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Abstract. Open ontology learning is the process of extracting a domain ontology from a knowledge source in 
an unsupervised way. Due to its unsupervised nature, it requires filtering mechanisms to rate the importance 
and correctness of the extracted knowledge. This paper presents OntoCmaps, a domain independent and open 
ontology learning tool that extracts deep semantic representations from corpora. OntoCmaps generates rich 
conceptual representations in the form of concept maps and proposes an innovative filtering mechanism based 
on metrics from graph theory. Our results show that using metrics such as Betweenness, PageRank, Hits and 
Degree centrality outperforms the results of standard text-based metrics (TF-IDF, Term Frequency) for con-
cept identification. We propose voting schemes based on these metrics that provide a good performance in re-
lationship identification, which again provides better results (in terms of precision and F-measure) than other 
traditional metrics such as Frequency of co-occurrences. The approach is evaluated against a gold standard 
and is compared to the ontology learning tool Text2Onto. The OntoCmaps generated ontology is more ex-
pressive than Text2Onto ontology especially in conceptual relationships and leads to better results in terms of 
precision, recall and F-measure. 
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1 Introduction 

With the explosion of the amount of electronic data, in domain-dependent corpora and the Web, the ability of 
creating conceptual models from textual data is a key issue for the current Semantic Web and Artificial Intelli-
gence research. In fact, the Semantic Web relies heavily on domain ontologies as conceptual models, which aim 
at making machines able to interpret the actual Web content. However, a well-known problem of the Semantic 
Web is the knowledge acquisition bottleneck that results from the difficulty of manually building domain on-
tologies and making them evolve to reflect the actual data content. For this reason, there is a need of semi-
automatic methods for building domain ontologies that help domain experts to deal with huge amounts of data. 
There have been many attempts to reduce this bottleneck through ontology learning tools such as Text-To-Onto 
[Maedche & Volz, 2001], Text2Onto [Cimiano & Volker, 2005], OntoLearn [Navigli & Velardi, 2004] and On-
toGen [Fortuna et al., 2004]. However, these tools suffer from a number of shortcomings that hinder their ability 
to effectively help the domain expert: 
1. They generally generate very shallow and lightweight ontologies due to their reliance on shallow natural 

language processing (NLP) and stochastic methods. While “A little semantics goes a long way” as stated by 
[Hendler et al., 2003], there are many application domains that require more expressive ontologies [Volker 
et al., 2008]; 

2. They are not designed with the user in mind [Hatala et al., 2009]. However, in a semi-automatic process, 
building effective user-centered interfaces and processes is an essential step towards the success of the tool. 
In particular, a previous study in our research group [Hatala et al., 2009] showed that users are overwhelmed 
by the huge number of concepts proposed by the tool without any other guidance. 

Moreover, one other weak point of ontology learning approaches is that they do not require particular charac-
teristics about the knowledge source used to extract the ontology. However, the quality of the generated domain 
ontology will heavily depend on the quality of its source corpora. 

In order to deal with the abovementioned issues, there is a need to set up a methodology for more effectively 
generating a domain ontology in a semi-automatic, open, unsupervised and domain-independent manner. 
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This methodology should answer the shortcomings highlighted above by carefully choosing the source of know-
ledge, adopting deep NLP techniques, filtering the extracted knowledge and presenting adequately the results to 
users. In particular, the methodology should exhibit the following characteristics [Zouaq et al., 2011]: 

• It should be unsupervised and should not rely on hand-made semantic resources like frames, ontologies and 
pre-existing templates, due to the large effort required from domain experts to develop them; 

• It should be able to filter the noise produced by the unsupervised extraction. In fact, the “blinder” the ap-
proach is, the more likely it is to generate noisy knowledge; 

• It should integrate the knowledge coming from different texts [Kim et al., 2009] and recognize various refer-
ences to the same elements from various sources. 

While the majority of the approaches are domain-independent, very few, if any, recur to deep semantic analy-
sis to extract ontological elements. In particular, the issue of filtering the knowledge is generally addressed using 
traditional metrics from information theory and targets specifically concept extraction. This paper introduces On-
toCmaps, an open ontology learning tool, which creates graph structures, called concept maps, from domain cor-
pora. OntoCmaps relies on deeper semantic analysis methods than what is currently proposed by state-of-the-art 
ontology learning tools. Consequently, it creates graph structures densely connected, thus generating richer con-
ceptual relationships than the state-of-the-art ontology learning tools. To be able to choose the most relevant 
concepts and relationships extracted from texts, OntoCmaps requires filtering methods to be adapted to the gen-
erated structures. Accordingly, after briefly presenting the OntoCmaps extraction process, the paper focuses on 
the issue of filtering the extracted data with an innovative approach: since the extracted representations are 
graph-based, we propose the use of graph theory measures to identify the important components in the graphs. 
Traditionally, filtering in ontology learning tools remains generally dependent on statistical measures such as 
TF-IDF and C/NC value (for concepts) [Cimiano & Volker, 2005]. As shown in Sect. 5, this paper demonstrates 
that it is possible to obtain better results than these standard measures using metrics from graph theory and using 
semantic relatedness measures to filter out important concepts and relationships, which are then promoted as 
elements of the domain ontology. To our knowledge, this has not been proposed until now. Our assumption is 
that these metrics may provide some evidence on the relevance of concepts and relationships without recurring 
to any external structured knowledge source (e.g., taxonomy, ontology, or dictionary), as this is usually done in 
the state of the art [Soderland & Mandhani, 2007]. The approach is evaluated at the ontology learning level by 
comparing the ontology generated by OntoCmaps with the ontology of a state-of-the-art ontology learning tool 
Text2Onto [Cimiano & Volker, 2005] using a gold standard. It is also evaluated at the filtering level, by compar-
ing the metrics from graph theory to traditional metrics from information theory and to a naïve random baseline.  

In this context, the objectives of this paper are: 

1. To introduce the OntoCmaps ontology learning tool with the emphasis on its deep semantic analysis and fil-
tering components; 

2. To propose a filtering method based on metrics and combination of metrics (a voting scheme) to rank con-
cepts and relationships and extract the most relevant ones; 

3. To determine empirically the metrics, which are the most likely to give the results with the highest preci-
sion;  

4. To compare the results of each metric to those of standard weighting schemes (e.g., TF-IDF, Point-wise mu-
tual information, and Frequency of co-occurrences);  

5. To assess the results of all the metrics using a human gold standard and a random baseline; and 
6. To assess the results by comparing them with a state-of-the-art ontology learning tool, Text2Onto [Cimiano 

& Volker, 2005] on the same corpora and against the same gold standard. 

This paper is organized as follows. After the introduction, Section 2 presents the motivation of our approach and 
positions our proposal. Section 3 presents the information extraction process using deep NLP. Section 4 focuses 
on the filtering process, introduces our hypotheses regarding concepts and relationships relevancy, as well as the 
metrics for ranking concepts and relations based on graph theory. Section 5 talks about our experiments and 
compares the results with other standard measures as well as with a human ranking of concepts and relation-
ships. Finally, section 6 presents a set of related work and section 7 summarizes the paper and discusses future 
work. 
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2 Motivation 

2.1 Deep Semantic Analysis Methods 

As previously stated, existing ontology learning approaches and tools are mainly based on shallow NLP analysis 
techniques and stochastic methods. Shallow techniques do not attempt to achieve an exhaustive linguistic analy-
sis and they ignore many details in the input and the linguistic framework [Schafer, 2007][Xu & Krieger, 
2003][Crysmann et al., 2002]. They deliver partial, non-exhaustive and sometimes erroneous representations as 
it will be demonstrated in the examples below. When applied to ontology learning, these techniques result into 
very shallow ontologies and lead especially to a lack of conceptual relations between the extracted concepts as it 
will be shown in the evaluation section (Sec. 5) of this paper. In fact, adequately extracting relations requires 
more than shallow NLP. For instance, consider these two examples extracted from [Schafer, 2007]: 
1. Things would be different if Microsoft was located in Georgia 
2. The National Institute for Psychobiology in Israel was established in May 1971 as the Israel Center for Psy-

chobiology by Prof. Joel. 
In the first example, a shallow NLP component based on regular expressions would extract that Microsoft was 

located in Georgia, while in the second example, it would extract that Israel was established in May 1971, both 
assertions being wrong [Schafer, 2007]. Many similar errors can be made by relying on shallow extraction tech-
niques. On the contrary, not only is deep NLP able to determine correct arguments for relations, but it is also 
very useful to identify negation scope, quantifiers’ expressions, and other linguistic phenomena useful for build-
ing complete and accurate semantic representations leading to more expressive ontologies [Zouaq & Nkambou, 
2009][Jiang & Tan, 2010]. That said, statistical methods for NLP are the major trend over the last few years and 
they have contributed to major advances in the field [Bos, 2009]. This is the reason why OntoCmaps relies on a 
statistical syntactic parser, the Stanford parser [Klein & Manning, 2003], as its module for extracting syntactic 
representations. 

