
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

1 

  
Abstract-- This paper is concerned with the compositional specification of services using UML 2 collaborations, activity 

and interaction diagrams. It addresses the problem of realizability: given a global specification, can we construct a set of 
communicating system components whose joint behavior is precisely the specified global behavior? We approach the 
problem by looking at how the sequencing of sub-collaborations and local actions may be described using UML activity 
diagrams. We identify the realizability problems for each of the sequencing operators, such as strong and weak sequence, 
choice of alternatives, loops, and concurrency. Possible solutions to the realizability problems are discussed. This brings a 
new look at already known problems: we show that given some conditions, certain problems can already be detected at an 
abstract level, without looking at the detailed interactions of the sub-collaborations, provided that we know the 
components that initiate and terminate the different sub-collaborations. 

 

Index Terms: service composition, compositional specification of collaborations, realizability of distributed implementations, 
distributed system design, design guidelines, deriving component behavior from global specifications, workflow for 
collaborations, UML activity diagrams, service oriented architecture  

1 INTRODUCTION 

OR several decades now it has been common practice to specify and design reactive systems in 

terms of loosely coupled components modeled as communicating state machines [11], [16], using 

languages such as SDL [31] and more recently UML [49]. This has helped to substantially 

improve quality and modularity, mainly by providing means to define complex, reactive behavior 

precisely in a way that is understandable to humans and suitable for formal analysis as well as 

automatic generation of executable code.   

However, there is a fundamental problem. In many cases, the behavior of services provided by 

a system is not performed by a single component, but by several collaborating components. This 

 
Manuscript received February 6, 2008.  
H. N. Castejón is with the Department of Telematics, Norwegian University of Science and Technology, Norway (e-mail: 

humberto.castejon@item.ntnu.no).  
G. v. Bochmann is with the School of Information Technology and Engineering (SITE), University of Ottawa, Canada (e-mail: 

bochmann@site.uottawa.ca). 
R. Bræk is with the Department of Telematics, Norwegian University of Science and Technology, Norway (e-mail: rolv.braek@item.ntnu.no). 

1 A preliminary version of this paper appeared in the proceedings of the 14th Asia-Pacific Soft. Eng. Conf. (APSEC'07), IEEE Computer Society 
Press, pp. 73-80, 2007. 

  

Using Collaborations in the Development of 
Distributed Services1 

Humberto Nicolás Castejón, Gregor von Bochmann, Fellow, IEEE, and Rolv Bræk 

F 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

2 

has been recognized by several authors, such as [17], [39] and [19], and is sometimes referred to 

as the “crosscutting” nature of services [25], [40]. Often each component takes part in several 

different services, so in general, the behavior of services is composed from partial component 

behaviors, while component behaviors are composed from partial service behaviors. By 

structuring according to components, the behavior of each individual component can be defined 

precisely and completely, while the behavior of a service is fragmented. In order to model the 

global behavior of a service more explicitly one needs an orthogonal view where the 

collaborative behavior is in focus.  

Interaction sequences such as MSC [32], and UML Sequence diagrams [49] are commonly 

used to describe collaborative behavior, and have proven to be very valuable. They are however, 

not without limitations. They are expressed in terms of message exchanges, which at an early 

stage of development may be too detailed. Due to the large number of interaction scenarios that 

are possible in realistic systems, it is normally too cumbersome to define them all, and therefore 

only typical/important scenarios are specified. In addition, there are problems related to the 

realizability of interaction scenarios, i.e. finding a set of local component behaviors whose joint 

execution leads precisely to the global behavior specified in the scenarios. Some authors have 

studied the realizability problem in the context of implied scenarios [5], [57], i.e. unspecified 

scenarios that will be generated by any set of components implementing the specified scenarios. 

Other authors have studied pathologies in interaction sequences, e.g. non-local choices [10], that 

prevent their realization. 

We have asked ourselves if there are better ways to model services. Is it possible to model 

service behavior more completely? Can it be done in a more structured way without revealing 

more interaction detail than necessary? Is it possible to support composition and to detect and 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

3 

remove realization problems? And is it possible to derive detailed implementations automatically 

from service models?  

We have found that a promising step forward is to adopt a collaboration-oriented approach, 

where the main structuring units are collaborations. This is made practically possible by the new 

UML 2 collaboration concept [49]. The underlying ideas, however, date back to before the UML 

era [50], [51]. Collaborations model the concept of a service very nicely. They define a structure 

of partial object behaviors, called roles, and enable a precise definition of the service behavior 

using interaction diagrams, activity diagrams and state machines as explained in [55], [21] and 

[37]. They also provide a way to compose services by means of collaboration uses and to bind 

roles to components. In this way, UML 2 collaborations directly support (crosscutting) service 

modeling and service composition. As we shall see in the following, this opens many interesting 

opportunities.  Fig. 1 illustrates the main models involved in the collaboration oriented approach 

being discussed in the following: 

• Service models are used to formally specify and document services. Collaborations provide 

a structural framework for these models that can embody both the role behaviors and the 

interactions between the roles needed to fulfill the service. 

• Design models are used to formally specify and document system structure and 

components providing the services. They are expressed in terms of communicating state 

machines, typically using UML2 active objects or SDL agents (processes). Each of these 

will realize one or more collaboration roles.  

• Implementations are executable code automatically generated from the design models.  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

4 

 Service2

Service1

Service3

C 1 C 2 C 3 C 4

Service models

Design models

Implementations

S1.1 S1.2

Design synthesis

Code generation

Service2

Service1

Service3

C 1 C 2 C 3 C 4

Service models

Design models

Implementations

S1.1 S1.2

Design synthesis

Code generation

 

Fig. 1.  Collaboration oriented development 

 

This paper is concerned with the crucial first steps of expressing service models using UML 2 

collaborations and deriving well-formed design models expressed as communicating state 

machines. The ensuing steps from design component models to implementations and dynamic 

deployment on service platforms can be solved in different ways, see for instance [53] and [18], 

and are not discussed further here.  

An important property of collaborations is that it is possible and convenient to 

compose/decompose collaborations structurally into sub-collaborations, by means of 

collaboration uses. These refer to separately defined collaborations and provide a mechanism for 

abstraction and collaboration reuse. In order to define the behavior of collaborations, we have 

found it useful to distinguish between the behavior of composite collaborations and elementary 

collaborations (collaborations that are not further decomposed into sub-collaborations). The 

elementary collaborations that result from the decomposition process are often quite simple, 

reusable and possible to define completely in terms of interaction sequences. Binary 

collaborations can in many cases be associated with interfaces and their sub-collaborations with 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

5 

phases or features of the interface behavior. Assuming the behavior of elementary collaborations 

are completely defined using interaction diagrams or other notations, the question then is how to 

define the overall behavior of composite collaborations in terms of sub-collaboration behaviors. 

In the SOA domain this kind of behavior is called “choreography” [24], a term we will use in the 

following. Several notations may be used to define the choreography of sub-collaborations (i.e. 

their global execution ordering). We have found UML2 Activity diagrams a good candidate, as 

they provide many of the composition operators needed for the purpose. This will be elaborated 

in Section 2.  

Interestingly, the operations needed to define a choreography also enable us to identify and 

classify the underlying reasons leading to realization problems. Many of these can be found by 

analyzing choreographies at the level of its sub-collaborations without needing to go into 

interaction details. When this is not possible, potential problem spots can be pinpointed so that 

detailed interaction analysis can be focused on those.  In Section 3 we present our results in this 

area.  

In Section 4 we discuss the feasibility of automatically synthesizing components from 

collaborations, i.e. to automate the step from service models to design models. We foresee a 

process where choreographies defined using activity diagrams are used directly. This points 

towards a highly automated process form collaboration oriented service models to executable 

services.  

2 USING COLLABORATIONS TO MODEL SERVICES 

2.1 A case study: TeleConsultation 

We consider as an example a telemedicine consultation service. A patient is being treated over 

an extended period of time for an illness that requires frequent tests and consultations with a 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

6 

doctor at the hospital to set the right doses of medicine. Since the patient may stay at home and 

the hospital is a considerable distance away from the patient’s home, the patient has been 

equipped with the necessary testing equipment at home.  The patient will call the hospital on a 

regular basis to have remote tests done and consult with a doctor. A consultation may proceed as 

follows: 

1. The patient calls the telemedicine reception desk to ask for a consultation session with one 

of the doctors. The receptionist will register the information needed, and then see if any of 

the appropriate doctors is available.  

2. If no doctor is available, the patient will be put on hold, possibly listening to music, until a 

doctor is available. If the patient does not want to wait he/she may hang up (and call back 

later).  

3. When a doctor becomes available while the patient is still waiting, the doctor is assigned to 

the patient and may use the supplied information to look up the patient journal.  

4. A voice connection is established between the patient and the doctor allowing the 

consultation to take place.  

5. During the consultation the doctor may decide to perform some remote tests using the 

equipment located at the patient’s site. The doctor evaluates the results and advises the 

patient about the further treatment. Either the doctor or the patient may end the consultation 

call.  

6. After the consultation call is ended the doctor may spend some time updating the patient 

journal and doing other necessary work before signaling that he/she is available for a new 

call. The doctor may signal that he/she is unavailable when leaving office for a longer 

period, or going off-duty.  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

7 

Each of these points may be considered an activity. An UML activity diagram describing the 

order of execution of these activities is given in Fig. 2. The fact that the patient and the doctor 

behave concurrently and may take initiatives independently of each other is reflected by the use 

of two initial nodes. The result is a diagram with two concurrent parts that are joined for the 

assignment and consultation activities. 

 

Fig. 2 Activity diagrams describing a TeleConsultation. 

