontology (DOC-ONTO) creates a 
document index for each learning object or document. 
This index serves to store the LO’s structure in term of 
paragraphs, sentences, figures, tables, etc. 

•The domain ontology (DOM-ONTO) models the do-
main knowledge and is exported from the domain con-
cept maps (DOM CMAP). The interest of using concept 
maps as intermediate structures lies in their power to ef-
fectively describe and index domain content and the ne-
cessity to develop bridges from less formal representa-
tions to more formal ones. 

•The Instructional Role Ontology (IRO-ONTO) de-
fines a number of instructional roles (Definition, Intro-
duction …) that guide the detection of relevant assets 
within learning materials. Fig. 2 shows an excerpt of the 
different instructional roles. These instructional roles 
serve as the basic knowledge fragments for the composi-
tion of the LKOs. 

Fig. 2. An Excerpt of the Instructional Role Ontology 

•The competence Ontology (CMP-ONTO) is expressed 
in term of skills on domain concepts.  It is used to express 
the learning objective. We used the Bloom Skill’s Taxon-
omy [7] as generic competence taxonomy. The following 
is an example of a rule that links a skill “define” to an 
instructional role “Definition”: 

AbilityAcquisition(define) -> query : select(Definition). 
This rule means that a definition is required to fulfill 

the skill “define”. 
•The Instructional learning Theory Ontology (ILT-

ONTO) provides a pedagogical theoretical knowledge 
that guides the dynamic composition of the LKO. For the 
moment, ILT-ONTO is quite simple as it represents a 
pedagogical strategy as a number of instructional events 
that are linked to the resource layer through explicit 
SWRL (Semantic Web Rule Language) rules. However, it 
is possible to use a real instructional theory ontology 
(such as OMNIBUS [17]) to actually guide the composi-
tion process. The current instructional events in ILT-
ONTO are derived from theories of education such as 
Gagné [13], Merrill [27], etc. 

The Protégé Ontology Editor [36] serves for the defini-
tion of these specific ontologies. Since the OM is aimed at 
producing learning resources, each of the presented on-
tologies fulfills a necessary part of the framework. In-
spired from the traditional intelligent tutoring system 
architecture, the OM represents the domain model 
(DOM-ONTO, IRO-ONTO, DOC-ONTO), the learner 
model through the definition of competences (CMP-
ONTO) and the storage of acquired competences and 
abilities and the tutor model through the instructional 
theories (ILT-ONTO). 

3.3. The Resource Layer 

The Resource Layer stores the various assets obtained 
through semantic annotation as well as the domain con-
cept maps (DOM-CMAP), the skills, the competences and 
the instructional theories. In general, it is constituted from 
the different ontology instances (A-Box). 

3.4. The Rule Layer 

The Rule Layer, expressed in SWRL format, represents 
procedural knowledge that acts as a glue between the 
different ontologies. Competences and instructional roles 
are linked through CMP-IRO Rules, whereas instructional 
learning theories and instructional roles are connected 
through ILT-IRO Rules. CMP-IRO rules serve to find the 
instructional roles able to fulfill a specific skill need (de-
fine, analyze, explain …) and ILT-IRO rules are used to 
identify the instructional roles needed for each instruc-
tional event of the theory.  
Now that the OM structure is presented, the next section 
provides details about how its content is obtained. 

4. THE KNOWLEDGE PUZZLE 
PRODUCTION SUBSYSTEM 

The Knowledge Puzzle architecture includes two sub-
systems: the first one, the production subsystem, enables 
the constitution of the OM’s elements and the second one 
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their exploitation. The production subsystem is made up 
of two major tool suites: ONTO-AUTHOR and ONTO-
ENGINE. The latter simply includes TEXCOMON and 
the Protégé Ontology Environment [36]. The Protégé 
OWL Java API is employed as the communication lan-
guage between the tools and the ontologies.  

The first component, TEXCOMON, exploits pattern 
matching techniques to learn the domain ontology from 
the document pool. 

4.1. Capitalizing Learning Objects through an 
Innovative Ontology Engineering Approach 
(TEXCOMON) 

The most important tool within the ONTO-ENGINE 
system is TEXCOMON. ONTO-ENGINE is simply a 
framework that includes both TEXCOMON and Protégé 
and uses the Protégé OWL Java API for communication 
purposes. 

TEXCOMON stands for (TEXt-COncept Maps-
ONtology) to indicate the process followed in order to 
convert texts into domain concept maps, which are in 
turn transformed into an OWL ontology.  This ontology 
represents the implicit domain knowledge contained in 
the learning objects, which is currently not accessible to 
training environments.  

Briefly speaking, the ontology engineering process is 
as follows: Textual learning objects are taken as inputs, 
and an index structure is created. This index structure 
decomposes each document into paragraphs and sen-
tences using UIMA-based annotators (Unstructured In-
formation Management Architecture) [42]. Other struc-
tural annotations can be performed to manually identify 
figures, tables, etc. 
     A Keyword extraction algorithm [12] is then executed 
in order to retrieve document key words and key sen-
tences.  These sentences are parsed through the Stanford 
Statistical Parser [24] that outputs a typed dependency 
network [11] for each sentence. In TEXCOMON, the 
typed dependency network is called a grammatical con-
cept map. 
     Once these grammatical structures are available, they 
are mined to find instances of lexicon-syntactic patterns 
that we defined in a linguistic knowledge base (made up 
of around 20 patterns for the moment). The lexicon-
syntactic patterns allow identifying grammatical sub-
graphs that can be transformed to obtain semantic repre-
sentations.   

The following table (table 1) shows examples of lexi-
con-syntactic patterns and their semantic transformation 
methods. The table depicts the transformation process 
from grammatical links to semantic links.   

Let t, u and v be domain terms linked by grammatical 
links (input and output links). 