2.2 Filtering based on Graph Metrics 

The filtering issue is very important when the adopted approach for knowledge extraction is an open and unsu-
pervised one. In fact, most of the automatic approaches for semantic analysis and knowledge extraction [Lin et 
al., 2009] [Gordon et al., 2010] generate a lot of noisy data. This fact is worsened when the extraction relies on 
various analysis stages that can each contribute to errors due to improper syntactic or semantic analysis which 
might propagate to further stages. Therefore, there is a need of adequate filtering mechanisms that rank the accu-
racy or probability of the extracted elements. In the ontology learning community, this is usually done using 
standard measures of information retrieval such TF-IDF [Salton & Buckley, 88] and C/NC value [Frantzi & 
Ananiadou, 99] or using redundancy [De boer et al., 2007]. However this ranking is generally limited to con-
cepts. In the context of deep NLP, and with the new ability to generate dense conceptual representations in the 
form of graphs, as we propose here with OntoCmaps, our initial hypothesis was that metrics from graph theory 
might provide enough evidence to perform adequately this required filtering step and to identify the important 
elements in the graphs. In fact, these metrics have been widely used in social network analysis and have been 
applied to ontologies for the purpose of analysis [Alani & Brewster, 2006] [Hoser et al., 2006], but not for filter-
ing purposes to the best of our knowledge. There are however new initiatives [Coursey & Mihalcea, 2009][Xie, 
2005][Zouaq, 2008][Ozgur et al., 2008][Navigli & Lapata, 2010] in the text mining community that show that 
these metrics might be beneficial for extracting important data in network structures, and that measures such as 
degree, eigenvector, betweenness and closeness centrality might be useful in many automatic extractions and fil-
tering tasks such as important gene-disease associations discovery [Ozgur et al., 2008] and noun phrase predic-
tion [Xie, 2005]. In the same line of research, this paper proposes a set of metrics that are used to identify graph 
elements’ importance for ontology learning. 
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3 Semantic Analysis in OntoCmaps 

OntoCmaps, which is introduced in this paper, is the successor of TEXCOMON [Zouaq, 2008][Zouaq & Nkam-
bou, 2009] and it is based on a domain-independent, unsupervised, open and deep knowledge extraction ap-
proach. OntoCmaps relies on three main phases to learn a domain ontology: 1) the extraction phase that per-
forms a deep semantic analysis and extracts various chunks of knowledge (domain terms, is-a relationships, and 
conceptual relationships); 2) the integration phase that builds concept maps, which are composed of terms and 
labeled relationships, and relies on basic disambiguation techniques; and finally 3) the filtering phase where 
various metrics are used to filter out the obtained concept maps. The filtered concept maps are called ontological 

maps and are then validated and exported into a domain ontology.  
A concept map about a term t can be defined as a source root element t linked to various other terms through 

taxonomical links (i.e., generalization/specialization) and conceptual links. These maps in turn may or may not 
be interlinked depending if relationships have been identified between their elements.  Note that there is a differ-
ence between these concept maps which are in fact term maps that originate from the semantic analysis of texts 
and ontological maps, which are obtained once the filtering of concept maps is performed.  

In the extraction phase, OntoCmaps relies on a grammar of syntactic patterns which creates semantic repre-
sentations from syntactic dependency relationships. Furthermore, OntoCmaps does not rely on any predefined 
domain-dependent template to extract the semantic representations. It uses solely two linguistic components to 
obtain the syntactic inputs:  the Stanford Parser along with its dependency module [De Marneffe et al., 2006] and 
the Stanford POS Tagger [Toutanova et al., 2003]. The Stanford dependency module generates syntactic de-
pendency relations between the related words of a sentence. The POS Tagger creates parts-of-speech for each 
word in the sentence. Based on these two inputs, OntoCmaps creates a condensed syntactic representation by en-
riching the dependency elements with their parts-of-speech as we proposed in [Zouaq et al., 2010]. For example, 
for the sentence: “SCORM and the IMS SS Specification are application profiles of the IMS Content Packaging 

Specification and as such they add a couple of restrictions”, the Stanford parser produces the following represen-
tations: 

1. SCORM/NNP and/CC the/DT IMS/NNP SS/NNP Specification/NNP are/VBP application/NN pro-
files/NNS of/IN the/DT IMS/NNP Content/NNP Packaging/NNP Specification/NNP and/CC as/RB 
such/JJ they/PRP add/VBP a/DT couple/NN of/IN restrictions/NNS  

2. nsubj(profiles-9, SCORM-1) 
det(Specification-6, the-3) 
nn(Specification-6, IMS-4) 
nn(Specification-6, SS-5) 
conj_and(SCORM-1, Specification-6) 
cop(profiles-9, are-7) 
nn(profiles-9, application-8) 
det(Specification-15, the-11) 
nn(Specification-15, IMS-12) 
nn(Specification-15, Content-13) 
nn(Specification-15, Packaging-14) 
prep_of(profiles-9, Specification-15) 
advmod(such-18, as-17) 
conj_and(Specification-15, such-18) 
nsubj(add-20, they-19) 
dep(profiles-9, add-20) 
det(couple-22, a-21) 
dobj(add-20, couple-22) 
prep_of(couple-22, restrictions-24) 

OntoCmaps merges both representations into a single one by adding the parts-of-speech to the dependency re-
lations (e.g., nsubj(profiles-9/NNS, SCORM-1/NNP)). This representation is then exploited to detect particular 
syntactic patterns, which are mapped to semantic representations through rules that apply transformations on the 
input representations. In the example sentence, OntoCmaps is able to detect the following relations: 
1. Is_a(SCORM, application profiles of the IMS Content Packaging Specification) 
2. Is_a(IMS SS Specification, application profiles of the IMS Content Packaging Specification) 
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3. Is_a(couple of restrictions, couple) 
4. Is_a(profiles of the IMS Content Packaging Specification, profile) 

The patterns are divided into conceptual patterns and hierarchical patterns. Conceptual patterns identify the 
main structures of the language. Those structures can be directly mapped to conceptual semantic representations 
(see Table 1), while hierarchical patterns concentrate on the extraction of taxonomical links, following the work 
of [Hearst, 92], but based on the dependency formalism. Conceptual patterns are organized into a hierarchy and 
the extraction process tries to extract the most specific patterns first before going up in the hierarchy. For in-
stance, the pattern “nsubj-dobj-xcomp” which is deeper in the hierarchy than the patterns “nsubj-dobj” and 
“nsubj-xcomp” should be first tested for instantiation in the current sentence. If a pattern is instantiated, then all 
its parents in the hierarchy are disregarded.  

Table 1. An excerpt of the patterns grammar  

Patterns 

 

 

 

 

Transformations: 

Join Z and P and creates a new link Z _P 

Create predicate Z_P (X, K) 

 

Example:  

 

 

 

 

 

 

Semantic Analysis: 

Is_used_in (training resource, learning experience) 

 

 

 

 

 

Transformations: 

Join Y and P and creates a new link Y _P 

Create predicate Y_P (X, K) 

 

Example: 

 

 

 

Semantic Analysis: 

Consist_of(learning experience, activities) 

 

 

 

 

 

Transformations: 

Create predicate K (X, Y) 

 

Prep_in 
nsubj rcmod 

Learning 
experience 

Is 
used 

representation 
of 

 information  

Training 
resources 

 

Consist 
 

learning 
experience 
 

nsubj 

activities 

Prep_of 

Y/v X/n 
 

nsubj 

K/n 

Prep_P 

Y/n X/n 
 

nsubj rcmod 
K/n 

Prep_P 
Z/v 

Y/n X/n 
 

nsubj 

K/v 

cop 
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Example: 

 

 

 

Semantic Analysis: 

Is_a (training resource, representation of information) 

 

 
Patterns rely on transformations based mainly on the four generic operations: 

• Node fusion: results into the aggregation of some nodes to form compound domain terms or relations. For 
instance, in the previous example, the dependency nn(Specification-15, IMS-12) would lead to the creation 
of one node IMS Specification; 

• Link/node fusion:  results into the creation of links labels from the fusion of some nodes and links. For in-
stance, in the sentence learning experience consist of activities presented in Table 1, there is a link (prep-of) 
and a node (consist) fusion operation that creates the relation label “consist_of”; 

• Link creation: results into the creation of new links with specific labels (such as attribute or is-a links) 
mapped to some syntactic categories (such as prepositions, appositives, etc.)  For example, in the sentence 
the user’s ID…, there is a data type attribute in the form of a possessive attribute “poss_attr” that is created 
between the term user and the term ID. 