2.2 Collaboration structure 

An important aspect in requirements specification and service modeling, as well as in 

workflow modeling, is the identification of the actors involved in the different activities.  

Traditional UML use cases distinguish the system and actors that are part of the system 

environment. For high-level workflow modeling and domain analysis, one usually identifies 

various actors that participate without necessarily identifying a system. For the TeleConsultation 

example, we can identify the following actors: the patient, the doctor and the receptionist.  It 

should be noted here that it is useful to make a distinction between real actors and the roles that 

actors play. In specifications and designs it does not make much sense to identify particular 

actors. One rather identifies roles that may be composed and bound to real actors in different 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

8 

ways. As illustrated in Fig. 2, roles (patient and doctor) may have different responsibilities and 

follow partly independent workflows with some joint activities. 

A UML collaboration diagram is well suited to model role structures and identify sub-

collaborations among the roles. This is illustrated for the TeleConsultation example in Fig. 3, 

where 4 roles and 7 sub-collaborations are identified. These sub-collaborations are modeled as 

UML collaboration uses, and their roles are bound to the roles of TeleConsultation2  When 

decomposing collaborations into sub-collaborations one tends to identify sub-collaborations that 

involve just two roles. Such binary collaborations can be used to define interfaces and interface 

behavior. This has some advantages: (1) the behaviors are relatively small, (2) they can be 

completely defined, and (3) they are units of reuse. In this example, all sub-collaborations except 

consultation are elementary and associated with an interface between two roles. 

 

Fig. 3 Roles and sub-collaborations in the hospital visit. 

As explained in [54] and [56] binary collaborations can be used to define semantic interfaces 

that are used to type components in order to enable efficient discovery and compatibility 

checking at design time and runtime. Used in this way, collaborations are useful during the entire 

 
2 The “dots” and “bars” in this diagram are not standard UML. They are used to indicate the initiating and terminating roles of a collaboration 

use, as will be explained in Section 2.4   



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

9 

life cycle, not only in early service modeling.  

In service and workflow modeling one often distinguishes between actors and resources. Both 

may be associated with a given action and required for its correct execution. The main difference 

between these two entities is normally that actors may take initiatives, while resources are rather 

passive. For the modeling of collaborations, we consider both actors and resources as roles that 

participate in the execution of an action. In the TeleConsultation the sensors are rather passive 

resources. The doctors may be seen as shared resources from the point of view of patients, and 

the receptionist as a resource allocator. Contrary to sensors, the patients and the doctors can take 

independent initiatives, and this exemplifies that resources may also be active. 

2.3 Collaboration behavior: Choreography 

The activity diagram in Fig. 2 defines the global behavior for the TeleConsultation 

collaboration. The activities have been chosen so that each activity corresponds to a sub-

collaboration in Fig. 3, and in this way it defines their choreography. Note how this diagram 

defines collaboration ordering in a visual way without going into the details of interactions.  

UML Activity diagrams appear to be at a suitable level of abstraction for defining the 

choreography of sub-collaborations within a given composite collaboration. They can express 

sequential, alternative and concurrent behavior including the possibility of looping, as well as 

interruption and activity invocation (e.g. voice invoking test in the consultation collaboration), as 

illustrated in Fig. 2. The units of execution are atomic actions or activities. An activity can be 

further refined and described by a separate activity diagram that will be invoked when the 

activity becomes activated.  

There is, however, one important feature of collaborations that is different from what is 

normally assumed of an activity. A collaboration involves several roles (participants). In activity 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

10 

diagrams, each activity normally involves only a single role. It must therefore be foreseen that an 

activity or action, representing a sub-collaboration within an activity diagram, involves more than 

one role. This information can be provided by annotating the diagram as shown in Fig. 4.  UML 

is very open-ended concerning the precise notation for activity diagrams and allows this kind of 

notational extension. The important point here is the kind of information we would like to 

include in the models, not exactly how it is done. The same information might be supplied in 

different ways, as will be discussed in Section 2.5.  

«external»
hangup

d:disconnectP R

availableunavailable

r:registrationP R

w:waitingP R

c:consultationP D

S

as:assignmentR D

a:availableR D

u:unavailableR D

v:voiceP Dt:testS D

Consultation

 

Fig. 4 Choreography for the TeleConsultation collaboration. 

2.4 The nature of collaborations 

A collaboration describes (joint) actions among a set of roles carried out in order to achieve a 

goal. The roles describe the behavior and properties that components should exhibit in order to 

participate in the collaboration. The order in which the actions are performed is enforced locally 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

11 

by the participants and globally by the exchange of messages between the participants. This is in 

general a partial order, as first explained by Lamport [41]. A collaboration may include 

behaviour alternatives leading to different outcomes, as for instance the registration collaboration 

in the TeleConsultation, see Fig. 4.  

For each collaboration, we distinguish the initiating actions and the terminating actions. The 

initiating actions are those actions for which there is no earlier action in the collaboration 

according to the (partial) execution order defined for the collaboration. Similarly, the terminating 

actions are those for which there is no later action in the collaboration. The roles involved in the 

execution of an initiating (resp. terminating) action of a collaboration are called initiating (resp. 

terminating) roles. In Fig. 3 and Fig. 4 the initiating roles have been identified by a dot and the 

terminating roles by a bar. Which roles initiate and/or terminate the execution of a sub-

collaboration is very important for the coordination of the temporal order of execution of 

different sub-collaborations, as discussed in more detail in Section 3.   

How the roles of sub-collaborations are bound to roles of enclosing collaborations and 

eventually to components of a distributed system design is important for the realizability of a 

specified ordering. Collaboration structures such as Fig. 3 specify precisely the binding of sub-

roles (i.e. roles of sub-collaborations) to the composite-roles of the collaboration structure. The 

diagram in Fig. 3, for instance, specifies that the sub-role pr from registration is bound to the 

composite-role Patient of TeleConsultation. We will say that a composite-role is the initiating 

(resp. terminating) role of a sub-collaboration if it is bound to the initiating (resp. terminating) 

role of that sub-collaboration. 

In the case of a sub-collaboration that has several terminating roles, the terminating actions 

performed by these different roles will normally not be synchronized. This is in contradiction to 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

12 

the semantics of UML activity diagrams which states that all the outputs of an activity will 

become available at the same time (when the activity terminates)3. 

We note that a collaboration with more than one initiating role may be not so easy to realize 

because of the required coordination between the initiating roles for initiating the collaboration. 

As a general design guideline, it is therefore desirable to avoid collaborations with multiple 

initiating roles as far as possible. Related issues are further discussed in Section 3. Here are some 

examples: 

a. Single initiating role: the patient (initiating role) registers with the receptionist. 

b. Several alternative initiating roles: each side of a consultation call may take the initiative to 

perform the call termination sub-collaboration. 

c. No initiating role identified: it is not specified whether the doctor or the sensor (triggered 

by the patient) initiates a test. 

d. Several terminating roles: in the voice collaboration the last action may be performed by 

the patient or the doctor, or both.  

At a high-level of abstraction, we may characterize a collaboration by a pre-condition and a 

post-condition. A collaboration can only be initiated if its pre-condition is satisfied; we say that 

the collaboration is enabled. The pre-condition describes the required system state for the 

collaboration to start. As a design guideline, we note that it is desirable that the enabling 

condition only depends on the state of the initiating roles. The post-condition represents a 

condition that will be true when the collaboration terminates; if the collaboration admits several 

alternative outcomes, the post-condition will be the logical OR between these alternatives. One 

 
3 In UML, outputs of an action are identified by so-called pins, outputs of an activity are identified by so-called parameters of the activity. 

There are two exceptions to the rule that all outputs occur when the activity terminates: (a) Several alternate sets of outputs may be identified 
(only one of these sets of outputs will occur), and (b) so-called stream inputs and outputs may occur anytime during the execution of an activity. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

13 

may also specify “goals” in terms of states or events where the purpose of a collaboration is 

achieved, see [54], when different from the post-condition. In the TeleConsultation example pre- 

and post-conditions have not been illustrated. However, we can imagine that there would be an 

available predicate reflecting the availability of the doctor. This predicate should for example be 

true for assignment to be enabled, and would become false when this collaboration finishes. 

Sometimes it is also useful to identify a triggering event for a collaboration. This is an event 

that leads to the execution of the collaboration if its precondition is true when the triggering 

event occurs. In the case of sequential execution of two sub-collaborations, the triggering event 

of the second collaboration would normally be the termination of a terminating action of the first 

collaboration. In other cases, the triggering event may be the reception of an external input or a 

time-out that is not part of the collaboration being modeled. Such external triggering events may 

cause a role to initiate a collaboration seemingly spontaneously and on its own initiative. 

External triggering events are normally not specified explicitly, only the initiatives, i.e. the 

seemingly spontaneous actions they cause. It is important to identify such initiatives in service 

modeling for two main reasons: (1) most services and service features are initiated by external 

initiatives; (2) they give rise to concurrency and potential conflicts. Initiatives normally occur 

independently. They start threads of sequential behavior, which execute (partly) in parallel with 

the behavior triggered by other initiatives. In the TeleConsultation service, for example, the 

patient and the doctor take independent initiatives leading to the parallel paths in Fig. 2 and Fig. 

4. The two paths may be considered as different views on the service; the patient view and the 

doctor view. These are brought together and coordinated during the assignment and consultation 

collaborations. The existence of independent initiatives and the need for their coordination is an 

essential property of the TeleConsultation service and many other services. Independent 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

14 

initiatives may give rise to conflicts, if they are not properly coordinated. This will be discussed 

further in Section 3.   

2.5 Notation  

We make in the following some comments about possible notations for representing the 

choreography of collaborations as described above. The objective is not so much to find  a 

notation as to identify concepts that allow specifying and analyzing the high level flow without 

prematurely binding the detailed interactions, and that also allow gradual detailing towards 

interactions and localized behavior.  