 

Table 1. Lexicon-syntactic patterns and their semantic 
transformation methods 

Input Links 
(t) 

Output 
Links(t) 

Method 

- NOMI-
NAL_SUBJECT 
(nsubj) with u 
as destination, 
DI-
RECT_OBJECT
(dobj) with v as 
destination. 

Create a new rela-
tionship between u 
and v labelled with 
t.   

- NOMI-
NAL_SUBJECT 
(nsubj) with u 
as destination, 
COPULA (cop) 
with v as des-
tination. 

Create a new rela-
tionship between u 
and t labelled v. 

Rcmod (relative 
clause modifier) 

Passive Nomi-
nal Subject 
(nsubjpass) 
with u as des-
tination,  
Preposition 
(prep_) with v 
as destination 

-Ignore u because 
it is a relative pro-
noun 
-s=Find subject (t) 
-newLabel = con-
catenate t and the 
preposition prep 
- Create a new re-
lationship between 
s and v labelled 
newLabel. 

A pattern is defined as a data structure composed of 
input and output grammatical links organized around a 
given term t.  These links constitute the syntactic struc-
ture that should be fetched in each key sentence. Each 
detected configuration triggers a method to obtain a sen-
tence concept map.  

Formalizing such patterns in a linguistic knowledge 
base allows for progressively identifying grammatical 
structures and their semantic possible interpretations. 
However adding new patterns does not imply changing 
the underlying framework thus making it flexible and 
extensible. Domain-independent linguistic knowledge 
bases can then be re-used in other contexts.  All the se-
mantic maps are merged in order to create Domain Con-
cept Maps (DOM-CMAP) around concepts. TEXCOMON 
integrates the different semantic representations (rela-
tionships and concepts) around a given domain term. 
Hence one concept map can be built from different 
documents. Fig. 3 depicts the domain knowledge acquisi-
tion process in TEXCOMON. 
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Fig. 3. The Domain Knowledge Acquisition Process in TEXCOMON 
[47] 

A Domain Ontology (DOM-ONTO) is created from the 
available concept maps by detecting ontological concepts 
and relationships. Since the process of learning a domain 
ontology follows a set of learning tasks defined in [9], 
TEXCOMON implements these various tasks by deter-
mining significant concepts, attributes, relationships (hi-
erarchical and conceptual) and instances. The significance 
of a concept is manually defined by stating a threshold 
representing the out-degree of a given concept. This 
states that a concept is considered as ontological when it 
has a significant number of relationships with others. 
The relationships linking significant concepts are also 
considered as ontological.  

Other patterns are used to determine hierarchical 
links, instances and attributes. TEXCOMON encodes 
Hearst’s patterns [18] for discovering hyponyms and 
instance relationships. In fact, differentiating sub-classes 
from instances is a difficult problem. In TEXCOMON, 
when a hyponym link is detected between two domain 
concepts, then a subclass link is created. If the hyponym 
is detected between a concept and one or more domain 
terms (that were not sufficiently connected to be consid-
ered as concepts) then the domain terms are considered 
as concept’s instances. Similarly, attributes are detected 
by some patterns indicating them [35]:  
• « X of Y » =>…the ID of the learner …: The learner 

has ID 
• « X’ Y » => …learners' ID…: Learners have ID 
• « X’s Y » => …Student’s last name…: Student has last 

name  
Finally an OWL file is generated that represents the do-
main ontology DOM-ONTO. More details about this 
process can be found in [45]. 

4.2. Capitalizing Learning Objects through 
Semantic Annotation and Edition 
(ONTO_AUTHOR) 

Contrary to Polsani’s definition of learning object, we 
believe that it is not the learning object itself that should 
be reused in multiple instructional contexts, but the in-
structional resources that compose the learning object. 
This necessitates that these resources are clearly identi-
fied. ONTO-AUTHOR is an authoring environment that 
uses the ontologies to define and extract the resources 
layer of the OM. ONTO_AUTHOR includes a variety of 
tools. 

According to Polsani [34] “The formal composition of a 
LO is the arrangement of elements. An element could be 
text, image, video, animation, glossary, assessment, mul-
timedia, etc. Preferably a LO should be a combination of 
multiple elements. The multiplicity not only reinforces 
the concept communicated, but it also opens up multiple 
avenues to foster a richer understanding of the idea(s) 
represented, facilitating learning based on learners' 
choices and learning characteristics. “. The Instructional 
Role Annotator is a semantic annotation tool dedicated to 
the annotation of instructional role instances in a docu-
ment (or a learning object).  This annotation aims at pro-
ducing assets that will be used for LKO composition. As-
sets are very fine-grained knowledge blocks that confer a 
very high flexibility to the LKO composition process. 
They are elements (in the meaning stated by Polsani) that 
have a pedagogical function.  For example, a text frag-
ment can be a definition of a concept X. This definition 
can be reused in multiple training contexts that are linked 
to this concept X.  Fig. 4 shows the Instructional Role An-
notator Tool.  

Fig. 4. The Instructional Role Annotator 

The competence editor defines competences as skills 
that are linked to domain ontology concepts through an 
OWLObjectProperty “Concept”. There is a debate on 
whether competence ontologies should also model the 
domain knowledge or if they should only take into ac-
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count competence levels terminology leaving the domain 
knowledge in a separate ontology. We believe that keep-
ing both ontologies separate from each other’s fosters the 
reusability of the competence ontology and enables the 
graceful migration or evolution of the domain knowledge 
in an independent manner.  

The SWRL Rule Editor serves to define the memory 
rule layer.  Protégé already provides one editor of this 
kind [33]. 

Finally, the theory editor enables to create a learning 
theory and to link it to a set of instructional events repre-
sented as instances of the class “InstructionalEvent”. For 
example, Gagné’s theory states that the first instructional 
event should be to gain learner’s attention. The instruc-
tional events of a given theory are then associated to 
SWRL rules in order to refer to OM’s assets. For instance, 
a flash animation about the targeted concept can be pro-
vided to gain the learner attention.  