• Link copy: in case of conjunctions, this operation is used to distribute the input/output links of the main 
conjunction term to the following ones, resulting into a distributive interpretation of the conjunction. In our 
example sentence, all the dependency relations linked to the word “SCORM-1” are duplicated and also 
linked to the word “specification-6” which is linked to “SCORM-1” in the original representation through a 
conjunction and. 

Based on these patterns, OntoCmaps offers two kinds of tools: 1) a document semantic parser which high-
lights the identified patterns and the obtained representations sentence by sentence; and 2) a corpus semantic 

parser which performs the semantic analysis on the whole corpus, highlights the identified patterns and the ob-
tained representations document by document (Figure 1) and performs the integration of the extracted represen-
tations. In figure 1, we can see the corpus on the left hand-side, the selected document in the center, and the list 
of extracted patterns, sentence by sentence in the list below the document. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1. The OntoCmaps Tool 

In this integration phase, concept maps are then created by performing basic term disambiguation using 
mainly: i) stemming such as mapping assets and asset to the same root asset and aggregating them in the same 

Representation 
of information 

Training 
resource 

nsubj 

is 

cop 
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concept map, and mapping the relations “launch”, “can launch”, “launching”, and “launches” to the same rela-
tion); or; ii) basic synonym detection where synonyms resulting from abbreviation relations, such as SCORM 
runtime environment and SCORM RTE, are considered as the same concept and their relations belong to the 
same concept map. These two steps eventually result into concept maps around domain terms. There is also a co-
reference resolution that is performed during the extraction phase in the execution of the rules associated with 
the patterns. For example, in the sentence: assets are representations that do not call the SCORM API, the co-
reference resolution creates a relation between the term “assets” and the term “SCORM API” while the gram-
matical representation links the term “representations” to the term “SCORM API”. The integration phase thus 
benefits transparently from this co-reference resolution. Of course, dealing with a homogenous domain corpus 
may greatly reduce the difficulty of this aggregation. In this work, we assume that the corpus is about the same 
domain. 

The number of obtained concept maps after the integration may differ depending on the corpus and the de-
tected patterns. If the corpus is well-chosen, then it is likely that OntoCmaps will produce one big connected 
graph with possibly few disconnected components. In fact, the well-chosen source corpus is an essential step in 
ontology learning [Brewster, 2008]. The corpus should encompass a majority of ontological statements (e.g., de-
finitions or examples of concepts) and very few factual statements (e.g., named entities). These types of texts 
come mainly from academic textbooks or encyclopedias that are meant to be used by students for learning a do-

main. Similarly, an ontology learning system should also rely on these types of resources to learn the initial do-
main ontology, as we have previously advocated and empirically validated in [Zouaq & Nkambou, 2009]. Ex-
amples of appropriate sources would be a specific domain course or Wikipedia pages on some domain. How-
ever, their exact content should be manually checked to ascertain the existence of ontological statements, which 
is not the case for all Wikipedia entries). The Web can then be considered as a valuable source for extending the 
ontology. 

4 Filtering in OntoCmaps 

The third and last phase for learning the domain ontology is the filtering phase, which aims at ranking the ob-
tained concept maps (domain terms, taxonomical links, and conceptual links). The proposed architecture (Fig. 2) 
is independent of a particular tool or framework. In fact, here we present our results as the filtering step of our 
tool OntoCmaps, but the process can be applied with any set of concept maps from a given domain. In this ge-
neric perspective, the input to the ranking step (shaded in Figure 2) is composed of domain specific concept 
maps that can originate from two sources: (1) emerging from domain corpora (texts) using a tool such as On-
toCmaps, or (2) existing domain concepts maps from repositories. The output is a list of important concepts and 
relationships. Figure 2 shows the proposed generic pipeline as well as the tools used to support the discussed 
process (given on the right hand side of the figure). 

 

Figure 2. Conceptual Architecture 

The necessity of filtering might be better explained through an example. In the previous example, we had the 
following extracted semantic relations: 
1. Is_a(SCORM, application profiles of the IMS Content Packaging Specification) 
2. Is_a(IMS SS Specification, application profiles of the IMS Content Packaging Specification) 
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Network/ Graph 
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Concept Maps (Cmaps) 

Concept Map Ranking 
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Repository 
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3. Is_a(couple of restrictions, couple) 
4. Is_a(profiles of the IMS Content Packaging Specification, profile) 

We can notice that relations 1, 2 and 4 may be considered as “important”, but that relation 3 may not be of in-
terest to the domain because it is too general, and it should be filtered out. Other relations or terms may be wrong 
due to improper syntactic analysis or semantic analysis and should also be detected and assigned a very low 
rank. 

Now the question is what kind of filtering measures are the best suited to perform this ranking. 

4.1 Hypotheses 

The approach presented in this paper is an experimental study that relies on a set of hypotheses to rank terms and 
relationships based on the structure of concept maps. As previously shown, these maps are constructed from 
terms and relationships between terms that are discovered in domain corpora or that are built manually (Figure 
2). To apply graph-based metrics, terms of concept maps are considered graph nodes, and relationships are 
edges. Our assumption is that graphs or concept maps should exhibit some structural characteristics that may re-
flect the importance of nodes and relationships to the domain.  

We propose a set of hypotheses that draw their roots mainly from the notion of centrality [Borgatti & Everett, 
2006], which is essential in the analysis of networks. The hypotheses are based on metrics often used in social 
network analysis, namely the Degree centrality, the Betweenness centrality and the Eigen-vector centrality (Pag-
eRank, Hits). Thus, our hypotheses state that: 

H1. The importance of a term may be a function of the number of relations that start from and end at the term. 
This can be measured using the Degree of a node, which is computed based on the number of edges that are 
incident to that node.  

H2. The importance of a term may be a function of its centrality to the graph. This can be measured using Be-
tweenness centrality. The betweenness centrality of a node A can be computed by the ratio of shortest paths 
through the node A connecting all pairs of other nodes in the graph.  

H3. The importance of a term may be a function of the number of important terms that point to it. This can be 
measured using the Page Rank of a node, which is based on the number of links that point to the node, 
while taking into account the importance of the source nodes of these links. This is also related to the au-
thorities detected through the Hits algorithm [Kleinberg, 99]. 

H4. The importance of a relationship may be a function of its source and destination concepts. Here, the impor-
tant relationships are those which occur between two important concepts. 

H5. The importance of a relationship may be a function of its centrality to the graph. Betweenness centrality 
can also be used to measure the centrality of a given edge.  

All these hypotheses were tested within the OntoCmaps tool. It must be noted that the graph on which the me-
trics are applied is built using some pre-filtering mechanisms. For instance, OntoCmaps neglects extractions that 
contain stop words, tests if the arguments of a relation are nominal, and keeps only certain types of relations 
(verbal, equivalent, hierarchical and instance) in the graph for the filtering step.  

4.2 Filtering Important Terms 

A number of metrics from graph theory and from information retrieval were used to filter important terms and 
thus promote them as potential concepts in the domain ontology.  

4.2.1 Metrics from Graph Theory 

All the metrics from graph theory were computed using the JUNG framework [JUNG, 2010], which is a soft-
ware library that enables the manipulation, analysis, filtering and visualization of data as graphs. In particular, 
JUNG offers a number of ranking algorithms that measure the influence, authority or centrality of a given node 
or relation in a graph. Since our goal was to measure the importance of terms, we chose four ranking algorithms 
namely:  
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• Betweenness centrality, which assign each node a value that is derived from the number of shortest 
paths that pass through it;  

• The well-known PageRank algorithm [Brin & Page, 98];  
• The Hits algorithm which ranks nodes according to the importance of hubs and authorities [Kleinber, 

99]; 
• The Degree centrality which identifies the number of edges from and to a given node.  

The four metrics: Degree, Betweenness, PageRank and Hits were computed as follows: 
Given a graph G= (V, E) where the set of nodes (V) is represented by terms and the set of edges (E) is repre-

sented by labeled relationships between terms, and given a particular term t: 
 

Degree (t) = the number of edges incident to t 

Betweenness (t) = the ratio of shortest paths between any two terms that contain t 

PageRank (t) = the fraction of time spent visiting t [JUNG, 2010] 

Hits(t) = the authority score of t, which is related to the score of hubs that point to it 

 

JUNG [JUNG, 2010] defines the PageRank of a node as the fraction of time spent at that node relative to all 
other nodes. In order to compute this fraction, the graph is transformed into a first-order Markov chain where the 
transition probability of going from node u to node v is calculated using the following formula [JUNG, 2010]: 

 
PageRank(u)=(1-alpha)*[1/outdegree(u)] + alpha*(1/|V|) 

 

where alpha is a parameter typically set between 0.1 and 0.2 and |V| is the number of vertices in the graph. 
Once the Markov chain is created, the stationary probability of being at each node (state) is computed using an 
iterative method.  