In Section 2.3 we have already discussed the suitability of UML activity diagrams for defining 

the choreography of sub-collaborations. They allow a compositional specification approach and 

can express sequential, alternative and concurrent behavior, as well as interruption and activity 

invocation. 

An important aspect of a choreography is to show which roles participate in which 

collaborations and whether they are initiating or terminating roles. A possible graphical notation 

for representing multiple roles involved in a single activity was proposed in [15] where resources 

and roles are represented as separate entities and their involvement in activities by a special type 

of arrow (see Fig. 5 (a)). A variant of this is to let activities and roles overlap as illustrated in Fig. 

5 (b). This style can visualize the ordering of sub-roles within a role, and can also be used to 

localize control flows to particular roles when this is desirable. In the variant shown in Fig. 5 (c), 

this is taken one step further by representing the global choreography as one enclosing activity 

with partitions corresponding to the roles, and sub-collaborations modeled as activities that 

cross-cuts the partitions. All flow lines are here local to roles and specify precisely how role 

behaviors are composed. This approach has been used in several case studies, and to demonstrate 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

15 

that design components defined as state machines can be derived automatically [38].  The UML 

specification suggests representing the partitions textually as illustrated in Fig. 5 (d). The 

notation used in Fig. 4 is a visual enhancement of this showing the roles graphically as well as 

the active collaboration use. It is an extension of the notation originally proposed in [20] and 

[21]. It has the advantage that each activity has a clear boundary, which helps to organize larger 

diagrams. We will use the simplified form shown in Fig. 5 (e), later on for illustration purposes.   

 

Fig. 5 Alternative notations for role binding. 

Note that the variants in Fig. 5 (a) to Fig. 5 (d) are formed simply by varying the representation 

and localization of roles relative to activity boundaries. The variants in Fig. 5 (b) and Fig. 5 (c) 

allow localizing control flows to roles. Semantically the only difference between these variants is 

the localization of control flow. Note that the variant in Fig. 5 (b) resembles a sequence diagram, 

where messages are replaced by sub-collaborations. The variants in Fig. 4 and Fig. 5 (e) have an 

explicit reference to collaboration uses, while in the other variants this is maintained by naming 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

16 

conventions. 

High-Level Message Sequence Charts (HMSC) [32] or UML Interaction Overview Diagrams 

(IOD) are other notations that also have a suitable level of abstraction for choreography, but they 

are tied to interactions and do not readily allow the same flexibility to combine notations. 

Moreover, they lack certain operators (e.g. preemption) and semantics needed to fully define 

collaborative behavior as also pointed out in [39].  

A textual notation might also be used to define the temporal ordering of actions and sub-

collaborations within a given collaboration. In previous work [13], [34] a notation based on 

process algebras was used. If one uses Use Case Maps [6] to model collaborations, the concept of 

sub-collaboration could be modeled as a "stub", and a participant as a "component"; however, 

also here it is assumed that each action (called "responsibility") is associated with at most one 

"component". 

To specify the behavior of elementary collaborations there are several options. Activity 

diagrams may be used to define the behavior in a way that allow component behaviors to be 

derived automatically [38]. If one chooses to define elementary collaborations using interaction 

diagrams, these may be referenced from the activities of a choreography [20]. One may also refer 

to collaborations representing semantic interfaces with goals and behavior defined by two role 

state machines [54]. Alternative approaches of combining sequence diagrams with other 

diagrams have been proposed by several authors, e.g. [52] and [58]. 

Finally, we mention that it is often useful to introduce variables that are used to define guards 

for alternate choices or sub-activity invocations. They typically represent databases or state 

variables and are important for the description of the overall system behavior. At the early stages 

of development, these variables may be considered global variables (as in Use Case Maps [6]). 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

17 

At the later stages, they must be allocated to particular system components or replaced by other 

means of keeping the pertinent information. 

3 ORDERING OPERATORS FOR CHOREOGRAPHY  

In this section we discuss the sequencing operators that we consider important for describing 

the execution order of collaborations. These are the standard concepts of sequential execution, 

alternatives, concurrency, and interruption which are supported by most notations for workflow 

modeling, including UML Activity Diagrams and Use Case Maps. We discuss in the following 

some particular semantic features for these concepts which are not provided by the standard 

semantics of Activity Diagrams. We also introduce the concept of activity invocation, a variant 

of a remote procedure call. We note that some of these features are also discussed in Wohed's 

analysis of the control-flow perspective of UML Activity Diagrams [59].  

3.1 Realization problems  

We consider in this paper that the model of a distributed service is defined by a composition of 

several sub-collaborations, as discussed in Section 2. The service model defines a global order 

about different actions that will be performed by different service roles. At the system design 

level, as shown in Fig. 1, the roles of the collaborations are assigned to certain system 

components and their local behavior may be defined by state machine models. One may attempt 

to obtain the specification for the behavior of a given system component by projecting the global 

service behavior specification onto that component, that is, ignoring all actions at the other 

components in the service model and deriving the order of the local actions at the given 

component from the ordering of these actions in the service model. We say that a design model is 

directly realized from a given service model, if the behavior of each system component of the 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

18 

design is obtained by projecting the service model onto the given system component. If the 

behavior of the directly realized design model is equivalent to the overall system behavior 

defined by the service model, we say that the service model is directly realizable.  

Unfortunately, in some cases the directly realized design will generate interaction scenarios not 

foreseen by the service model. The problem of these implied scenarios was originally studied for 

MSC-based specifications in [4]. This problem is however not unique to MSCs, but inherent to 

any specification language where the behaviour of a distributed system is described from a global 

perspective, while it is realized by independent components with only local knowledge. 

We will discuss in this section under which circumstances a choreography is directly 

realizable. We will discuss for each composition operator what problems of direct realizability 

may occur, how they may be detected, and what kind of additional mechanisms could be 

introduced into the directly realized design model in order to assure that the resulting behavior 

conforms to the service model. These mechanisms include additional coordination messages, and 

additional parameters in the messages of the directly realized design. Provided we know the 

initiating and terminating roles, we are in many situations able to identify problems by looking 

only at the sub-collaboration ordering defined by the choreography. In other cases, we are able to 

identify potential problems at the choreography level, but need to consider detailed interactions 

of the sub-collaborations to see if the problems are actual, i.e. actually exist.  

It is important to note that the question whether a choreography is directly realizable depends 

not only on the ordering defined by the choreography, but also on the characteristics of the 

underlying communication service that is used for the transmission of messages between the 

different system components. Important characteristics of the communication service are the type 

of transmission channels, and the type of input buffering at each component. We assume that 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

19 

there is no message loss, and distinguish between channels with out-of-order delivery (i.e. 

messages sent from a given source to a given destination may be received in a different order 

than they were sent) and channels with in-order delivery. Concerning the input buffering we 

distinguish between the following schemes of message reordering for consumption: 

1. No reordering: Each component has a single FIFO buffer in which all received messages 

are stored until they are processed. Messages are consumed in a FIFO order.  

2. Reorder between sources: A component has separate FIFO buffers for messages received 

from different source components, and may locally determine from which source the next 

message should be consumed.  

3. Full reorder: A component may reorder received messages freely. 

In the following we assume that each sub-collaboration of a choreography is directly realizable 

and discuss for each ordering operator different conditions for the direct realizability of the 

choreography.  

3.2 Sequence 

According to the semantics of UML activity diagrams, each activity is completely finished 

before the next one starts. In the most general case, this requires global coordination between all 

system components participating in the two activities.  In many cases, such strong sequencing is 

what we want for collaborations too, but sometimes strong sequencing is too restrictive and may 

be replaced by weak sequencing where the sequential order is only enforced locally on each 

component without global coordination.  

It is therefore necessary to allow weak sequencing as well as strong sequencing and to provide 

some notation for distinguishing between them. We can annotate sequential composition with a 

constraint of the form "{weak}" and "{strong}" for this purpose. By default we assume weak 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

20 

sequencing and only annotate edges in case of strong sequencing. Note that weak sequencing is 

the semantics defined for sequential execution in High-Level Message Sequence Charts and 

UML interaction overview diagrams.  

Strong and weak sequential execution of sub-activities impose ordering constraints on the 

collaborations and may lead to various realization problems which are further discussed below.  

1.2.3 Strong Sequence 

Strong sequencing between two collaborations C1 and C2, written CC s 21o , requires C1 to be 

completely finished, for all its roles, before C2 can be initiated. It requires a direct precedence 

relation between the terminating action(s) of C1 and the initiating action(s) of C2, so that the 

latter can only happen after the former are finished. The situation is particularly simple in the 

case of a localized sequence composition as defined below.  

Definition 1 (localized sequence composition). A sequence composition CC 21 o  is a localized 

sequence composition if all terminating actions of C1  and all initiating actions of C2  are located 

at the same composite role.  

In the case of a localized sequence composition, there is no semantic difference between strong 

and weak sequencing. In this case, the initiator of C2 can know when C1 is completely finished. 

We have the following proposition. 

Proposition 1. A localized sequence composition of two directly realizable collaborations is 

directly realizable. 

Note that this property can be checked at the choreography level, i.e. by considering the 

initiating and terminating roles, without considering detailed interactions. In Fig. 4, for example, 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

21 

the condition is not satisfied anywhere so there is no localized sequence composition in the 

diagram. 

If the condition is not satisfied and strong sequencing is required, coordination messages must 

be added from C1’s terminating composite-roles to C2’s initiating-composite roles. This could be 

done automatically by a synthesis algorithm [13].  