A new theory is created by stating its instructional 

events and the rules associated to each one of them. For 
the moment, the tool is quite simple but further im-
provements will enable the integration of more complex 
concepts such as learning conditions and other types of 
constraints that can occur in the learning process. 

5. THE KNOWLEDGE PUZZLE 
EXPLOITATION SUBSYSTEM 

As previously mentioned, the OM is used as a knowl-
edge base that sustains the dynamic aggregation of learn-
ing knowledge objects. The OM feeds the Knowledge 
Puzzle Exploitation process that is composed basically of 
three layers:  the composition layer, the standardization 
layer and the deployment layer.  Fig. 5 shows the Knowl-
edge Exploitation Process. 
 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The Knowledge Exploitation Component Architecture 

5.1. Composition Layer 

This layer enables to initiate the LKO’s aggregation 
process starting from competence needs for a specific 
learner profile. Competence needs are expressed as an 
OWL file that describes the skills to acquire and the do-

main concepts that are concerned.  The learner profile is 
expressed as an IMS ePortfolio [20] and converted in 
OWL format before being used by the composition sub-
system. The Learner profile serves to store mastered 
competencies as well as learner’s characteristics. It is an 
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overlay model meaning that the learner knowledge is 
progressively built and compared to an expert knowledge 
until it reaches the expert level. 

When learning objectives are specified, a Competence 
Gap Analyzer (CGA) computes an adjusted competence 
definition tailored to the learner’s profile. In fact, for each 
skill in the targeted competence, the learner profile is 
fetched in order to find out if this skill is already mas-
tered. If this is the case then the skill is removed from the 
competence definition.  The CGA then outputs a set of 
skills that are new to the learner in the form of an Ad-
justed Competence. 

The Adjusted Competence is passed to an Instructional 
Plan Generator (IPG) that is in charge of composing the 
actual Learning Knowledge Object. The IPG exploits all 
the OM’s layers:  

•The resource layer offers the assets that represent the 
basic knowledge units in an LKO.  

•The ontology layer, and more particularly, the In-
structional Learning Theory Ontology (ILT-ONTO) de-
scribes the instructional events and conditions that will 
effectively guide the composition. A specific instructional 
theory must then be chosen (Merrill, [27], Gagné [13], Ad-
Hoc…).  This enables a flexible independent way for the-
ory incorporation in Learning Knowledge Object. It also 
offers an explicit pedagogical framework understandable 
by humans and software.  

•The Rule Layer is used to connect a particular compe-
tence and skill with the more appropriate assets able to 
fulfill it. For example, the skill “define” would require a 
“Definition”.  It also connects the Instructional learning 
events with the appropriate assets.  The following rule is 
an example which links the instructional event “In-
sure_retention” to the instructional role “Summary”:  

InstructionalStep(Insure_retention) -> query : se-
lect(Summary) 

The execution of the IPG produces a Learning Knowl-
edge Object that can be seen as an independent object 
composed of a Data State and of a set of functions to ma-
nipulate it (an interface).   

The data state is an OWL data structure formed from 
the various resources necessary for the LKO:  the compe-
tence, the skills, the domain ontology around the concepts 
targeted by the skills as well as the domain concept maps 
and the learner profile. The LKO functions are a sort of a 
standard interface that enables any LKO to act as a small 
“Intelligent Tutoring System”. 

This standard interface offers the following functions: 
•Scenario Control to guide the learner’s progression 

through the LKO content; 
•Evaluation of learner’s actions and exercises; 
•Learner’s e-Portfolio update; 
•Domain Ontology and Concept Maps Exploration; 
•Explanation of different concepts by their context; 
•Automatic Generation of LKOs related to the con-

cept’s context. 
The added value of the LKO when compared to exist-

ing learning objects relies on its inner characteristics: an 
LKO acts as an independent small tutoring system, it has 
a domain model, it is guided by an instructional theory, 

and it possesses an interface to act on its data and to pro-
vide an individualized training. An LKO does not need to 
be stored as a whole in a learning object repository. Since 
the aim of the organizational memory is to conserve only 
sound reusable pedagogical fragments, and not whole 
learning objects, an LKO can be generated by using these 
resources and a particular theory. In our point of view, 
learning objects must not exist as fixed static content 
packages.  Semantic services coupled with instructional 
roles should be the new paradigms that sustain learning 
objet generation.  To summarize: 

•An LKO is an independent object: it is implemented 
as a software package (an applet) that receives, at run-
time, an on-the-fly generated OWL file able to fulfill a 
specific competence for a specific learner.   

•An LKO possesses pedagogical knowledge in the 
form of a scenario plan generated according to an instruc-
tional theory. This theory (Gagné, Merrill, etc.) is also 
chosen right at the time of the aggregation process. The 
same content can be reused to produce another LKO 
compliant with another instructional theory. So the reus-
ability dimension is not really related to the LKO itself 
but to the independent knowledge fragments (the instruc-
tional roles) that are stored in the OM. The composition 
service can then generate the same LKO as often as 
needed. 

An example of a competence could be: “define Share-
able Content Object”. In the following figure (Fig. 6), we 
can see the generated LKO for this competence according 
to the Gagné Theory. We can also notice that two prereq-
uisites are added to the LKO related to the skills “define 
asset” and “define media”. Hence the resulting LKO is 
composed of three skills, each skill being taught accord-
ing to the Gagné Theory. These prerequisites are added to 
the definition of the competence during the competence 
gap analysis. Once the adjusted competence is available, 
and once an instructional theory is chosen, the IPG loads 
the instructional events related to the theory (here the 
Gagné Theory). Since each instructional event is linked to 
a SWRL rule, the IPG executes these rules in order to 
gather the different assets that are required to fulfill each 
instructional event. The rule engine Jess is used to run the 
SWRL rules. As a result, a course structure compliant 
with the chosen theory is generated and linked to ade-
quate instructional roles.  