All the metrics are normalized to be in the range [0-1] by dividing each value by the maximum value in the 
graph.  

4.2.2 Standard Information Retrieval Metrics  

In addition to the metrics from graph theory, we computed TF-IDF and term frequency (TF), two well-known 
metrics in information retrieval, as well as a random metric, which picks up important terms and relationships 
randomly. The TF-IDF metric is computed as follows: 

 
TFij = the number of occurrences of the term i/sum of the number of occurrences of all terms in document j 

IDFi = log (|D|/number of documents containing the term i) 

Where |D| is the number of documents in the corpus 
TF-IDFij = TFij*idfi 

 
The term frequency metric is computed by calculating the frequency of each domain term in the whole corpus 

and normalizing it using the maximum frequency. In OntoCmaps, the metrics TF-IDF and TF are calculated on 
the whole corpus, which includes compound domain terms, i.e. terms that emerge from the semantic analysis of 
texts through aggregation operations and filtered from stop words and certain parts-of-speech. For example, 
verbs cannot be considered as domain terms. This pre-filtering already enhances the precision of both metrics. 

4.2.3 Voting Schemes 

Using the graph theory metrics defined in Section 4.2.1, we defined a number of voting schemes with the aim of 
improving the precision of filtering as follows. 

The Intersection voting scheme: in this scheme, a candidate term is considered as an important term if it is a 
candidate term for all four metrics (Degree, Betweenness, Hits and Page Rank). The voting scheme creates a set 
of terms TVoted where:  

TVoted = TDegree ∩ TBetweenness ∩ TPageRank ∩ THits 
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The Majority voting scheme recognizes a term as an important one if it is promoted by at least three metrics 
out of four, that is, it is a relaxed voting scheme compared to TVoted.  

The Weighted voting scheme assigns various weights to the four metrics and computes various ranked lists 
of terms based on the values returned by each individual metric and its weight in the voting scheme. The general 
formula for the voting scheme is:  

w1*TBetweenness + w2*TPageRank + w3*TDegree+w4*THits 

Where w1+w2+w3+w4=1 

An example of a Weighted voting scheme would be: 0.3*TBetweenness + 0.2*TPageRank + 0.4*TDegree + 

0.1*THits.  
For all the three voting schemes, each important term is assigned a weight based on the combination of 

weights (addition and normalization) computed by each individual metric. For example, given the weights w1, 
w2, w3 and w4 assigned by each metric, the Majority voting scheme would assign a weight of 
(w1+w2+w3+w4/4). 

Additionally, once important terms are computed using the voting scheme, the list of these terms is enriched 
by the following components: if an important term is part of a taxonomical link (as a child or as a parent) ex-
tracted using OntoCmaps, then its ancestor or descendant is added as an important term even if it was not se-
lected by the voting scheme. We apply this rule to increase the number of important terms involved in taxonomi-
cal relationships. In fact, these relationships are very important for building a conceptual model and reasoning. 
This rule has also an impact on the rating of relationships by allowing, for instance, the selection of taxonomical 
links between important terms. (See the first measure for rating relationship importance below). 

4.3 Filtering Important Relationships 

Similar to the term weighting schemes, we also established a number of measures to rate the importance of re-
lationships: 

1 The first measure consists of selecting all the relationships that occur between important terms (determined 
through the three voting schemes) as important relationships. This constitutes our voting schemes for rela-
tionships. For example, an Intersection voting scheme for relationships will select all the relationships be-
tween the concepts identified by the Intersection voting scheme defined in section 4.2.3; 

2 The second measure ranks relationships based on Betweenness centrality, where candidate relationships are 
chosen if their centrality is greater or equal than a threshold; 

3 The third measure is based on assigning frequencies of co-occurrence weights based on the Dice coefficient 
(below), a standard measure for semantic relatedness; 

4 The last measure is the Point-wise Mutual Information, which is computed based on the Google search en-
gine. 

The first two measures are based on the graph structural characteristics and can be considered as evidences 
based on the corpus from which the graphs emerge. The third measure is also based on the corpus, but it ranks 
relationships using the Frequency of co-occurrence of the nodes involved in the relationships. In this case, the 
importance of a relation r between S (Source) and D (Destination) is calculated by using the following formula: 

 
Dice(S, D) = 2*F(S, D) / F(S) + F(D) 

where: 

• F(S, D) is the number of co-occurrences of S and D in a given context (here, an extracted relation). 
• F(S) is the frequency of occurrence of S in the corpus. 
• F(D) is the frequency of occurrence of D in the corpus. 

Again, the selected relationships are those whose Dice coefficient is greater than or equal to the chosen thre-
shold. 

Finally, the last measure Point-wise Mutual Information (PMI) is based on the Web (Google) as a source of 
evidence. This metric is normally used to measure the semantic relatedness between two terms and it is used in 
OntoCmaps for computing the weight or probability of each extracted relationship. In our experiments, we relied 
on the Measure of Semantic Relatedness Server [Veksler et al., 2007] to calculate the PMI using the PMI-G met-
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ric (PMI based on Google). 

4.4 Thresholds 

Determining a threshold is an important step that is generally based on experimentations. We decided to test var-
ious thresholds above which the ranked lists’ elements would be considered as important. These thresholds are 
applied on the Betweenness, PageRank, Degree, Hits, TF and TF-IDF metrics for concepts and on the Between-
ness, Frequency of co-occurrence and PMI-G metrics for relationships.  
• The Mean Threshold: A term must have a measure (i.e., Degree, PageRank, Betweenness, Hits, TF-IDF 

and TF) greater than or equal to the mean value of the current metric to be considered as a candidate term. 
That is, for the six metrics, we create the following sets of terms TDegree, TBetweenness, TPageRank, 
THits, TTF-IDF and TTF where each of the sets contains terms that pass the threshold based on the mean 
values. The same threshold is also applied on Betweenness relationships, Frequency of co-occurrence and 
PMI-G metrics. The idea behind the mean value is to retain only the nodes that are already quite important 
instead of experimentally defining thresholds that may change from one corpus to another. Considering the 
mean value as a threshold assumes that less than a half of the extracted terms are important, which might be 
too restrictive. However, using this mean threshold is relevant in this paper given that our goal is to identify 
the most precise metrics. 

• The Percentage Threshold: A given percentage of the ranked concepts and relationships lists is extracted 
and compared against a gold standard. Here we experimented with four percentages: 100%, 70%, 50%, and 
30%. 

• The First Ranks Threshold: A given number of elements is selected in the ranked concepts and relation-
ships lists and compared against the gold standard.  

5 Evaluation 

The evaluation of our approach can be divided into two main experiments: the evaluation of the graph-based me-
trics against standard metrics and random baselines, and the evaluation of the ontology learning as a whole, with 
a comparison with the output of Text2Onto [Cimiano & Volker, 2005]. In both cases, this necessitates a gold 
standard. Text2Onto was chosen as the main state-of-the-art and freely available ontology learning tool. Other 
alternatives would have been: i) Text-To-Onto [Maedche &Volz, 2001], which is the ancestor of Text2Onto and 
which is the reason why we preferred the use of the more recent version Text2Onto; and, ii) OntoGen [Fortuna et 
al., 2004], but whose concept definition (classes of similar items) would have made the comparison of both out-
puts much more difficult for the domain expert and would have necessitated an adaptation of both outputs to one 
gold standard, thus leading to further complications. Additionally, previous experiments in our research groups 
showed that OntoGen generated ontologies were perceived by users as worse than those generated by Text2Onto 
[Hatala et al., 2009].   

5.1 Description of the Experiment 

5.1.1 Gold Standard Creation 

Due to the well-known problem of evaluating the ontology learning task and lack of evaluation corpora, we de-
cided to build our own corpus and gold standard1. We used a corpus of 30 000 words on the SCORM standard 
which was extracted from the SCORM manuals [SCORM, 2010] and which was previously used in another pro-
ject [Zouaq & Nkambou, 2009]. The gold standard ontology was extracted in a two phase process designed to 
give equal chances to two tools: OntoCmaps and Text2Onto [Cimiano & Volker, 2005]. In the first phase, we 

                                                           
1 Available at http://azouaq.athabascau.ca/corpus/SCORM/Scorm.zip 
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ran both the OntoCmaps and Text2Onto tools on the corpus and generated a domain ontology from either tool. 
The objective was to create a single ontology from both outputs. We generated the OntoCmaps initial domain 
ontology without any filtering, that is, all the extracted terms and relations were exported without any filtering 
and ranking. In Text2Onto, we had to choose a number of algorithms to extract the domain ontology (see Figure 
3) with an average combiner when different algorithms were used to extract the same ontology layer. For in-
stance, we used the average combiner for extracting concepts based on TF-IDF, entropy, Relative Term Fre-
quency (RTF) and Example-based extractions. To keep the comparison as fair as possible, we used all the avail-
able algorithms for each ontology layer (with an average combiner) except the algorithms that rely on external 
resources (such as WordNet). 