2.2.3 Weak Sequence 

Weak sequencing of two sub-collaborations C1 and C2, written CC w 21o , basically requires 

each composite role in C2 to be completely finished with previous collaborations before it may 

initiate participation in C2.  This means that the actions in the two collaborations are sequenced 

on a per-role basis. This corresponds to the semantics of MSC and UML Interaction Diagrams. 

Weak sequencing introduces concurrency, since the actions of the composed collaborations 

may partially overlap. Although such concurrency may be desirable for performance or timing 

reasons (i.e. a role may initiate a new collaboration if the actions in that collaboration are 

independent of the actions that have yet to be executed in the first collaboration), it comes at a 

price, since it may lead to specifications that are counter-intuitive and/or not directly realizable, 

as illustrated in Fig. 6. 

According to the basic weak sequence semantics, role B in Fig. 6 (a) may initiate collaboration 

C3 as soon as it has finished with C1. As a result, collaborations C2 and C3 may be executed in 

any order in the realized system. This is counter-intuitive to the specification, which we assume 

reflects the designer’s intention (i.e. that C3 should be executed after C2, with some allowed 

overlapping). If the designer’s intention was that the collaborations should be concurrently 

executed, this should be explicitly specified by means of parallel composition. Note that in this 

case there are no problems with realizability since the roles of C2 are completely disjoint from the 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

22 

roles of C3 and may execute independently. A tool should nonetheless issue a warning that the 

collaborations may not behave as intended and suggest replacing the sequence with a parallel 

composition. Note that the composition CC w 32 o  has two initiating roles, i.e. A and B, that may 

be executed concurrently. As a guideline such initial concurrency should be avoided in order to 

ensure a minimal amount of causality between initiatives. 

 

Fig. 6 Problematic weak sequential compositions 

Definition 2 (weak-causality). A weak sequential composition of two collaborations, CC w 21o , 

is weakly-causal if C2 has a single initiating composite role and this role participates in C1. 

The weak-causality property ensures that the initial actions of C1 and C2 are ordered 

sequentially. This can be checked at the collaboration level. We note that weak-causality is 

enforced in the so-called local-HMSCs of [26].  

Consider the weak sequential composition of C1 and C2 in Fig. 6 (b). This composition is 

weakly causal, but not directly realizable. Component R1 may initiate collaboration C2 just after 

sending message a in C1. Therefore, the actions in C2 may overlap with the actions in C1 that 

follow the sending of message a. For example, message e may be received at R2 before message 

c, or even before message a. This message reception order has not been explicitly specified, and 

therefore it is an implied scenario. Note that such problems may only occur when a composite 

role (here R2) participates in both C1 and C2 and plays a non-initiating sub-role in C2. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

23 

Proposition 2. A weakly causal composition of two directly realizable collaborations, CC w 21o  

is directly realizable if no composite role participating in C1 participates with a non-initiating 

role in C2. 

This property can be easily checked at the choreography level and represents a situation where 

weak sequencing is unproblematic. In the opposite case, where a non-initiating role in C2 also 

participates in C1, there is a potential race condition.  

In the literature about MSCs, the possibility that messages may be received in a different order 

than the one specified is usually called a race condition [2]. In general, a race condition can 

occur when the specification requires a receiving event to happen after another receiving event or 

a sending event, and both events are located at the same component. The reason lies in the 

controllability of events. While a component can control when its sending events should happen, 

it cannot control the timing of its receiving events. 

The actual occurrence of races highly depends on the underlying communication service being 

used. Channels with in-order delivery prevent races in the communication between a pair of 

roles, but do not prevent races when more than two roles are involved. This is the case for the 

situation in Fig. 6 (b). Such races may in general be resolved by means of input buffering that can 

reorder between sources (unless choices are involved, as we will see in Section 3.2.3).  

We note that race conditions may not only appear between directly composed collaborations, 

but also between indirectly composed ones. This is because a role in a collaboration that is 

composed in weak sequence can remain active during several succeeding collaboration steps. For 

example, in the TeleConsultation service a race condition exists between registration and 

consultation at composite role P (see Fig. 4). In this case it is the weak sequencing between 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

24 

registration and assignment that makes such race possible, since the sub-role played by P in 

registration may still be active (i.e. not finished) while assignment is executed and when 

consultation is initiated. We therefore say that there is indirect weak sequencing between 

registration and consultation. This “propagation” of weak sequencing makes it more difficult to 

avoid races.  

A property that helps to reduce the number of races and facilitates their detection is send-

causality, which requires all sending events to be totally ordered. 

Definition 3 (send-causal composition)4.  A composition CC w 21 o  is send-causal if the 

composite role initiating C2 is either the terminating role of C1 or the role that performs the last 

sending event of C1.  

Definition 4 (send-causal collaboration). A collaboration C is send-causal if: 

1) it is a single message transmission, or 

2) it is formed by, possibly repeated, send-causal compositions 21 CCC wo=  where C1 and 

C2 are send causal. 

It has been shown in [22] that when send-causality is enforced, races may only occur between 

two or more consecutive receiving events (i.e. not between a sending event and a receiving 

event). 

Proposition 3. In a send-causal collaboration, race conditions may only exist between two or 

more consecutive receiving events.  

 
4
 For the sake of simplicity, we assume here that each sub-collaboration has only a single initiating event and a single last sending event, but the 

definition could be easily generalized to consider multiple ones. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

25 

If 21 CCC wo=  is send-causal a potential race condition exists on a composite role R in C if 

the sub-role that R plays in C1 ends with a message reception (i.e. is a terminating role) and the 

sub-role R plays in C2 starts with another message reception (i.e. is a non-initiating role). 

Whether the potential race condition is an actual race or not depends on the underlying 

communication service, and on whether messages are received from the same or from different 

components. For example, in the TeleConsultation service the collaborations available and 

assignment are composed in weak sequence (see Fig. 4). Role D plays a terminating sub-role in 

available, while it plays a non-initiating sub-role in assignment. Therefore, a potential race 

condition exists at D between the receptions of the last message in available and the first 

message in assignment. This race is only actual in the case of out-of-order delivery. Note that we 

can identify this potential race simply by considering the initiating and terminating roles in the 

choreography in Fig. 4. 

Proposition 4. A send-causal weak sequential composition of a sequence of directly-realizable 

collaborations nww CCCC oKo 21=  (n>1) is directly realizable 

• over a communication service with in-order delivery if the following condition is satisfied: 

if a composite role plays a terminating role in a collaboration Ci (1≤i<n) followed by a 

non-initiating role in another collaboration Cj (i<j≤n), then the last message it receives in 

Ci and the first one it receives in Cj are sent by the same peer-composite role; or 

• over a communication service with out-of-order delivery only if no composite role plays a 

terminating sub-role followed by a non-initiating sub-role. 

For binary sub-collaborations we can easily identify which composite role sends the first and 

last messages, if we know which composite roles are the initiating and terminating roles. Using 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

26 

Proposition 4, we can determine whether a collaboration is directly realizable and identify actual 

races at the choreography level without considering the detailed interactions. In the case of n-ary 

collaborations, we can perform the same early analysis, but only potential races can be 

discovered. 

One interesting aspect of the specification with collaborations is that we can get information 

about potential races from the diagram describing the structural composition of collaborations, 

see Fig. 3. In such diagrams we can see whether a component participates in several 

collaborations, and whether it plays at least one terminating and one non-initiating role in them. 

If that is the case, a potential race exists. This information could then be used to direct the 

analysis of the behavioral specification (i.e. the choreography). For example, from the 

collaboration diagram for TeleConsultation (see Fig. 3 (a)) we can see that Patient participates 

both in registration and consultation, playing a terminating role in the first one and a non-

initiating role in the second one. From this information we can conclude that a potential race 

exists at Patient between those two collaborations. We could then check whether a path from 

registration to consultation exists in the choreography. If that is the case, the race is actual. Now, 

if we consider the collaboration diagram for consultation it is easy to see that there will not be 

races between voice and test at Doctor, since the latter does not play a non-initiating role in any 

of them. 

One of our motivations is to provide guidelines for constructing specifications with as few 

conflicts as possible and whose intuitive interpretation corresponds to the behavior allowed by 

the underlying semantics. We therefore propose, as a general specification guideline, that all 

elementary collaborations be send-causal. Weak sequencing of collaborations should also be 

send-causal, unless there is a good reason to relax this requirement. In the following we assume 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

27 

that all elementary collaborations are send-causal. 

3.2.3 Resolution of Race Conditions 

Race conditions can be resolved in several ways. Some authors [44], [23] have proposed 

mechanisms to automatically eliminate race conditions by means of synchronization messages. 

We note that when the send-causality property is satisfied, a synchronization message should be 

used to transform the weak sequencing leading to the race into strong sequencing. If 

synchronization messages are added in other places new races may be introduced. For example, 

in the TeleConsultation service (see Fig. 4) the race condition between registration and 

consultation at composite role P may be eliminated by introducing strong sequencing between 

registration and assignment. 

Other authors (e.g. [36], [46]) tackle the resolution of race conditions at the design and 

implementation levels. They differentiate between the reception and consumption of messages. 

This distinction allows messages to be consumed in an order determined by the receiving 

component, independently of their arrival order. In general, this reordering may be implemented 

by first keeping all received messages in a (unordered) pool of messages. When the behavior of 

the component expects the reception of one or a set of alternative messages, it waits until one of 

these messages is available in the message pool. Khendek et al. [36] use the SDL Save construct 

to specify such message reordering. This technique can be used to resolve races between 

messages received from the same source (i.e. in the case of channels with out-of-order delivery), 

as well as races between messages received from different sources. It corresponds to the full 

reordering for consumption capability mentioned in Section 3.1. Finally, races may also be 

eliminated if an explicit consumption of messages in all possible orders is specified (i.e. similar 

to co-regions in MSCs). We note that in the presence of choices, message reordering may only be 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

28 

possible if the messages to be reordered are marked with the id of the collaboration instance that 

they belong to (see Section 3.3.3).  