5.2. Standardization Layer 

The standardization layer serves as an interface to the 
different standards and usable environments for an LKO. 
It comprises: 

•A SCORM LKO Generator (LKO2SCORM) that gen-
erates a SCORM compliant content package. It encapsu-
lates the LKO applet into a standard SCORM template. 

•An IMS-LD LKO Generator (LKO2IMS-LD) that gen-
erates an IMS-LD conformant content package. 

•An Intelligent Tutoring System LKO Generator 
(LKO2ITS).  

The standardization layer exports, when needed, a zip 
file to any type of training environment. 
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Fig. 6. A Generated Learning Knowledge Object according to Gagné’s theory

5.3. Deployment Layer 

The LKOs are targeted towards any kind of training 
environment. The Knowledge Puzzle produces LKOs 
deployable in a SCORM Runtime Environment, in an IM-
LD player or in any intelligent tutoring system.  

We also provide an LKO Runtime Environment (LKO-
RTE) for users that do not have access to an ITS or that do 
not want to comply with a particular e-Learning stan-

dard. The LKO-RTE makes it possible to run the LKO as a 
standalone resource. The user interface gives access to 
relevant functions that are implemented within the LKO 
to support a variety of learning services including possi-
ble access and exploration of the concept map around the 
LKO’s concepts (Fig. 7), thus fostering meaningful learn-
ing [32]. 

 

Fig. 7. The concept Map View in the current LKO 
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6. EVALUATION AND RESULTS 

Multiple dimensions must be evaluated in a project 
such as the Knowledge Puzzle: The first and most impor-
tant one involves the quality of the generated domain 
ontology. We performed a qualitative expert evaluation (a 
Semantic evaluation) to assess the plausibility and com-
prehensiveness of the generated concepts and relation-
ships. 

6.1. Experiment Description 

6.1.1. Corpus 

We applied the Knowledge Puzzle reverse engineering 
approach on a corpus composed from a set of 36 docu-
ments about the Sharable Content Object Reference 
Model (SCORM). These documents were created from the 
official SCORM Manuals available on [2]. In total, the 
documents had 188 paragraphs and 1578 sentences com-
prising 29879 words.  

Two human experts performed the semantic evalua-
tion. These experts had an extensive experience in eLearn-
ing standards. One expert has been involved in stan-
dardization groups and teaching about eLearning stan-
dards while the other one has been working on the devel-
opment of a SCORM platform.  

Given a set of triples generated by the Knowledge 
Puzzle from the ontological relationships, the experts 
were asked to decide: 

•If the concepts were relevant according to the domain 
knowledge; 

•If the relationships were correct in term of label and 
arguments; 

•If the relationships were relevant according to the 
domain knowledge; 

Each expert was asked to look at the domain ontology 
in the Protégé Ontology Editor [36] and to delete the in-
appropriate concepts and relationships. A percentage of 
pertinent concepts and relationships were then calculated 
by comparing the generated domain ontology and the 
expert validated ontology.  The mean of the two percent-
ages was considered as the final result. 

6.1.2. Description of the Experiment with 
TEXCOMON 

TEXCOMON extracted a set of 1,139 domain terms 
during the concept maps creation as well as 1,973 seman-
tic relationships. From these domain terms and relation-
ships, 4 domain ontologies corresponding to different 
thresholds were generated. As previously explained, a 
threshold I is specified to consider a domain term X as a 
domain concept. I is the number of semantic relationships 
(the out-degree of X) where X is the source concept.  

In this experiment, we considered 4 thresholds I: 
• I=2 which outputs the ontology KP-2 
• I=4 which outputs the ontology KP-4 
• I=6 which outputs the ontology KP-6 
• I=8 which outputs the ontology KP-8 

 

6.1.3. Description of the Experiment with Text-To-
Onto 

For comparison reasons, we performed another seman-
tic evaluation over the same corpus with another major 
work in the field of ontology learning from text: Text-To-
Onto [26].  Different steps are used in Text-To-Onto to 
learn the domain ontology:  

First, term extraction is performed: we kept all the ex-
tracted domain terms regardless of their frequency, c-
value, etc. In fact, Text-To-Onto provides a pruner that 
suggests concepts which could be removed from the on-
tology on the basis of their occurrence in the corpus. 
However, the pruner actually suggested pruning con-
cepts that should not be removed from the resulting on-
tology and that would get the results worse. We believe 
that this is because Text-To-Onto relies only on statistical 
features (cumulative frequency) to prune some concepts 
and tends to keep only statistically significant concepts 
(while statistically non-significant concepts could also be 
important) [47]. Apart from that, there is no notion of fil-
tering related to the out-degree of a node in Text-To-
Onto, which prevented us from using the exact procedure 
used for TEXCOMON ontologies.  

Second, hierarchical links are extracted through the 
TaxoBuilder tool (we used the n most frequent words op-
tion + the combination-based approach built on Hearst 
patterns and heuristics).  

Third, relationships between domain terms are fetched 
through relation learning and association rule learning. 
Relation learning outputs a set of labelled links between 
the concepts much like TEXCOMON does. Association 
rule learning aims to discover frequently co-occurring 
items within a data set and to extract rules that relate 
these items. Two ontologies (TTO1 and TTO2) are gener-
ated from the corpus with Text-To-Onto. The main differ-
ence between these two ontologies resides in the use of a 
different support in association rule learning (respectively 
0 and 0.1). The support of association rules equals the 
percentage of groups that contain all of the items listed in 
such association rules [47]. Therefore, a support of 0.1 for 
a given item means that the item occurs in 10% of all 
transactions. Here the items are represented by co-
occurring words. 