 

 

Figure 3. The Text2Onto algorithms 

We then automatically merged both ontologies into a single one, by automatically performing some basic 
alignments (e.g., the same term or relation extracted by Text2Onto and OntoCmaps was exported only once and 
items extracted by one of the tools only were added to the ontology with no further checking) and we ended up 
with a single large ontology. In the second phase, this ontology was presented to a domain expert. Not only was 
the expert familiar with the domain, but also with ontologies and with both tools (OntoCmaps and Text2Onto). 
In order to obtain the final gold standard, the expert had the task to revise the merged ontology, namely by delet-
ing erroneous concepts and hierarchical and conceptual relationships, and by adding hierarchical relationships, 
which should have been normally generated by the tools. The expert did not have to add any conceptual relation-
ship not already included in the ontology. 

The statistics for the generated ontologies are shown in Table 2. The very low number of relationships ex-
tracted by Text2Onto by comparison with OntoCmaps can be noted and shows how little semantics can be ex-
tracted using only shallow NLP and statistical methods. 

Table 2. Number of extracted terms and relationships 

Number of Text2Onto OntoCmaps Merged Ontology 

Primitive classes 1457 2393 2594 

Defined classes 0 64 64 

Conceptual relationships 85 1707 1731 

Hierarchical relationships 432 1610 1610 

 
Table 3 shows the Gold standard ontology statistics after the expert evaluation and cleanup of the merged on-

tology. 

Table 3. The gold standard statistics 

Number of Gold Standard 

Primitive classes 1384 

Defined classes 64 
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Conceptual relationships 728 

Hierarchical relationships 1345 

 
Next, the ontology was exported as an Excel spreadsheet containing gold standard concepts and relationships 

(defined classes were ignored).  

5.1.2 Gold Standard Evaluation 

The gold standard was created by only one domain expert due to  
• The difficulty of finding domain experts ready to model the information in domain corpora (which implies 

reading them) in the form of a domain ontology;  
• The associated time and financial cost of such a process.   

In fact, the ontology learning community suffers from the lack of gold standards (domain ontologies) and 
their corresponding corpora. This claim is best validated by examining the significant literature in the area, 
where one can hardly find two different studies that used the same evaluation materials. There are a number of 
domain ontologies that exist, but they are generally not linked to a precise document collection and they result 
from the collective effort of domain experts based on their experience of the domain and their background know-
ledge. However, it is not fair to compare an automatically learned ontology based on a specific corpus with such 
expert ontology as the learned ontology will depend heavily on the corpus from which it is extracted.  

To counterbalance the bias that may be introduced by relying on a unique domain expert, in our study, we 
performed user tests to evaluate the correctness of the previously produced gold standard (c.f. Sect. 5.1.1). We 
randomly extracted concepts and their corresponding conceptual and taxonomical relationships from the gold 
standard and exported them in Excel worksheets. The worksheets were then sent together with the domain cor-
pus and the obtained gold standard ontology to 11 users from Athabasca University, Simon Fraser University, 
the University of Belgrade, and the University of Lugano. The users were university professors (3), postdoctoral 
researchers (2), and PhD (5) and master’s (1) students. The users were instructed to evaluate their ontology sub-
set by reading the domain corpus and/or having a look to the global ontology. Each user had a distinct set of 

items (no duplicated items) composed of 20 concepts and all their conceptual and taxonomical relationships.  
Table 4 shows the number of concepts, taxonomical relationships and conceptual relationships that were ran-

domly extracted and evaluated by our users. As the table indicates, almost 29% of the entire gold standard was 
evaluated by users. This size of the sample and the fact that the sample evaluated by the user was selected ran-
domly can provide us with solid evidence that the results of the user evaluation of the sample can be generalized 
to the entire gold standard.   

Table 4. The number and percentage of randomly extracted items for the user evaluation of the gold standard 

Type of items in  

the gold standard  

Total number of the 

extracted items from 

the gold standard  

Percentage of the ex-

tracted items from the 

gold standard (%) 

Concepts 209 15.10 
Conceptual relationships 182 25.00 
Hierarchical relationships 617 45.87 

Overall (all three item types) average percentage 28.66 
 
Each user was asked to evaluate the correctness of his subset of items through the following coding scheme: 

• Important: The users were asked to choose this option if they considered that the item should be present in 
an ontology about the SCORM standard; 

• Understandable: The users were asked to choose this option if they understood why this item could be cho-
sen by an automatic extraction system, but they would not necessarily have included it while designing an 
ontology about SCORM manually;  

• Invalid: The users were asked to choose this option if they considered that the item should not be a part of 
the SCORM ontology or they considered it as erroneous. 

Table 5 shows the results of the users’ evaluation in detail and also summarizes the data under the categories 
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“Accepted” and “Rejected” where accepted is constituted by the percentage of important and understandable 
items and rejected is constituted by invalid items. 

Table 5. Percentage of each coding scheme category for concepts, conceptual relationships and taxonomical relationships 

 Accepted Rejected 

 Important (1) Understandable (2) (1) + (2) Invalid 

Concepts 58.85 33.49 92.35 7.65 
Conceptual relationships 38.46 41.76 80.22 19.78 
Taxonomical relationships 46.19 42.79 88.98 11.02 

 
We can notice that more than 90% of the concepts and more than 80% of the relationships were accepted by 

the participants of our evaluation. Based on a random selection of items, this user-based evaluation confirms that 
the obtained gold standard could be considered valid (although not perfect) for evaluating the effectiveness of an 
ontology learning system. Although there is no general consensus about the interpretation of the level of inter-
rater agreement in computational linguistics [Artstein & Poesio, 2008], our results can be interpreted almost pre-
fect according to some inter-rater agreement approaches [Krippendorff, 2004]. 

We also analyzed manually the answers of the users and we noticed some problems without which the per-
centage of accepted items would have been even higher. In fact, the items included in the ontology are stemmed, 
which means that only the root of a word constitutes the class name. For example, “packag” is a class of our on-
tology. However, there are a number of labels that are associated with each root such as the labels “packaging”, 
“package,” and “packages” which are associated to the concept “packag”. For the sake of the experiment, we 
wanted to avoid presenting the class names (roots) which could confuse users, which were not used to work with 
and understand stems. Thus, the worksheet generator only extracted the first class label of each class, in our ex-
ample “packaging”. Unfortunately, this resulted into another misunderstanding since a number of users declared 
as invalid some concepts and relationships whose labels were not conjugated or grammatically correct. For ex-
ample, the taxonomical relation: “Shareable content object reference model-is a-specific” was declared invalid 
by one of  the users while the concept “specific” designates here the term “specification”, which is clearly a valid 
and important relationship for the SCORM domain. This is an issue that has to be solved in future evaluations. 

5.1.3 Measures Used in and Objectives of the Evaluations 

Once the gold standard was validated by the users, the various metrics were evaluated against the gold stan-
dard using three well-known measures of information retrieval:  

 
Precision = items the metric identified correctly / total number of items generated by the metric  

Recall = items the metric identified correctly / total number of relevant items (which the metric should have 

identified) 

F-Measure =2 * ((precision * recall) / (precision + recall)) 

 

The objectives of the experiment were: 
- To assess how well a given metric performs under various threshold; 
- To identify the best metrics according to a given measure (precision, recall and F-measure) for concept and 

relationship ranking; 
- To compare metrics from graph theory with two baselines: a naïve baseline and traditional text-based metrics 

baseline., i.e. TF-IDF and TF for terms and Frequency of co-occurrence and PMI-G for relationships; 
- To compare the results of OntoCmaps with those of Text2Onto. 

We then ran again the OntoCmaps tool on the corpus and we exported the system recommended concepts 
and relationships (hierarchical and conceptual) for each metric into an Excel spreadsheet. We repeated this op-
eration for each threshold: the mean threshold, the percentage threshold (100%, 70%, 50%, and 30%) and the 
first ranks thresholds (100, 200 and 400, i.e., first 100th, 200th, and 400th ranked items).   