We believe that the resolution of races heavily depends on the specific application domain and 

requirements, as well as on the context in which they happen. In some cases the addition of 

synchronization messages is not an option, and a race has to be resolved by reordering for 

consumption. In other cases, such as when races lead to race propagation problems (see Section 

3.3) a strict order between receptions is required, so components should be synchronized by extra 

messages. At any rate, all race conditions should be brought to the attention of the designer once 

discovered. She could then decide, first, whether the detected race entails a real problem (e.g. 

there is no race at P between registration and consultation if all channels have the same latency). 

Then, she could decide whether reordering for consumption is acceptable or synchronization 

messages need to be added or the specification has to be revised. 

3.3 Alternatives 

We consider here the case that at some point of the execution of a collaboration, two or more 

alternative sub-collaborations may be performed. Alternative composition is specified by means 

of choice operators, and describes alternatives between different execution paths. In a choice one 

or more choosing composite roles decide the alternative of the choice to be executed, based on 

the (implicit or explicit) conditions associated with the alternatives. Choosing roles are initiating 

roles. The other non-choosing composite roles involved in the choice follow the decision made 

by the choosing roles (i.e. execute the alternative chosen by the latter). Non-choosing roles are 

non-initiating roles. It is thus important that: 

1. The choosing roles, if several, agree on the alternative to be executed. We call this the 

decision-making process.  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

29 

2. The decision made by the choosing roles is correctly propagated to the non-choosing roles. 

We call this the choice-propagation process.  

In the following we study how each of these aspects affect the direct realizability of a choice. 

We note that a choice can be seen as a sequential composition with one inlet and a set of 

alternative outlets. The propositions and guidelines for sequential composition, given in Section 

3.2, apply to every path through the choice. However, we will see how the choice-propagation 

process affects the resolution of races. 

We assume collaborations to be weakly-causally composed, and therefore consider that the set 

of choosing roles is the union of the initiating roles of all collaborations immediately following 

the decision node.  

1.3.3 Decision-making Process 

We may distinguish the following situations: 

1. The enabling conditions of the alternatives are mutually exclusive; only one of the sub-

collaborations can be initiated. 

2. The enabling conditions of several alternatives could be true; if the initiating composite 

roles of these sub-collaborations are different and there is no coordination between these 

roles, several alternatives may be initiated concurrently. We call this situation mixed 

initiatives. In many cases this is due to uncoordinated external triggering events, 

represented by independent initiatives in the collaborations, see Fig. 7. We distinguish the 

following two sub-cases: 

a. The different sub-collaborations have different goals; only one of them should succeed. 

We call this situation competing initiatives.  

b. The different sub-collaborations have the same goal; there is no conflict between them 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

30 

at the semantic level, however, there is a conflict at the level of message exchanges. 

Example: the doctor and the patient initiates the terminating collaboration of a voice call 

at the same time, see Fig. 7. We call this situation mixed initiatives with common goals.  

connected

alt

caller
invite

callee

sd voice

hangup

hangup

hangup
hangup

 
Fig. 7 A sequence diagram for the voice collaboration illustrating mixed initiatives with common goals. 

Local Choice. Deciding the alternative to be executed becomes simple if there is only one 

choosing role, and the enabling conditions and triggering events for the alternatives are local to 

that role (i.e. they are expressed in terms of observable predicates, and events). Choices with this 

property are called local. It is easy to see that the decision making process of local choices are 

directly realizable, since the decision is made by a single role based only on its local knowledge.   

Non-local choice. The decision-making process gets complicated when there is more than one 

choosing  role, as in Fig. 8 (a), where there are two choosing roles, namely A and B . From a 

global perspective, our intention is that once the choice node is reached, either role A initiates 

collaboration discA with B, or role B initiates collaboration discB with A. We are assuming then 

that there is an implicitly synchronization between A and B, which allows them to agree on the 

alternative to be executed. However, in a directly realized system, components A and B will not 

be able to synchronize and may decide to initiate both collaborations simultaneously resulting in 

a mixed initiative. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

31 

 

Fig. 8 (a) Example of a non-local choice; (b) Non-local choice where a mixed initiative conflict cannot be detected; (c) Non-local choice where a 
mixed initiative conflict can be detected. 

Choices involving more than one choosing role are usually called non-local choices [10]. They 

are normally considered as pathologies that can lead to misunderstanding and unspecified 

behaviours, and algorithms have been proposed to detect them in the context of HMSCs (e.g. 

[10], [30]). Despite the extensive attention they have received, there is no consensus on how they 

should be treated. We believe this might be motivated by a lack of understanding of their nature. 

Some authors (e.g. [10]) consider them as the result of an underspecification and suggest their 

elimination. This is done by introducing explicit coordination, as a refinement step towards the 

design. Other authors look at non-local choices as an obstacle for realizability and propose a 

restricted version of HMSCs, called local HMSCs [29], [26], that forbid non-local choices. 

Finally, there are authors [28], [45] that consider non-local choices to be inevitable in the 

specification of distributed systems with autonomous processes. They propose to address them at 

the design level, and propose a generic implementation approach for non-local choices. 

A non-local choice shows up at the chorography level as a choice where the alternatives have 

different initiating roles. We may avoid the problem of mixed initiatives by coordinating these 

initiating roles (e.g. either with additional messages or with additional message contents). This 

would make the choice local in practice. Unfortunately, such coordination is not always feasible. 

If the alternatives are triggered by independent external events (represented by independent 

initiatives), we call the choice an initiative choice. In these choices the occurrence of mixed 

initiatives is unavoidable. In the TeleConsultation service, for example, two collaborations are 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

32 

enabled after the execution of available: assignment and unavailable (see Fig. 4). The triggering 

events for these come form the end-users (i.e. the actual doctor and receptionist) that operate 

independently and are not coordinated. It makes little sense to coordinate components D and R in 

order to obtain a local choice, since this would imply the coordination of the end-users’ 

initiatives. Such non-local choice is simply unavoidable. It is an initiative choice. 

Any role involved in two or more alternatives of an initiative choice may be potentially used to 

detect a mixed initiative and initiate the resolution. For such roles, the mixed initiatives reveal 

themselves in the role behavior as choices between an initiating and a non-initiating sub-role, or 

between two non-initiating sub-roles played in collaborations with different peers. Note that if 

two alternatives with different choosing roles have no common roles, a mixed initiative conflict 

can not be detected (see, for example, Fig. 8 (b)). If the intention is that they shall be mutually-

exclusive, an arbiter role should be introduced. Such arbiter role would act as an intermediary 

between the choosing roles and the non-choosing roles, and could detect a mixed initiative 

conflict (e.g. the choice in Fig. 8 (c) results from adding an arbiter role S to the choice in Fig. 8 

(b)).  

Situations of initiative choices were discussed by Gouda et al. [28] and Mooij et al. [45]. These 

authors propose some resolution approaches. In the domain of communication protocols, Gouda 

et al. [28] propose a resolution approach for two competing alternatives (i.e. two choosing 

components), which gives different priorities to the alternatives. Once a conflict is detected, the 

alternative with lowest priority is abandoned. With motivation from a different domain, where 

Gouda’s approach is not satisfactory, Mooij et al. [45] propose a resolution technique that 

executes the alternatives in sequential order (according to their priorities), and is valid for more 

than two choosing components. We conclude that the resolution approach to be implemented 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

33 

depends on the specific application domain. We therefore envision a catalog of domain specific 

resolution patterns from which a designer may choose the one that better fits the necessities of 

her system. We note that any potential resolution should also address the problem of orphan 

messages, see Section 3.5, which is not considered in either [28] or [45].   

2.3.3 Choice-propagation Process 

The decision made by the choosing component must be properly propagated to the non-

choosing components, in order for them to execute the right alternative. In each alternative, the 

behavior of a non-choosing component begins with the reception of a sequence of messages, 

which we call the triggering trace. Thereafter, the component may send and receive other 

messages. It is the triggering traces that enable a non-choosing component to determine the 

alternative chosen by the choosing component. In some cases, however, a non-choosing 

component may not be able to determine the decision made by the choosing component. As an 

example, we consider the local choice in Fig. 9 (a). For the component R3, the triggering traces 

for both alternatives are the same (i.e. the reception of message x). Therefore, upon reception of 

x, R3 cannot determine whether R1 decided to execute collaboration C1 or C2. That is, R1’s 

decision is ambiguously propagated to R3. We say a choice has an initial ambiguous 

propagation if there is a non-choosing component for which the triggering traces specified in 

two alternatives have a common prefix. Note that according to this definition, triggering traces 

such as (?x, ?y) and (?x, ?z) cause initial ambiguous propagation since in any direct realization, 

the choice cannot be made immediately after ?x. An easy solution in this case would be to delay 

the choice (i.e. extract ?x from the choice). Choices with ambiguous propagation are not directly 

realizable. They are similar to the non-deterministic choices defined in [46]. Unfortunately, 

ambiguous propagation cannot be detected at the choreography level as it depends on the detailed 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

34 

interactions of the sub-collaborations. In order to avoid ambiguous propagation, [13] suggested 

the introduction of a message parameter that indicates to which branch of the choreography the 

message belongs. 