6.2. Semantic Evaluation Result 

6.2.1. TEXCOMON Semantic Evaluation 

Table 2 shows the number of generated concepts and 
relationships from the initial set of domain terms and re-
lationships. Here primitive classes mean classes with nec-
essary conditions while defined classes mean classes with 
necessary and sufficient conditions. In fact, the only de-
fined classes that TEXCOMON was able to extract were 
equivalent class axioms. An equivalence relationship is 
stated mainly between a concept and the abbreviation 
used to designate this concept (for example SCORM = 
Shareable Content Object Reference Model). 
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Table 2. Number of concepts and relationships in each 
generated domain ontology in TEXCOMON 

 
Ontology 

Number 
of primi-
tive 
classes 

Number 
of de-
fined 
classes 

Number of 
hierarchical 
relation-
ships 

Number 
of concep-
tual rela-
tion- 
ships 

KP2 413 9 372 288 
KP4 139 10 125 153 
KP6 82 10 84 103 
KP8 57 10 66 74 

 
The two experts were asked to eliminate the concepts 

and relationships considered as too vague, such as "sec-
tion", “example” and to conserve only the concepts and 
relationships relevant to the domain.  The following two 
tables (Table 3 and Table 4) show pertinence rates accord-
ing to both experts. 

 
Table 3. TEXCOMON concepts and relationships perti-

nence according to Expert 1 

 
Onto-
logy 

Pertinent 
primitive 
Classes  
(%) 

Pertinent 
defined 
Classes  
(%) 

Pertinent 
hierarchical 
relation-
ships 
(%) 

Pertinent  
conceptual 
Relation 
-ships 
 (%) 

KP2 87.5 55.55 86.51 80.22 
KP4 90.84 100 86.21 87.93 
KP6 91.11 100 78.5 91.15 
KP8 91.93 100 75.86 92.5 
 

Table 4. TEXCOMON concepts and relationships perti-
nence according to Expert 2 

 
Onto-
logy 

Pertinent 
primitive 
Classes  
(%) 

Pertinent 
defined 
Classes  
(%) 

Pertinent 
hierarchical 
relationships 
(%) 

Pertinent 
conceptual 
Relation-
ships 
 (%) 

KP2 85.8 55.55 82.09 79.94 
KP4 90.84 100 83.45 91.38 
KP6 88.89 100 75.70 91.15 
KP8 88.71 100 74.71 93.75 

Finally, Table 5 gives the mean score of the ontologies 
according to both experts. 
 

Table 5. TEXCOMON Overall Evaluation 

 
Onto-
logy 

Pertinent 
primitive 
Classes  
(%) 

Pertinent 
defined 
Classes  
(%) 

Pertinent 
hierarchical 
relation-
ships 
(%) 

Pertinent  
conceptual 
relation- 
ships 
 (%) 

KP2 86.65 55.55 84.3 80.08 
KP4 90.84 100 84.83 89.65 
KP6 90 100 77.1 91.15 
KP8 90.32 100 75.28 93.12 

 
Given the criteria described above, the primary results 

of the semantic analysis were quite satisfying. According 

to human evaluators, we reached, in the worst case, a 
pertinence rate of 86.65% for primitive classes and a rate 
of 80.08% for pertinent conceptual relationships. 

However, we must underline that many relationships 
were repetitive due to a lack of synonym detection in 
TEXCOMON (for instance: “a SCO is launched in RTE” 
and “a SCO is deployed in RTE” are considered as two rela-
tionships) and the lack of a correspondence between the 
active and the passive voice (For example: “a SCO is 
launched in RTE” and “RTE launches SCO” should nor-
mally be detected as an inverse property). 

6.2.2. Text-to-Onto Semantic Evaluation 

The experts repeated the same evaluation over Text-
To-Onto ontologies. The first thing to remember is that 
Text-To-Onto has two ways to learn conceptual relation-
ships: association rule learning which outputs non-
labelled relationships and relation learning which relies 
on linguistic patterns and outputs labelled relationships.  

Table 6 indicates the number of generated relation-
ships in both cases. Table 7 summarizes the number of 
classes and relationships generated in Text-To-Onto. The 
only difference between TTO1 and TTO2 lies in the num-
ber of conceptual relationships which changes according 
to the support used in association rule learning. Please 
note that no unlabeled conceptual relationships were ex-
tracted in TTO-2 due to the support of 0.1. 

 
Table 6.  Number of generated relationships in Text-To-

Onto 

 
Ontology 

Conceptual 
relationships 
with labels 
« Relation 
Learning »  

Conceptual 
relationships  
without labels  
« Association Rule 
Learning » 

TTO1 33 5650 
TTO2 33 0 

 
Table 7.  Number of concepts and relationships in Text-

To-Onto ontologies 

 
Onto- 
logy 

Pertinent 
primitive 
Classes  

(%) 

Pertinent 
defined 
Classes  

(%) 

Pertinent 
hierarchical 
relationships 

(%) 

Pertinent 
conceptual 
Relation-
ships 

 (%) 

TTO1 336 0 223 5683 

TTO2 336 0 223 33 
 
In fact, we realized with our experiment that even a 

support of 0.1 (which is low) was discarding all the asso-
ciation rules generated by Text-To-Onto. In fact, TTO-2 
shows an important disparity of results in comparison 
with TTO-1. TTO-1 contains a lot of properties that mean 
nothing and that are not pertinent to the domain. The 
following tables (Table 8 and 9) summarizes the results 
with Text-To-Onto. 
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Table 8. Concepts and relationships pertinence according 
to Expert 1 

 
Ontology 

Pertinent 
primitive 
Classes  
(%) 

Pertinent 
hierarchical 
relationships 
(%) 

Pertinent 
conceptual 
relationships 
 (%) 

TTO1 72.02 58.74 0.3 
TTO2 72.02 58.74 51.51% 

 
Table 9. Concepts and relationships pertinence according 

to Expert 2 

 
Ontology 

Pertinent 
primitive 
Classes  
(%) 

Pertinent 
hierarchical 
relationships 
(%) 

Pertinent 
conceptual 
relationships 
 (%) 

TTO1 74.10 36.32 0.32 
TTO2 74.10 36.32 54.55 

 
Table 10 reflects the average relevance rate arising 

from the dual evaluation described above. 
 