The results are presented below for each threshold with a particular emphasis on the mean threshold, which 
does not depend on experimental tests and can be applied regardless of the corpus size and the number of ex-
tracted terms and relations. 
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5.2 Mean Threshold Results  

We obtained a ranking of terms based on the metrics: Hits, Degree, PageRank, Betweenness, Intersection Voting 
Scheme, Majority voting scheme, Weighted voting scheme and the three baselines Random Concepts, TF and 
TF-IDF. Note that many Weighted voting schemes were tested, but we present here only the best Weighted vot-
ing scheme statistics and results. Here by best voting schemes, we mean voting schemes that obtained the best 
precision and/or F-measure. Tables 7, 8 and 9 show the number of terms that were selected by each metric and 
by the random baseline as important terms (concepts). 

Table 7. Number of identified concepts according to all the graph-based metrics 

Hits Degree Page Rank Betweenness 

349 525 475 293 

Table 8. Number of identified concepts according to all the baselines 

TF TF-IDF Random baseline 

382 537 712 

Table 9. Number of identified concepts according to all the voting scheme metrics 

Intersection VS Majority VS 
Weighted VS (Bet 0.0; Prank 

0.0; Degree 0.8; Hits 0.2) 

692 1002 821 

 
Regarding relationships, four metrics were tested as previously indicated: a measure that selects a relationship 

if it occurs between two important terms identified by a voting scheme, Betweenness centrality, and the three 
baselines Frequency of co-occurrence, PMI-G and random relationships. Tables 10 and 11 display the number of 
extracted relationships for each metric. The first two metrics are based on graph theory whereas the last two met-
rics (Frequency of co-occurrence and PMI-G) are standard metrics commonly used to rate relationships in NLP 
tasks. 

Table 10. Number of identified relationships according to the graph-based metric and baselines metrics 

Betweenness 
Frequency of  

co-occurrence 
PMI-G 

Random 

baseline 

449 454 905 563 

Table 11. Number of identified relationships according to the voting scheme metrics 

Intersection VS Majority VS 
Weighted VS (Bet 0.0; Prank 

0.0; Degree 0.8; Hits 0.2) 

452 745 547 

5.2.1 Concepts 

The following table shows the precision, recall and F-measure obtained for each metric. We can notice that the 
baselines (random and text-based) are all outperformed by the graph-based metrics. Surprisingly, the TF metric 
performs better than TF-IDF. This might be due to the fact that these two metrics are applied on the pre-filtered 
domain terms and not on the whole corpus as this is usually done. 
 

Table 12. Metrics results for concept identification 

  Precision Recall F-measure 

Betweenness concept 74.40 14.70 24.56 
Hits Concept 73.06 17.20 27.85 

Graph-based 
metrics 

PageRank concept 70.10 22.46 34.03 
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Degree concept 71.23 25.23 37.26 
TF-IDF concept 44.50 16.12 23.67 

TF concept 60.20 15.51 24.67 
Baseline me-
trics 

Random concept 53.08 25.50 34.45 
Intersection concept 81.79 38.19 52.06 

Majority concept 78.64 53.17 63.44 
Voting 
schemes 

WVS 0.0;0.0;0.8;0.2 82.82 45.88 59.05 
 
We can also note that all the voting scheme metrics outperformed the base (i.e., graph-based) metrics in terms 

of precision, recall and F-measure. The Majority voting scheme has the best F-measure among the voting 
schemes. Finally, the somewhat good performance of the random baseline in terms of F-measure might also be 
due to the random choice of concepts among pre-filtered domain terms. However, its precision is very low by 
comparison with graph-based metrics. 

5.2.2 Conceptual Relationships 

Regarding conceptual relationships, the text-based metrics (Frequency of co-occurrence and PMI-G) and the Be-
tweenness metric are all outperformed by our voting schemes (Hypothesis H4), that is, by the metrics that identi-
fied important relationships as those occurring between concepts selected by a given voting scheme. Especially, 
we can notice that Intersection conceptual relationships obtain the highest precision, but that the Majority voting 
scheme obtains the highest recall and F-measure. 

Table 13. Metrics results for conceptual relationships  

 Precision Recall F-measure 

Graph-based 
metric Betweenness Conceptual Relation   

48.32 30.13 37.12 

PMI-G Conceptual Relation   41.54 52.22 46.27 

Co-occurrence Conceptual Relation   45.81 28.88 35.43 
Baseline 
metrics 

Random Conceptual Relation   39.78 31.11 34.91 

Intersection Conceptual Relation  60.84 38.19 46.92 

Majority Conceptual Relation   50.73 52.50 51.60 Voting 
schemes WVS Conceptual Relation  

0.0;0.2;0.0;0.8 
59.23 45.00 51.14 

5.2.3 Hierarchical Relationships 

As far as taxonomical links are concerned, we can notice that random hierarchical links already obtain a quite 
good precision. The Majority voting scheme obtains the best results in terms of F-measure while a Weighted vot-
ing scheme slightly outperforms the Intersection voting scheme in terms of precision. We can also note that the 
recall is much better in the voting schemes due to our rule that adds hierarchical relationships’ concepts if one of 
them is selected by a voting scheme.  

Table 14. Metrics results for hierarchical relationships 

 Precision Recall F-measure 

Graph-
based 
metric 

Betweenness Hierarchical Relations 64.51 1.48 2.90 

PMI-G Hierarchical Relations 66.99 5.12 9.52 
Co-occurrence Hierarchical Relations 68.00 1.26 2.47 

Baseline 
metrics 

Random Hierarchical Relations 65.78 3.71 7.03 
Voting Intersection Hierarchical Relations 79.84 37.66 51.18 
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Majority Hierarchical Relations 77.64 49.55 60.49 schemes 
WVS Hierarchical Relations  

0.1;0.8;0.1;0.0 81.04 45.09 57.94 

 
To increase the recall in all metrics, we added all the hierarchical relationships to all the metrics. This resulted 

in a precision/recall/F-measure of 66.49/75.33/70.63. This seems to indicate that filtering hierarchical relations 
might not be a promising option, since a very good proportion of these links is accurate. This fact has also been 
confirmed by the expert in charge of creating the gold standard. 

In the following sections, we will focus on concepts and conceptual relations. 

5.3 Percentage Threshold Results 

In the percentage threshold, a given percentage (100%, 70%, 50% and 30%) of the ranked terms and relation-
ships was selected for each metric and the results compared for each percentage.  The 100% threshold means that 
no filtering is performed and that all the metrics accept all the extractions. 

5.3.1 Concepts 

Figures 4 and 5 show the results obtained for the 50% and 70% thresholds. As can be noticed in both figures, the 
Intersection and Majority voting schemes obtain the best results.  

 

 

Figure 4. Metric Results with the 50% threshold 

In the 70% threshold (Figure 5), we can note that the graph-based metrics follow a similar curve with almost the 
same results for precision, recall and F-measure. Again precision is the best when the Intersection and Majority 
voting schemes are used and the baselines (TF, TF-IDF, Random) are always outperformed by the graph-based 
metrics and by the voting schemes. 
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Figure 5. Metric Results with the 70% threshold 

In the 100% threshold (no filtering), the voting scheme metrics obtain a precision/recall/F-measure of 
58.12/88.59/70.19. We can thus notice that filtering contributes to a higher precision for voting schemes meaning 
that we were able to increase precision to as much as 66% in the 70% threshold and 75% in the 50% threshold. 
Finally the best results in terms of precision are obtained by the 30% threshold (>83%) as it is the most selective 
threshold. 

5.3.2 Conceptual relationships 

Figure 6 shows the results of the 50% threshold for conceptual relationships. Here, we can notice again that the 
Majority voting scheme performs better than all the other metrics in terms of recall and F-measure, followed by 
the Intersection voting scheme which performs the best in terms of precision. The same results are observed for 
the 70% threshold in terms of recall and f-measure. The best recall and F-measure are always obtained by the 
Majority voting scheme in the 50% and 70% thresholds. 
 

 

Figure 6. Metric Results for conceptual relationships with the 50% threshold 

In the 100% threshold (no filtering), the voting scheme metrics obtained a precision/recall/F-measure of 
39.87/86.94/54.67, meaning that we were able to increase precision to as much as 42% (70% threshold), 49% 
(50% threshold) and 62% (30% threshold). 