 

Fig. 9 Choices with (a) ambiguous propagation and (b) race propagation; (c) Behaviour implied by (b) 

If any of the alternatives contain a weak sequence with a race condition, the race may make the 

propagation ambiguous. Consider the choice in Fig. 9 (b). In this case there is a race in the weak 

sequence of U and V. The choice is followed by either V or U+ V and may result in the situation 

depicted in Fig. 9 (c). This example shows that in the presence of race conditions the triggering 

trace observed by a non-choosing component may differ from the specified one. Therefore, 

whenever race conditions may appear in any of the alternatives, we need to consider the 

potentially observable triggering traces in the analysis of choice propagation. For example, in 

Fig. 9 (b) the specified triggering traces for R3 are (?b+,?c) and (?c). However, R3 may observe 

triggering traces such as (?c, ?b) or (?b, ?c, ?b). We say a choice has a race propagation if there 

is ambiguous propagation due to races. Choices with race propagation are not directly realizable. 

They are similar to the race choices defined in [46]. 

Choices without ambiguous or race propagation are said to have proper decision 

propagation. These choice propagations are directly realizable. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

35 

 

Fig. 10 (a) Choice with race propagation; (b) Unfolding of (a); (c) Behavior implied by (a) 

3.3.3 Resolution of Race Propagation 

To resolve the problem of race propagation we need to resolve the race(s) that lead to it. 

However, if we try to remove the race conditions by means of message reordering for 

consumption (e.g. by means of separate input buffers), the race propagation problem may still 

persist. This is because, in general, a component would not be able to determine whether a 

received message should be immediately consumed as part of one alternative, or be kept for later 

consumption in another alternative as illustrated by the race propagation in Fig. 10 (a). To make 

the message reordering work, we need to mark the messages with the id of the collaboration 

instance they belong to. In order to obtain such an id, we need to unfold the branches of the 

choice in the choreography graph, so that they do not share any activity. Then, we need to assign 

a different id to each activity referring to the same collaboration (e.g. Fig. 10 (b) shows the 

unfolding of the choice in Fig. 10 (a) and the assignment of distinct collaboration ids). Fig. 10 (c) 

shows a possible scenario during the execution of the choice in Fig. 10 (a). If the messages are 

not marked, R3 cannot determine whether it should consume message d immediately after 

receiving it (i.e. in case C2 has been directly executed after the decision node), or whether it 

should keep it on the buffer until it receives message b. Marking message d with C2 (i.e. the id of 

the collaboration “type” it belongs to) would not help. It has to be marked with the id of the 

actual collaboration instance it belongs to (i.e. C2’).  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

36 

When loops are involved, we need to consider the number of iterations of the loop in order to 

create the collaboration ids. Consider, for example, the choice in Fig. 9 (b). An unfolding of this 

choice would give an infinite number of alternative paths: U1→V1, U1→ U2→V2, U1→ U2→ 

U3→V3, and so on. In order to assign a proper id to each instance of U (or, in general, to each 

instance of a collaboration inside a loop) we just need to use the iteration number. The id 

assigned to each instance of V (or, in general, to each instance of a collaboration following the 

loop) depends on the total number of iterations that have been executed. The messages in the 

scenario of Fig. 9 (c) have been marked following these principles. Therefore, when R3 receives 

message c(v2) it may determine that there is still one message b on the communication medium, 

and wait for it without consuming c (for this R3 needs to keep the count of b messages that it has 

received). 

In [26] the realizability of local-HMSCs is studied. The authors propose to implement the 

behavior of each component by means of a simple linear algorithm. This algorithm is based on 

the idea of marking messages with the id of the HMSC node they belong to. This is basically the 

same idea that we have just discussed for the resolution of race choices. Indeed, although the 

authors do not explicitly study the race propagation problem, their solution should in principle 

avoid such problems. The authors do not explain, however, the way to achieve a unique id for 

each HMSC node. They might consider this as something trivial, although we have shown it is 

not so trivial. Moreover, they propose marking all messages that are exchanged, and not only 

those involved in a race propagation. Components therefore have to check the data carried by all 

messages, and decide whether to consume them or not. We believe this unnecessarily increases 

the amount of processing needed upon message reception. We prefer to detect the cases of race 

propagation. Then, if we want to resolve the problematic propagation by means of message 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

37 

reordering5, we design the components so that they only mark the involved messages, and apply 

message reordering only to them. Alternatively, we may decide to resolve the race propagation in 

a probably simpler way, that is, by transforming the responsible weak sequencing into strong 

sequencing (see e.g. [48]). 

3.4 Merge 

When two or more preceding flows merge into a single successor flow, this may be seen as a 

set of sequential compositions where each preceding flow is composed with the succeeding flow. 

The propositions and guidelines given in Section 3.2 apply to each flow composition.  

3.5 Loop 

Loops can be used to describe the repeated execution of a (composite) collaboration, which we 

call the body collaboration. A loop can be seen as a shortcut for strong or weak sequential 

composition of several executions of the same body collaboration, combined with a choice and a 

merge (see e.g. Fig. 9 (b)).   This means that the rules for strong/weak sequencing with choices 

and merges must be applied. We note that all executions of a loop involve the same set of 

components. This fact makes the chances for races high when weak sequencing is used even 

though the weak-causality property is always satisfied. Strong sequencing should therefore be 

preferred in loops. When strong sequencing is specified between any two executions of the body 

collaboration (e.g. to be sure that one iteration is completely finished before the next one starts), 

the body collaboration should be initiated and terminated by the same component. When send-

causal weak sequencing is specified, the component initiating the loop-body collaboration should 

be the one sending or receiving the last message exchanged in the collaboration. 

Loops may give rise to so-called process divergence [10], characterized by a component 

 
5 This avoids not only race propagation, but ambiguous propagation in general 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

38 

sending an unbounded number of messages ahead of the receiving component. This may happen 

with weak sequencing if the communication between any two of the participants in the body 

collaboration is unidirectional. They may also give rise to so-called orphan messages, i.e. 

messages sent in one iteration and received in a later iteration. Consider the specification in Fig. 

8 (a), and imagine that each collaboration consists of only one message. Then the scenario in Fig. 

8 (d) is possible, where message discB is sent as a response to the first invite message, but it is 

received by A after having sent the second invite. Component A may then consume message 

discB as a response to the second invite message, leading to an undesired behavior. In this 

scenario, discB is a so-called orphan message. 

Situations similar to loops occur if several occurrences of the same collaboration may be 

weakly sequenced (e.g. several consecutive sessions of a service).  

3.6 Concurrency 

Concurrency means that several sub-collaborations are executed independently from one 

another, possibly at the same time. We use forks and joins to describe concurrency, and we 

require they are properly nested as in UML Interaction Overview Diagrams.  Concurrent sub-

collaborations are directly realizable as long as they are completely independent (i.e. their 

executions do not interfere with each other). This is clearly the case when there is no overlap 

among the roles. When a role participates in several concurrent collaborations it must be possible 

to distinguish messages from the different collaborations, otherwise messages belonging to one 

collaboration may be consumed within a different collaboration.   

In the TeleConsultation example, the receptionist participates in two concurrent flows, and this 

indicates that the flows are partially dependent. In this case the receptionist serves to coordinate 

the doctor and the patient. Concurrent activities often involve shared resources for which there is 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

39 

competition that require coordination. Seen from the patient, the doctors are shared resources and 

the coordination is performed by the receptionist.  

Indirect dependencies may also exist through passive shared resources, and shared information. 

In this case, appropriate coordination has to be added between the collaborations, which will 

normally be service-specific. In [20] and [21] we discussed the automatic detection of problems 

due to shared resources, between concurrent instances of the same composite service 

collaboration. This detection approach makes use of pre- and post-conditions associated with 

sub-collaborations, and could also be used to detect interactions between concurrent 

collaborations composed using forks and joins. 

In a fork, a preceding flow is followed sequentially by a set of two or more succeeding flows 

running concurrently. The opposite takes place in a join; a set of two or more preceding flows 

running concurrently is followed sequentially by a single succeeding flow. For each of the 

sequential flow compositions in the set of compositions defined by a fork/join the conditions for 

(weak/strong) sequential composition explained in Section 3.2 apply.  

For strong sequencing, all the collaborations immediately succeeding a fork must be initiated 

by the role terminating the collaboration preceding the fork. Similarly, all the collaborations 

immediately preceding a join must terminate at the component initiating the collaboration 

succeeding the join. If this is not the case, coordination messages may be added before the 

join/fork to ensure strong sequencing [13].  

3.7 Interruption 

We consider here the interruption of a sub-collaboration C by another sub-collaboration Cint 

that may become enabled, for instance as soon as C is initiated, or when A reaches a certain state. 

Cint requires a triggering event to be initiated, normally in the form of a request coming from an 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

40 

external user or another active agent. In the TeleConsultation the observation of the external 

event hangup performed by the patient results in the interruption of the waiting collaboration by 

the disconnect collaboration.  

As noted in [34], a semantics for cancellation with immediate termination of all activities in 

the interrupted process is not directly realizable in a distributed system. Instead, one has to 

assume that the cancellation takes some time to propagate to all participants in the interrupted 

sub-collaboration, which means that certain activities of the interrupted process may still proceed 

for some time after the cancellation has been initiated. For example, a client may send a request 

to a server and, shortly after that, decide to send a cancellation message. While this message is on 

the way, the server would continue processing the request, and may even send a response back to 

the client before it receives the cancellation message. The client would then receive an 

unexpected response message. Similarly, the server would receive a non-awaited cancellation 

message. 

Interruption composition is akin to mixed initiatives where the preempting collaboration has 

priority. Interruption implies that resolution behavior must be added. However, with interruptions 

the existence of mixed initiatives is clearly visible in the choreography. The detection is thus easy 

at the choreography level.  

3.8  Activity invocation 

In many cases, a given collaboration A needs to invoke another collaboration B in order to 

carry out some task. In the TeleConsultation, the doctor invokes the test collaboration while in 

the middle of the voice collaboration, as illustrated in Fig. 2 and Fig. 4.  