Table 10. Average relevance rate for concepts and rela-
tionships in Text-To-Onto 

 
Ontology 

Pertinent 
primitive 
Classes  
(%) 

Pertinent 
hierarchical 
relationships 
(%) 

Pertinent con-
ceptual 
relationships 
 (%) 

TTO1 73.06 47.53 0.31 
TTO2 73.06 47.53 53.03 

 
Among the 336 concepts, only 73.06 % were considered 

as valid concepts. Only 33 labelled relationships with 
specified domain and range were learned with the rela-
tion learning tool among which only 17 were considered 
as valid. Finally, association rule learning output 5650 
associations which were all discarded.  

6.3. Result Analysis 

With Text-To-Onto, we can notice the following facts: 
association rule learning is not satisfactory: the extracted 
relationships have no label, and no real meaning, which is 
problematic.  According to the previous remarks, the ma-
jor weakness of Text-To-Onto remains the very small 
number of conceptual relationships. The second weakness 
lies, in the opposite, on the very important number of 
association rules, which is too noisy.  Moreover, when 
generating owl classes, Text-To-Onto creates two classes 
for a concept (e.g. aggregation) and its stem (e.g. aggreg), 
whereas both of them should refer to the same concept.  

In general, TEXCOMON gives better results than Text-
To-Onto in both concept and relationship learning as 
shown in the previous tables. Its major strength is in the 
conceptual relationship learning. However, TEXCOMON 
takes a longer time to process the corpus than Text-To-
Onto (which is very quick). 

Finally, we must underline that text mining tools must 
not only be judged on their extracted knowledge but they 
must also be evaluated according to the missing knowl-
edge (Knowledge available in the corpus but not in the 

generated ontology). Both TEXCOMON and Text-To-
Onto must be improved to find more knowledge from 
text. We are also in the process of assessing more thor-
oughly the domain ontology by comparing the resulting 
ontologies in term of structural and comparative charac-
teristics, leading to an evaluation methodology [46].    

The second evaluation dimension involves the quality 
of the learning knowledge object themselves and the 
added value of incorporating instructional roles and in-
structional theories in their composition. In fact, research 
works have already proven the interest of the pedagogical 
dimension in learning objects [8], [43]. The debate in the 
e-Learning community is rather on how and when we 
should include pedagogy in learning objects rather than 
on whether or not we should include it. The principal 
preoccupation of the community is to conserve the reus-
ability of learning objects. Thus constraining them to one 
pedagogical theory seems unfruitful. The interest of our 
approach is that a Learning Knowledge Object is con-
strained to a theory only at generation time. The theory is 
only a parameter in the LKO composition. Since content 
and pedagogy are clearly separated, it is possible to gen-
erate another LKO based on the same content but with 
another theory, thus solving the issue about reusability 
versus pedagogy. 

7. CONCLUSION 

We presented a platform, the Knowledge Puzzle Pro-
ject, which enables to capitalize existing learning objects 
with the creation of an ontology-based organizational 
memory. The organizational memory concept, as pre-
sented in this paper, represents a new perspective for the 
e-learning field as it is founded on a rather different idea: 
learning objects as content packages must not exist. In-
stead, assets, i.e. small fine-grained instructional units, 
can be exploited by composition mechanisms and learn-
ing services in order to aggregate Learning Knowledge 
Objects to fulfill specific training needs. This vision must 
be sustained by an ontological structure that represents 
the different necessary knowledge types: the domain 
knowledge, the instructional knowledge, the instructional 
learning theories and the competence model.  

We showed how the Knowledge Puzzle production 
subsystem enables the automatic domain ontology gen-
eration from learning object content through TEXCO-
MON, and how annotation and edition of assets, rules, 
competences and instructional roles are performed 
through ONTO-AUTHOR. 

This gives an OM’s content that the Knowledge Puzzle 
Exploitation Subsystem can exploit for the on-the-fly gen-
eration of active, independent, reusable and theory-aware 
learning knowledge objects. The LKOs can then be used 
in any training environment including standards plat-
forms and intelligent tutoring systems.  They can also be 
used as learning services or resources that provide access 
to rich knowledge structures. 

Our solutions contrast with current practices in the 
eLearning area and represent a way to bridge the gap 
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between classical eLearning systems and intelligent tutor-
ing systems. Furthermore, the LKO concept offers a great 
opportunity to go beyond the actual limited view of LOs 
by allowing the exploration of their content and making 
the integration of pedagogical knowledge more flexible in 
a given learning context.   

We also performed a semantic evaluation based on 
human experts and we compared our tool TEXCOMON 
with Text-To-Onto, one of the state of the art tools in do-
main ontology learning from text. This evaluation 
showed improved extraction results with our tool. 

Further work is needed to enhance both subsystems. In 
the production part, text mining and pattern extraction 
can be enhanced in order to decrease the generated noise.  
Furthermore, integration of more complex pedagogical 
scenarios and instructional theories [8] must be under-
taken to enrich the composition process. 

REFERENCES 

[1] M.-H. Abel, A. Benayache, D. Lenne, C. Moulin, C. Barry, and B. Chaput, 
“Ontology-based Organizational Memory for e-learning,”Journal of 
Educational Technology & Society , 7 (4), 98-111. 

[2]  ADL. Retrieved September 5, 2007, from http://www.adlnet.org 
[3] S. Amershi and C. Conati, “Automatic Recognition of Learner Groups in 

Exploratory Learning Environments,” Proceedings of the 8th International 
Conference on Intelligent Tutoring Systems, LNCS No 4053, pp.463-472, 
Springer-Verlag, Berlin, 2006. 

[4] R. Baker, A. Corbett, K. Koedinger and I. Roll, “Generalizing detection of 
gaming the system across a tutoring curriculum,” Proceedings of the 8th 
International Conference on Intelligent Tutoring Systems, LNCS No 4053, 
pp. 402-411, Springer-Verlag, Berlin, 2006. 