5.4 First Ranks Threshold Results 

Finally, the first ranks thresholds are calculated only in terms of precision. Over a given number of terms and re-
lations, the experiment determines the number of items that are correctly identified by the metric. The results are 
shown in Table 15. 
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Table 15.  First ranks threshold results 

 Precision First 100 First 200 First 400 

Betweenness concept 82.00 80.00 74.31 

PageRank concept 85.00 77.00 72.50 

Degree concept 85.00 80.00 73.25 

Graph-based met-
rics 

Hits Concept 79.00 75.00 72.83 

TF-IDF concept 67.00 59.50 48.25 

TF concept 64.00 61.00 60.20 Baseline metrics 

Random concept 53.00 54.00 52.25 

Intersection concept 80.00 78.00 80.50 
Voting schemes 

Majority concept 84.00 79.00 75.50 

 
Again, the graph-based metrics outperform the baselines in all the thresholds (100, 200, and 400). In the first 

100 terms, the degree and PageRank metrics have the best precision. Regarding the degree, this is consistent 
with the fact that terms which have many relationships with others should be considered as important.  

As we enlarge the set of items to be ranked (200 and 400), we can notice a drop in precision for all metrics 
(except the Intersection voting scheme, which improves its precision at the first 400 threshold), but also the 
growing importance of the Betweenness metric. In fact, as the set of considered concepts grows to 400, Be-
tweenness has the best results among the graph-based metrics. Finally, the Intersection voting scheme obtains the 
best result in the biggest threshold (400), which is a logical consequence of noise introduction as the set of items 
grows. 

As far as relationships are concerned, it is clear that the Intersection voting scheme is always the best (Figure 
8), followed by the Majority voting scheme and the PMI-G metrics (up to the 200 relations). However, the PMI-
G metric outperforms the Majority voting scheme at the 400 threshold. 

 

Figure 7. Metrics results for conceptual relationships with the first ranks threshold 

5.5 Text2Onto Results 

The final experiment was to the compare the results of the Text2Onto tool, which uses standard metrics for con-
cepts and relationships ranking, with those presented above. In particular, Text2Onto implements a standard ver-
sion of TF-IDF on the whole corpus and not on a pre-filtered version of the corpus as this is done in OntoCmaps. 
This enables us to compare also the “traditional” TF-IDF with our results. 

The results of Text2Onto on the whole corpus are shown in Table 16 while the results by using the First ranks 
thresholds (100, 200 and 400) are presented in Table 17. We can conclude in both cases that they are far below 
those obtained by OntoCmaps in terms of concepts, hierarchical relations and conceptual relations. 
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Table 16. Text2Onto results on the whole corpus 

 Precision Recall 

Concepts 31.71 25.16 

Conceptual Relations 14.11 1.66 

Hierarchical Relations 29.06 9.95 

Table 4. Text2Onto results for the first rank thresholds  

 100 200 400 

Concepts 43.00 34.00 25.00 

Conceptual Relations 14.28 14.28 14.28 

Hierarchical Relations 30.00 27.50 28.50 

5.6 Discussion 

5.6.1 Ontology learning 

At the global level of ontology learning, it is clear that our research yields promising results. In fact, by compari-
son with the results obtained by Text2Onto, OntoCmaps generates a richer ontology particularly in conceptual 
relationships. At all levels, the precision and F-measure obtained by Text2Onto are far below those obtained by 
OntoCmaps. We noticed that Text2Onto had difficulty in: i) building compound domain terms and relationships, 
while this is the strongest point of OntoCmaps, due to its deep semantic analysis, and ii) identifying many con-
ceptual relationships, due to Text2Onto’s shallow NLP techniques.  

It must be noted that OntoCmaps only advocates the semi-automatic generation of a domain ontology, where 
the expert should play a central role to assess and validate the results. At the moment, OntoCmaps offers visuali-
zation capabilities at the corpus level to the domain expert, who is capable of visualizing a concept map related 
to a particular term and at the document level, where the extracted representations are highlighted sentence by 
sentence and shown in context. Another guidance of OntoCmaps is the weight that it assigns to all its elements 
using the filtering mechanism (see Section 5.6.2) and the presentation of ranked results to the user, thus helping 
him in deciding quickly of the most important elements. This functionality of the tool will be later evaluated 
through a usability study.  

5.6.2 Filtering 

One important objective of OntoCmaps is the ability to filter the extracted concepts and relationships by assign-
ing probabilities to these items and filtering the noise that results from errors in the NLP process as well as from 
the unsupervised nature of the extraction.  

Our results indicate that using metrics from graph theory may help identify important concepts (> 80% preci-
sion) and relationships (> 60% precision) in a more precise manner. By comparison with standard measures such 
as TF-IDF and TF for concepts, and Frequency of co-occurrences or PMI-G for relationships, graph-based met-
rics give better precision and overall F-measure results. Metrics from graph theory (Hits (as per H3 from Section 
4.2); PageRank (H3); Degree (H1); Betweenness (H2)) are consistently giving better precision results than the 
random metric, or than standard measures such as TF-IDF or TF for concept identification. The degree metric 
(H1 hypothesis) is particularly promising for the most important terms that are linked to many others through 
conceptual and hierarchical relationships. The Degree metric’s importance decreases when the set of considered 
items (terms and relationships) grows as shown in Table 15. This can be explained by the fact that there are also 
highly specific concepts that do not have a high degree but which might nevertheless be important. These con-
cepts might then be captured by a voting scheme (Intersection and Majority). 

Regarding relationships, our findings suggest that an Intersection voting scheme (TVoted) for concept identi-
fication is the most likely to give better precision results and that a Majority voting scheme is the most likely to 
give the best F-measure when compared to a Random baseline, Frequency of co-occurrences, Betweenness and 
PMI-G (i.e., H4 hypothesis in Sec. 4.2). However, the PMI-G semantic relatedness measure gives also an inter-
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esting perspective with an F-measure slightly higher than the Intersection voting scheme one. The good perform-
ance of PMI-G, which is based on the Web and Google, probably is the fact that it takes into account the redun-
dancy of information aspect [De boer et al., 2007], which has been discovered as very important for weighting 
information. It would be interesting to combine our voting scheme with the results of the PMI-G metric. How-
ever, PMI-G as it was used in this experiment only indicates the strength of the link between two terms, but does 
not indicate the correctness of the labeled relation between these two terms. One way to remedy this is to include 
the label in the calculation of the PMI-G between two terms. This will be tested in further experiments. 

Although these results in terms of precision/recall are far from being perfect, they outperform the results of 
Text2Onto on the same corpus and they are still very reasonable especially if they are considered in a semi-
automatic approach where the expert could adequately navigate the results helped with visualization capabilities. 
Generally, it is very difficult to obtain a high precision in this type of ontology learning task. For example, the 
experiment of [Brewster et al., 2009] on the animal behaviors domain obtained a precision of only 26% (with 
73% recall). 

In general, Weighted voting schemes are also promising, but they require many experimental tests which 
may hinder their potential benefits. Hierarchical relationships are generally accurate and do not require filtering. 
Moreover, erroneous hierarchical relationships might be detected easily and in a straightforward way by the ex-
pert.  

These results confirm that using metrics from graph theory can be a promising way to extract important con-
ceptual structures from free texts without recurring to an external knowledge resource. 

5.6.3 Limitations 

There are a number of limitations to our experiments. From an extraction perspective, as previously said, the 
whole NLP pipeline might propagate errors from one stage (POS tagging, dependency syntactic parsing, and se-
mantic parsing) to the other. Evaluating the accuracy of each step might be an interesting avenue to explore es-
pecially by weighting the probability of the extraction patterns.  

The accuracy of the whole NLP process might heavily depend on the corpus itself. In fact, as previously 
stated, the choice of an adequate corpus is a major step for the success of an ontology learning tool and this 
phase is particularly neglected in current state of the art. Due to the time required for building a gold standard 
(one month of full-time work was necessary in our case), the approach was tested on only one corpus. The effect 
of changing the domain might be interesting to test if the same metrics emerge as the best from one domain to 
the other. Our assumption and preliminary experiments is that domain change will not affect the results at the 
semantic analysis level since the approach is domain independent. However, the corpus should mainly be consti-
tuted of definitions and explanations about the domain able to be processed by our main patterns. Moreover, the 
accuracy of the dependency parses is a major issue for the success of the subsequent semantic analysis. Analyz-
ing the performance of the Stanford parser on various domains might be very important to assess the overall per-
formance of OntoCmaps. 

Our patterns have been designed by taking into account the grammatical relationships used in the Stanford 
parser. Although other parsers should have similar relations, the exact terminology should be mapped to the 
Stanford one to be able to change the syntactic parser. One interesting avenue to explore would be to learn a syn-
tax-semantic interface using this mapping in order to extract automatically the grammar for a new parser instead 
of building it manually. 

 Another limitation is that OntoCmaps is “only” able to extract information explicitly stated in the text. Very 
few relationships are inferred implicitly such as attributes coming from the preposition “of” or from possessives 
such as “the user’s name”. This is also a reason why the corpus selection should be considered as a major step of 
the ontology learning process and should mention explicitly as much information as possible. 