We propose to model this situation in activity diagrams using two "stream" control flow 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

41 

arrows, one representing the request for service and the other representing the results returned6. If 

a collaboration A, invoking a collaboration B, suspends its own behavior while waiting for the 

results of B, then this collaboration invocation corresponds to the semantics of a procedure call, 

which is a case of strong sequencing. This is directly realizable if collaboration B is initiated and 

terminated by a single role that also participates in A.  If this is not the case, additional 

coordination messages are needed to ensure strong sequencing.  

Activity invocations should be checked to ensure that no invocation cycles are created (e.g. A 

invokes B, which in turns invokes C, which in turns invokes A). These cycles may lead to 

deadlocks. Mixed initiatives may also appear if the invoking collaboration does not suspend its 

behavior. An example can be found in the TeleConsultation service. Assume that the behavior of 

voice is given by the sequence diagram in Fig. 7, and that the test collaboration is invoked when 

connected is true. Then a result from test may be received when callee has already sent a hangup 

message. 

We note here that streaming pins allow information to be exchanged between concurrent 

activities and provides a general mechanism to model information exchange between 

collaborations that are executing in parallel, as has been demonstrated by Kraemer and Herrmann 

[38]. This possibility is not elaborated here, but we remark that such interchange is directly 

realizable if localized within one role, as indicated in Fig. 5 (b) and Fig. 5 (c).   

3.9 Related work on realizability 

The realizability of specifications of reactive systems was first studied, in general terms, in [1]. 

In the context of MSC-based specifications it was first considered in [4], where the authors relate 

 
6 One may use several "stream" control flows for representing different types of results that could be obtained, such as normal and exceptional 
cases. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

42 

the problem of realizability to the notion of implied scenarios. They consider a specification 

given as a set of MSCs describing asynchronous interactions, and analyze it to check if it implies 

any non-specified MSC. Intuitively, a realizable specification does not contain implied scenarios. 

The authors propose two notions of realizability, depending on whether the realization is required 

to be deadlock-free (safe realizability) or not (weak realizability). This work was extended in [5] 

to consider realizability of bounded HMSCs [3]. Reference [43] extends in turn [5] and provides 

some complexity results for a less restrictive class of HMSCs. Realizability of HMSCs with 

synchronous communication is considered in [57]. The authors present a technique to detect 

implied scenarios from a specification describing both positive, as well as negative scenarios. 

The realizability notion considered in [5] and [43] does not allow adding data into messages or 

adding extra synchronization messages. This is seen as a very restrictive notion of realizability by 

some authors, who propose a notion of realizability where additional data can be incorporated 

into messages [47], [9], [26]. The authors of [47] study safe realizability, with additional message 

contents, of regular (finite state) HMSCs with FIFO channels. This work is extended in [9], 

where the authors consider non-FIFO communication, and identify a subclass of HMSCs, so-

called coherent HMSCs, which are safely realizable with additional message contents. However, 

checking whether an HMSC is coherent is in general hard. Reference [26] discusses two classes 

of unbounded HMSCs. They claim that so-called local-choice HMSCs are always safely 

realizable with additional message contents7. A subclass of local-choice HMSCs that are safely 

realizable without additional message contents was studied in [29].  

Other authors have studied conditions for realizability of Compositional MSCs [46] and 

pathologies in HMSCs [10], [30] and UML sequence diagrams [8] that prevent their realization. 

 
7 Although their claim is true, the authors do not explain the proper format of message contents, as we discussed in Section 3.3.3 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

43 

None of these works discusses the nature of the realization problems. 

3.10  System composition 

In service engineering it is desirable that services can be modeled as independently as possible 

and then be composed in a modular way at design time and/or runtime. So far we have discussed 

the composition of a service defined as a collaboration among roles.  

In general, a system may provide many different services, and many occurrences of the same 

service may be running concurrently. A collaboration, such as the TeleConsultation, may just be 

one of many collaborations to be realized in a given system, and a given system may run several 

TeleConsultations concurrently. In order to be executed in a system, each role must be bound to a 

component that can execute it, either statically or dynamically.  In general a role may be assigned 

to many different components and each component may be assigned several different roles.  

Using UML, the system structure and the binding of roles to components may be defined using 

composite classes with inner parts, as illustrated in Fig. 11. Clearly system composition has 

similarities with, but is not the same as the collaboration composition we have discussed so far. 

One will normally not define the complete system behavior explicitly as the choreography of an 

enclosing collaboration, but rather let it follow implicitly from the system structure and the 

binding of roles to the system components.  System composition raises a number of issues and 

problems related to the composition and coordination of roles that will not be discussed further 

here.  We only remark that, to a large extent, they may be handled outside the roles by additional 

coordination functionality in the components. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

44 

Nurse

Doctor[*]Instrument[*]

Patient[*] Patient

Doctor

Receptionist

RemoteHealthcareSystem

Tele
Consultation

Sensor

 
Fig. 11 Actors with role bindings 

4 GOING FROM COLLABORATIONS TO COMPONENT DESIGNS 

We discuss in this section the possibility of deriving the behaviors of the components in a 

distributed design automatically from the behavior of a collaboration which we assume is given 

in the form described in Section 2. In general, each component will realize the behavior of at 

least one role identified in the collaboration. The behavior of each component will be given in 

terms of local actions to be performed and messages exchanged with the other components 

within the system. The term "protocol" [14] denotes this behavior that must be satisfied for 

obtaining compatibility between the actions performed by the different system components.  

During the past years, much research effort has been spent on the problem of deriving 

component behaviors from scenario-based specifications of the system behavior (for a survey, 

see [42]). The system behavior is usually defined in terms of sequence diagrams or similar 

notations. In this context, most of the issues discussed in Section 3 must be addressed. As 

explained in Sections 2 and 3, collaborations provide useful structuring and composition 

mechanisms to describe and analyze the requirements that are the starting point for a systematic 

development process, and are therefore preferable to message sequence diagrams, which are at a 

relatively low level of abstraction. Nevertheless, message sequence scenarios can be derived 

from higher-level specifications in the form of activity diagrams or Use Case Maps [7], and then 

one could derive component behaviors in a second step. In the following, however, we do not 

follow that approach, but consider instead the direct derivation of component behavior from the 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

45 

specification of a collaboration. 

4.1 Protocol derivation from service specification 

Traditionally, an abstract view of a collaboration within a distributed system is called a service 

[12]. The specification of a service behavior describes actions that are executed at different 

"service access points" and their temporal order. A service access point corresponds to a role (or 

a participating component) in the definition of a collaboration. At this level of abstraction, the 

exchange of messages between the different roles is normally not shown. However, these 

messages are essential at the level of the protocol specification which defines the behavior of 

each component in the distributed system. A body of work exists that describes algorithms for 

deriving a protocol specification from a given service specification. The service specification 

defines the temporal ordering of elementary actions that are associated with the components of 

the system. A protocol derivation algorithm, therefore, derives the necessary message exchanges 

between the different components in order to assure that the service actions are executed in an 

order consistent with the service specification. The initial work in [13] assumes that the service 

specification consists of elementary actions where the temporal ordering is defined by sequence, 

alternative and concurrency operators; the inclusion of message parameters for data transfer was 

added in [27]. In [35], temporal orderings with regular recursion and sub-collaborations are 

introduced. General recursion is dealt with in [48] and [34], and the latter also deals with 

interruption.  

The basic idea of these algorithms is to first identify for each sub-collaboration the roles 

(components) involved, and in particular the initiating and terminating roles (components). If two 

sub-collaborations should be executed in the temporal order of a strong sequence, then the 

protocol derivation algorithm introduces a coordination message from each terminating 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

46 

component of the first sub-collaboration to each initiating component of the second sub- 

collaboration. In many cases, the sub-collaborations have only a single initiating and terminating 

component; in this case a single coordination message is sufficient; and when both components 

are the same, no coordination message is required, since the sequencing can be enforced by the 

single component. 

We note that most of these approaches only consider strong sequencing and assume that the 

service specification does not include a non-local choice. However, a non-local choice can be 

handled by introducing a conflict-resolution protocol between the components involved, for 

instance in the form of a circulating token, or by introducing priorities as suggested by Gouda 

[28], however, no general solution exists. Most derivation algorithms also assume that each 

component has separate input buffers for all its partners, and that there is no message overtaking. 

4.2 Protocol derivation for Petri-nets  

The problem of protocol derivation from service specifications has been studied also for the 

case that the service specification is given as a Petri net or some extended form of Petri nets [60], 

[33]. This is of particular interest to us because the semantics of activity diagrams can be 

described naturally with Petri nets. An elementary action of a collaboration (described as an 

activity diagram) corresponds to a transition of the corresponding Petri net. Each transition of the 

Petri net is therefore associated with one of the roles of the collaboration. The Petri net tokens 

that pass from one transition to another represent coordination messages. Non-local choice 

remains a problem. We note that Petri net extensions have been considered, including pre- and 

post-conditions for transitions and variables that may be located at different components. The 

derived protocol includes mechanisms for checking non-local pre-conditions, updating of 

variables, and the control of access to shared resources [61].  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

47 

4.3 Semi-automatic designs of collaborations  

From the above discussion, we get the following conclusion: Given the behavior of a 

collaboration described in terms of sub-collaborations and elementary actions and their allowed 

execution order, the problem of deriving the behavior of components that will realize this global 

behavior through message exchanges has been solved under the assumption that there is (a) no 

weak sequencing, and (b) no non-local choice or mixed initiatives.  

For the many cases where these assumptions are not satisfied, further work is needed for 

finding appropriate solutions for the component behaviors. Concerning weak sequencing, a 

composition of sub-collaborations satisfying Propositions 2 or 4 in Section 3 has been shown to 

be directly realizable. In [22] we provide proofs of this and also algorithms to check if the 

conditions for direct realizability of weak sequencing are satisfied or not.   