[5] A. Benayache, “Construction d’une mémoire organisationnelle de forma-
tion et évaluation dans un contexte e-learning : le projet MEMORae, ” 
Compiègne: Université de technologie de Compiègne, 2005. 

[6] T. Berners-Lee, J. Hendler and O. Lassila, “The Semantic Web,” Scientific 
American Magazine, 5 (1): 34–43, 2001. 

[7] B. S. Bloom, “Taxonomy of educational objectives: The classification of 
educational goals: Handbook I, cognitive domain”, Longman, New 
York, 1956. 

[8] J. Bourdeau, R. Mizoguchi, V. Psyché and R. Nkambou,  “Selecting theo-
ries in an ontology-based ITS authoring environment,” Proceedings of  
the 7th International Conference on Intelligent Tutoring Systems, LNCS N 
3220, pp.150-161, Springer-Verlag, Berlin, 2004.  

[9] P. Buitelaar, P. Cimiano, M. Grobelnik and M. Sintek, “Ontology Learning 
from Text,” Tutorial at ECML/PKDD 2005, Porto, Portugal, 2005. 

[10] K. Cardinaels, M. Meire and E. Duval, “Automating metadata genera-
tion: The simple indexing interface,” Proceedings of the 14th International 
Conference on World Wide Web, pp. 548 – 556, Chiba, Japan, 2005. 

[11] M-C. De Marneffe, B. MacCartney and C.D. Manning , “Generating 
Typed Dependency Parses from Phrase Structure Parses,“ Proceedings of 
the 5th Conference on Language Resources and Evaluation, pp. 449-454, 
Genoa, Italy, 2006.  

[12] E. Frank, G.W. Paynter, I. H. Witten, C. Gutwin, and C.G. Nevill-
Manning, “Domain-specific key phrase extraction,” Proceedings of the 
16th International Joint Conference on Artificial Intelligence, pp. 668-673, San 
Francisco, USA, 1999.  

[13] R. M. Gagné, L. J. Briggs, and W. W. Wagner, “Principles of instructional 
design (4th ed.),” Fort Worth: HBJ College Publishers, 1992. 

[14] F. Gandon, “A Multi-Agent Architecture For Distributed Corporate 
Memories,” Proceedings of the Third International Symposium, From Agent 

Theory to Agent Implementation, at the 16th European Meeting on Cybernet-

ics and Systems Research (EMCSR 2002), (pp. 623-628). Vienna, 2002. 
[15] D. Gasevic, J. Jovanovic and V. Devedzic, “Ontologies for Creating 

Learning Object Content,” Proceedings of the 8th International Conference 
on Knowledge-Based Intelligent Information & Engineering Systems, pp. 284-
291, Wellington: Springer, 2004. 

[16] S. Graf and R. Bekele, “Forming Heterogeneous Groups for Intelligent 
Collaborative Learning Systems with Ant Colony  Optimization,” Pro-
ceedings of the 8th International Conference on Intelligent Tutoring Systems, 
LNCS No 4053,  pp. 217-226, Springer-Verlag, 2006. 

[17] Y. Hayashi, J. Bourdeau and R. Mizoguchi, “Ontological Support for a 
Theory-Eclectic Approach to Instructional and Learning Design,” Pro-
ceedings of the First European Conference on Technology Enhanced Learning 

(EC-TEL), pp. 155-169, 2006. 
[18] M. Hearst, “Automatic Acquisition of Hyponyms from Large Text Cor-

pora,” Proceedings of the Fourteenth International Conference on Computa-
tional Linguistics, pp. 539–545, Nantes, 1992.  

[19] C. Heiner, R. Baker and K. Yacef (Editors), Proceedings of Educational Data 
Mining Workshop Held in conjunction with the 8th International Conference 

on Intelligent Tutoring Systems, Jhongli, Taiwan, 2006. 
[20] IMS ePortfolio Specification. Retrieved June 10, 2007 from 

www.imsglobal.org/ep/index.html 
[21] J. Jovanović, D. Gasevic and V. Devedzic, “Ontology-based automatic 

annotation of learning content,” International Journal on Semantic Web and 

Information Systems 2(2):  91-119, 2006. 
[22] J. Kay, N. Maisonneuve, K. Yacef and O.  Zaïane, “Mining Patterns of 

Events in Students' Teamwork Data,” Proceedings of the Workshop on 

Educational Data Mining Workshop, ITS'2006, pp. 45-52, 2006. 
[23] K. Keenoy, A. Poulovassilis, V. Christophides, P. Rigaux, G. Papamarkos, 

A. Magkanaraki, M. Stratakis, N. Spyratos and P.T. Wood, “Personal-
isation Services for Self E-learning Networks,” Proceedings of Interna-
tional Conference on Web Engineering, LNCS No 3140, pp. 215-219, 
Springer-Verlag, Berlin, 2004.  

[24] D. Klein and C.D. Manning, “Accurate unlexicalized parsing,” Proceed-
ings of the 41st Meeting of the Association for Computational Linguistics, pp. 
423 – 430, Sapporo, Japan, 2003. 

[25] Y. Li and R. Huang, “Dynamic Composition of Curriculum for Personal-
ized E-Learning,” Proceedings of the 14th International Conference on Com-
puters in Education (ICCE2006), IOS Press, 2006.  

[26] A. Maedche and S. Staab, “Ontology Learning for the Semantic Web,” 
IEEE Intelligent Systems 16 (2): 72-79, 2001. 

[27] M. D. Merrill, Instructional Transaction Theory (ITT): Instructional De-
sign Based on Knowledge Objects, in Charles M. Reigeluth (Ed.). In-
structional Design Theories and Models: A New Paradigm of Instruc-
tional Technology, Lawrence Erlbaum Associates, 1999. 