From an evaluation perspective, it would also be interesting to assess the quality of the concept maps before 
filtering as well as the quality of the corpus from which they are extracted using formal metrics such as those 
used in information retrieval. Instead of choosing a particular threshold, we might decide to rank all extractions 
and let the expert decide the lowest ranks to be included. The mean used as a threshold for each metric might be 
too restrictive, which might also explain the very low obtained recalls with this threshold.  

Finally, we are currently planning experiments that involve more than one domain expert in the development 
of a larger gold standard, and a detailed analysis of the results. We believe that our results are interesting and of-
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fer a novel research result especially if we compare the performance of the proposed metrics with the perform-
ance of standard measures on the same corpus (TF-IDF, PMI-G, Frequency of co-occurrence) and with the per-
formance of a random baseline. 

6 Related Work 

6.1 Ontology Learning 

Ontology learning pursues the goal of creating formal models for the Semantic Web. We showed in this paper 
that this process can be decomposed into three phases: knowledge extraction, filtering and integration, and that 
the majority of the approaches rely mainly on shallow NLP, while deeper analysis methods might be needed, es-
pecially for conceptual relation learning and axiom extraction. In fact, the majority of the ontology learning ap-
proaches produce shallow ontologies mainly constituted of domain terms and hierarchical relations [Volker et 
al., 2008]. Approaches such as Text-to-Onto [Maedche &Volz, 2001], OntoGen [Fortuna et al., 2004], On-
toLearn [Navigli & Velardi, 2004] and Text2Onto [Cimiano & Volker. 2005] all generate these types of ontolo-
gies. While these generated ontologies have been very useful for annotation purposes, and as a starting point for 
more formal structures, there are application domains that require more expressive ontologies [Volker et al., 
2008] that enable reasoning. The work presented in this paper is one step in this direction especially with richer 
conceptual relationships between concepts and the ability to extract deeper semantic representations than what is 
proposed in the state of the art. 

6.2 Open Information Extraction  

Recent efforts in the knowledge extraction community has encouraged the development of open information ex-
traction [Banko et al., 2007] [Etzioni et al., 2008]; that is, a text mining software tool that does not rely on prede-
fined templates, but that is able to extract knowledge in an unsupervised way. However, open information ex-
traction, in systems such as TextRunner [Banko et al., 2007] or Woe [Wu & Weld, 2010], are generally aimed at 
extracting factual knowledge rather than conceptual knowledge. 

Other initiatives for building knowledge bases from texts exist, such as the “learning by reading” [Barker at 
al., 2007] challenge, NELL [Carlson et al., 2010] and Kleo [Kim & Porter, 2009], where a machine is supposed 
to grasp important knowledge from texts and develop a conceptual model. However, in many of these initiatives, 
the systems rely on a structured knowledge base to guide the extraction and populate the existing schema with 
instances. Moreover, this presupposes that the systems are guided in their extraction and know what they are 
supposed to extract at a fine-grained level, such as what is done in named entity recognition. To our knowledge, 
this paradigm of open information extraction has not been yet proposed in the ontology learning task. 

6.3 Concepts and Relationships Learning from Texts  

Traditionally, in statistical and machine learning approaches, finding concepts and relationships in texts has been 
performed by linking them to a semantic repository [Pantel & Pennacchiotti, 2008] and by estimating the prob-
ability of the relationships [Soderland & Mandhani, 2007] or concepts [Cimiano & Volker, 2005], [Maedche & 
Volz, 2001] based on standard measures from information retrieval, such as TF-IDF [Salton & Buckley, 1988] or 
C/NC value [Frantzi & Ananiadou, 1999]. Clustering methods [Pantel & Lin, 2002][ Pantel & Pennacchiotti, 
2008] [Soderland & Mandhani, 2007] have also been used to find some categories in the data that are then con-
sidered as concepts or patterns. There are also highly supervised machine learning approaches for learning con-
cepts or specific relationships (e.g., synonyms, hyponyms, and causal), which lead to very accurate results, but 
which suffer from their dependence upon hand-labeled and domain dependent examples. Knowledge-based ap-
proaches often rely on WordNet to annotate the extracted data, hence linking it to a conceptual structure. For in-
stance, Espresso [Pantel & Pennachiotti, 2008] uses a clustering technique based on the WordNet taxonomy to 
create reliable extraction patterns and assigns a WordNet sense to terms linked by relationships that hold. Kleo 
[Kim & Porter, 2009] also relies on an established knowledge base, the Component Library and WordNet, to as-
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sign meaning to the extracted information.  
One drawback of the aforementioned works is that they rely on a knowledge base or clustering examples. Due 

to the extensive effort required to build and maintain such knowledge structures, and due to the inadequacy of 
some of these structures (e.g., WordNet) to represent domain knowledge, it is our current position that semantics 
should emerge from texts without recurring to a predefined knowledge base as was proposed in this paper. 

6.4 Metrics from Graph Theory 

Metrics from graph theory have been widely used in social network analysis to discover for instance communi-
ties of users [Kleantheous & Dimitrova, 2008], to rank Actor-Concept-Instance networks [Mika, 2005], to pro-
vide visualization filters [Jia et al., 2008] or to rank already available ontologies [Patel et al., 2003] [Alani & 
Brewster, 2006] [Hoser at al., 2006] [Zouaq & Nkambou, 2009]. Other approaches have successfully used met-
rics from graph theory for word-sense disambiguation [Navigli & Lapata, 2010] or for topic identification 
[Coursey & Mihalcea, 2009] and they have been applied to ontologies for the purpose of analysis [Alani & 
Brewsterm 2006] [Hoser et al., 2006] but not for filtering purposes. Similarly, metrics of semantic relatedness 
have not been used, to the best of our knowledge, to rate relationships in ontology learning. 

In general, probabilities and weights have been used to filter important terms in ontology learning approaches 
[Buitelaar & Cimiano, 2008], but they generally rely on measures such as TF-IDF or Frequency of co-
occurrences rather than on the structural characteristics of graphs. To the best of our knowledge, there are very 
few, if any, attempts to exploit such graph-based metrics to filter the results of an information extraction system 
and to extract interesting concepts and relationships from graph structures. One proposal in this direction is our 
own work [Zouaq, 2008] [Zouaq & Nkambou, 2009], which identifies the out-degree of a term (the number of 
edges whose source is the term) as an indicator of the importance of the term. All the terms whose out-degree is 
greater than a given threshold are considered as concepts. However, there is no comparison, in that work, with 
other kinds of metrics such as Betweenness centrality, Degree or Page Rank to rate the effectiveness of each of 
these metrics for evaluating concept importance. 

7 Conclusion 

This paper presented an approach to learning a domain ontology in an open manner. The approach also addresses 
ranking and filtering relevant terms and relationships in concept maps using metrics from graph theory. The nov-
elty of the approach is that 1) it uses deep semantic analysis methods and generates rich conceptual structures in 
the form of concept maps; 2) it relies on the inner structure of graphs to identify the important elements without 

using any other knowledge source. The other contribution is that we addressed the problem of filtering con-
cepts and relationships with good precision and F-measure. Not only may our approach be beneficial for auto-
matic extraction tools, but it may also for analysis of concept maps repositories, as well as for analysis of any 
graph-based representation of texts such as co-occurrence graphs. Our experiments showed that exploiting a vot-
ing scheme based on the metrics of PageRank, Hits, Betweenness and Degree provides a good concept identifi-
cation precision. The other finding was that important relationships are better identified with the Intersection and 
Majority voting schemes. In general, the best metrics were always based on graph theory and centrality meas-
ures. The approach was assessed using a human evaluation and showed that a good overlap might be obtained 
between our system’s results and the human results. We also compared our approach with Text2Onto and ob-
tained better results. 

As demonstrated in the paper, our approach might be interesting for identifying conceptual structures in gen-
eral and for ontology learning and evolution in particular. In fact, one of the main difficulties for ontology acqui-
sition from text is the correct extraction and identification of important concepts and relationships. The results 
presented in this paper suggest that using graph theory may be an interesting avenue to identify ontological 
classes and relationships (taxonomical links and properties with domain and range) with a higher degree of pre-
cision. This should help, for instance, users in building high quality ontologies using a semi-automatic process 
where an initial ontology design can be based on the investigated measures. To address the challenge, in future 
work, we plan to have user studies where such initial ontologies will be complemented with some novel metrics 
(based on empirically estimated recall values), which guide developers in the ontology refinement process. Also, 
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our future work will tackle the exploration of various ways to increase the obtained precision and recall as well 
as further experiments with more human evaluators. 
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