[28] R. Mizoguchi and J. Bourdeau, “Using Ontological Engineering to Over-
come Common AIED Problems,” Journal of Artificial Intelligence and Edu-
cation, Special Issue on AIED, vol.11, pp. 107-121, 2000. 

[29] J. Mostow, J. Beck, H. Cen, A. Cuneo, E. Gouvea and C. Heiner, “An 
educational data mining tool to browse tutor-student interactions: Time 
will tell!,” Proceedings of the workshop on educational data mining, pp. 15-22, 
2005. 

[30] R. Navigli and P. Velardi, “Learning Domain Ontologies from Document 
Warehouses and Dedicated Websites,” Computational Linguistics, 
30(2):151-179, MIT Press, 2004. 

[31] R. Nkambou, E. Mephu Nguifo, O. Couturier and P. Fournier-Viger, 
“Problem-Solving Knowledge Mining from Users' Actions in an Intelli-
gent Tutoring System,” Proceedings of the 19th Canadian Conference on Ar-
tificial Intelligence (AI'2007), Lecture Notes in Artificial Intelligence 3501, 
pp. 393-404, Springer-Verlag, Berlin, 2007. 



14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2007-06-0304.R2 

 

[32] J. D. Novak and A. J. Cañas, “The Theory Underlying Concept Maps and 
How to Construct Them,” Florida Institute for Human and Machine 
Cognition. Pensacola, FI, USA: Florida Institute for Human and Ma-
chine Cognition, 2006. 

[33] M. J. O'Connor, H. Knublauch, S. W. Tu,  B. Grossof,  M. Dean, W. E.  
Grosso and M. A. Musen, “Supporting Rule System Interoperability on 
the Semantic Web with SWRL,” Proceedings of the 4th  International Se-
mantic Web Conference (ISWC2005), Galway, Ireland, 2005. 

[34] P. R. Polsani, “Use and Abuse of reusable Learning objects,” Journal of 
Digital Information, 3(4): Article No. 164, 2004. 

[35] M. Poesio and A. Almuhareb, “Identifying Concept Attributes Using A 
Classifier,” Proceedings of the ACL Workshop on Deep Lexical Acquisition, 
pp. 18-27, Ann Arbor: Association for Computational Linguistics, 2005. 

[36] Protégé Ontology Editor. Retrieved June 10, 2007 from 
http://protege.stanford.edu/ 

[37] S. Sánchez and M-A Sicilia, “On the Semantics of Aggregation and Gen-
eralization in Learning Object Contracts,” Proceedings of the 4th IEEE In-
ternational Conference on Advanced Learning Technologies (ICALT 2004), 
pp. 425-429. Joensuu, Finland, 2004. 

[38] I. Satoh and R. Okada, “Learning Object Combination Support System 
based on ARCS Model of Motivation,” Proceedings of Computers and Ad-
vanced Technology in Education (CATE 2005), Oranjestad, Aruba, 2005. 

[39] SCORM. Retrieved September 5, 2007, from Sharable Content Object 
Reference Model: http://www.adlnet.gov/scorm/index.cfm 

[40] W. W. Song, “A Metadata Framework for Description of Learning Ob-
jects,” Proceedings of the International Conference on Web-Based Learning 

(ICWL 2002), pp. 31-43, LNCS 2436, Springer-Verlag, Berlin, 2002. 
[41] L. Stojanovic, S. Staab and R. Studer, “eLearning based on the Semantic 

Web,” Proceedings of WebNet2001 - World Conference on the WWW and 

Internet, Orlando, 2001. 
[42] UIMA. Retrieved June 10, 2007 from http://uima-

framework.sourceforge.net/ 
[43] C. Ullrich, “Description of an instructional ontology and its application in 

web services for education,” Proceedings of the Workshop on Applications of 

Semantic Web Technologies for E-learning, pp. 17-23, Hiroshima, Japan, 
2004. 

[44] L.Van Elst and A. Abecker, “Domain Ontology Agents for Distributed 
Organizational Memories,” Knowledge Management and Organizational 

Memories, pp. 147-158, Kluwer Academic Publishers, 2002. 
[45] A. Zouaq, R. Nkambou and C. Frasson, “Building Domain Ontologies 

From Text For Educational Purposes,” Proceedings of the Second European 
Conference on Technology Enhanced Learning - “Creating new learning ex-

periences on a global scale,”  Greece, 2007. 
[46] A. Zouaq and R. Nkambou, "Evaluating the Generation of Domain On-

tologies in the Knowledge Puzzle Project," IEEE Transactions on Knowl-
edge and Data Engineering, 08 Jan. 2009, IEEE computer Society Digital 
Library, http://doi.ieeecomputersociety.org/10.1109/TKDE.2009.25. 

[47] A. Zouaq and R. Nkambou, "Building Domain Ontologies from Text for 
Educational Purposes," IEEE Transactions on Learning Technologies, 1(1): 
49-62, IEEE Computer Society, 2008. 

 

Amal Zouaq received her Ph.D. (2008) in 
Computer Science from the University of Mon-
treal. She is now a postdoctoral researcher at 
the Ecole Polytechnique de Montréal. She is 
also a lecturer in the Computer Science De-
partment at the University of Quebec at Mon-
treal. Her research interests include knowledge 
representation and extraction, Semantic Web, 
data mining, ontology engineering and compu-

tational linguistics. She also works in the area of Intelligent Tutoring 
Systems (ITS) with the aim of bridging the gap between the ITS 
community and the e-Learning community. 

 
Roger Nkambou is currently a Professor in 
Computer Science at the University of Que-
bec at Montreal, and Director of the GDAC 
(Knowledge Management Research) Labora-
tory (http://gdac.dinfo.uqam.ca). He received 
a Ph.D. (1996) in Computer Science from the 
University of Montreal. His research interests 
include knowledge representation, intelligent 
tutoring systems, intelligent software agents, 
ontology engineering, student modeling and 
affective computing. He also serves as mem-

ber of the program committee of the most important international 
conferences in Artificial Intelligence and Education. 