We hope that the guidelines given in Section 3 will eventually lead to the semi-automated 

derivation of component behaviors from a service specification given in the form of sub-

collaborations, elementary actions and their allowed execution order. This would lead to a semi-

automatic process, where the designer has to choose domain-specific solutions to those problems 

for which no general solution is available, namely non-local choices and mixed initiatives. 

5 CONCLUSIONS 

In Section 1 we asked ourselves the following questions. Is it possible to model service 

behavior more completely? Can it be done in a structured way without revealing more interaction 

detail than necessary? Is it possible to support composition and to detect and remove realization 

problems? And is it possible to derive detailed implementations automatically from service 

models?  We have shown here that a collaboration oriented approach based on UML 2 

collaborations have potential to provide positive answers to several of these questions. In 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

48 

particular we have demonstrated how choreographies defined using activity diagrams can be used 

for service specification at a higher level than interactions and at the same time help to identify 

and resolve realization problems. To our best knowledge we are able to identify all the 

realization problems that have been reported in literature, many at the level of choreography, 

without needing to consider detailed interactions of sub-collaborations. We have also argued that 

our approach can be supported by tools that automatically generate correct implementations from 

service specifications.  Evidence of this has been provided through several demonstrations by our 

groups and others.  

REFERENCES 
[1] M. Abadi, L. Lamport, and P. Wolper, “Realizable and unrealizable specifications of reactive systems”, Proc. 16th Intl. Colloquium on 

Automata, Languages and Programming (ICALP’89), London, UK, Springer-Verlag, 1989, pp. 1–17. 
[2] R. Alur, G. J. Holzmann and D. Peled, "An analyzer for Message Sequence Charts", Software - Concepts and Tools, 17(2), 70–77, 1996. 
[3] R. Alur and M. Yannakakis, “Model checking of message sequence charts”, Proc. 10th Intl. Conf. on Concurrency Theory (CONCUR’99), 

LNCS, vol. 1664, Springer, 1999, pp. 114–129. 
[4] R. Alur, K. Etessami and M. Yannakakis, "Inference of Message Sequence Charts", Proc. 22nd Intl. Conf. on Soft. Eng. (ICSE’00), 2000. 
[5] R. Alur, K. Etessami and M. Yannakakis, "Realizability and verification of MSC graphs", Theor. Comput. Sci., 331(1), pp. 97–114, 2005. 
[6] D. Amyot, "Introduction to the User Requirements Notation: learning by example", Computer Networks, vol. 42 (3), pp. 285-301, 2003. 
[7] D. Amyot, D.Y. Cho, X. He and Y. He, "Generating scenarios from Use Case Map specifications", Proc. 3rd Intl. Conf. on Quality 

Software (QSIC'03), Dallas, November 2003. 
[8] P. Baker, P. Bristow, C. Jervis, D. King, R. Thomson, B. Mitchell and S. Burton, “Detecting and resolving semantic pathologies in UML 

sequence diagrams”, Proc. 10th ESEC/13th ACM SIGSOFT FSE conference, New York, NY, USA, ACM Press, 2005, pp. 50–59. 
[9] N. Baudru and R. Morin, "Safe implementability of regular Message Sequence Chart specifications", Proc. ACIS 4th Intl. Conf. on Soft. 

Eng., Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD’03), 2003, pp. 210–217 
[10] H. Ben-Abdallah and S. Leue, "Syntactic detection of process divergence and non-local choice in Message Sequence Charts", Proc. 2nd 

Int. Workshop on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’97), 1997 
[11] G. v. Bochmann, "Finite state description of communication protocols", Computer Networks, vol. 2, 1978, pp. 361-372.  
[12] G. v. Bochmann and C. A. Sunshine, Formal methods in communication protocol design, (invited paper) IEEE Tr. COM-28, No. 4 (April 

1980), pp. 624-631, reprinted in "Communication Protocol Modeling", edited by C. Sunshine, Artech House Publ., 1981. 
[13] G. v. Bochmann and R. Gotzhein, "Deriving protocol specifications from service specifications", Proc. ACM SIGCOMM Symposium, 

1986, pp. 148-156. 
[14] G. v. Bochmann, "Protocol specification for OSI", Computer Networks and ISDN Systems, 18, April, 1990, pp.167-184. 
[15] G. v. Bochmann, "Activity nets: a UML profile for modeling work flow architectures", Technical Report, University of Ottawa, Oct. 2000. 
[16] R. Bræk, "Unified system modeling and implementation", Proc. Intl. Switching Symposium (ISS), Paris, May, 1979.  
[17] R. Bræk, "Using roles with types and objects for service development", Proc. IFIP 5th Intl. Conf. on Intelligence in Networks 

(SMARTNET'99), IFIP Conference Proceedings, vol. 160, Kluwer, 1999.  
[18] R. Bræk and G. Melby, "Model driven service engineering", in Model-driven Software Development, vol. 2 of Research and Practice in 

Software Engineering, S. Beydeda, M. Bookand V. Gruhn, Eds., Springer, 2005. 
[19] M. Broy, I. H. Krüger and M. Meisinger, "A formal model of services", ACM Trans. on Soft. Eng. and Meth. (TOSEM), vol. 16, no. 1, 

February 2007. 
[20] H. N. Castejón and R. Bræk, "A collaboration-based approach to service Specification and detection of implied scenarios",  Proc. 5th ICSE 

int. workshop on Scenarios and state machines: models, algorithms and tools (SCESM’06), ACM Press, 2006. 
[21] H. N. Castejón and R. Bræk, "Formalizing collaboration goal sequences for service choreography", Proc. 26th IFIP WG 6.1 Intl. Conf. on 

Formal Methods for Networked and Distributed Systems (FORTE’06), LNCS, vol. 4229, Springer-Verlag, 2006. 
[22] H. N. Castejón, G. v. Bochmann and R. Bræk, "Investigating the realizability of collaboration-based service specifications", Technical 

report, Avantel 3/2007, ISSN 1503- 4097, NTNU, 2007. 
[23] C.-A. Chen, S. Kalvala and J. Sinclair, "Race conditions in Message Sequence Charts", Proc. 3rd Asian Symposium on Programming 

Languages and Systems (APLAS’05), LNCS, vol. 3780, Springer, 2005, pp. 195–211. 
[24] T. Erl, Service oriented architecture: concepts, technology and design, Prentice Hall, ISBN 0-13-185858-0 
[25] K. Fisler and S. Krishnamurthi, "Modular verification of collaboration-based software designs", Proc. 8th European Software Engineering 

Conference, New York, ACM Press, 2001. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 
EDIT) < 
 

49 

[26] B. Genest, A. Muscholl, H. Seidl and M. Zeitoun, "Infinite-state high-level MSCs: Model-checking and realizability", J. Comput. Syst. Sci., 
72(4), 2006, pp. 617–647. 

[27] R. Gotzhein and G. v. Bochmann, "Deriving protocol specifications from service specifications including parameters", ACM Transactions 
on Computer Systems, vol.8, no.4, 1990, pp. 255-283. 

[28] M. G. Gouda and Y.-T. Yu, "Synthesis of communicating Finite State Machines with guaranteed progress", IEEE Trans. on 
Communications, vol. Com-32, no. 7, July 1984, pp. 779-788. 

[29] L. Hélouët and C. Jard, "Conditions for synthesis of communicating automata from HMSCs", Proc. 5th Intl. Workshop on Formal 
Methods for Industrial Critical Systems (FMICS’00), Berlin, GMD FOKUS, 2000. 

[30] L. Hélouët, "Some pathological Message Sequence Charts, and how to detect them", Proc. 10th Intl. SDL Forum, LNCS, vol. 2078, 
Springer-Verlag, 2001, pp. 348–364. 

[31] IUT-T, Specification and Description Language (SDL), Recommendation Z.100, 2000. 
[32] IUT-T, Message Sequence Charts (MSC), Recommendation Z.120, 1998. 
[33] H. Kahlouche and J. J. Girardot, “A stepwise requirement based approach for synthesizing protocol specifications in an interpreted Petri net 

model”, Proc. INFOCOM’96, 1996, pp. 1165–1173. 
[34] C. Kant, T. Higashino and G. v. Bochmann, "Deriving protocol specifications from service specifications written in LOTOS", Distributed 

Computing, vol. 10, no. 1, 1996, pp.29-47. 
[35] F. Khendek, G. v. Bochmann and C. Kant, "New results on deriving protocol specifications from services specifications", Computer 

Communications Review, vol.19, no.4, July, 1989, pp. 136-145. 
[36] F. Khendek and X. J. Zhang, "From MSC to SDL: Overview and an application to the autonomous shuttle transport system", Proc. 2003 

Dagstuhl Workshop on Scenarios: Models, Transformations and Tools, LNCS, vol. 3466, 2005. 
[37] F. A. Kraemer and P. Herrmann, "Service specification by composition of collaborations – An example", Proc. 2nd Int. Workshop on 

Service Composition (SERCOMP'06), Hong Kong, IEEE Comp. Soc., 2006. 
[38] F. A. Kraemer, P. Herrmanna and R. Braek, "Synthesizing components with sessions from collaboration-oriented service specifications", 

Proc. 13th SDL forum, LNCS, vol. 4745, Springer, September, 2007. 
[39] I. Krüger, "Capturing overlapping, triggered and preemptive collaborations using MSCs", Proc. 6th Intl. Conf. on Fundamental 

Approaches to Software Engineering (FASE'03), LNCS, vol. 2621, Springer, 2003. 
[40] I. Krüger  and R. Mathew, "Component synthesis from service specifications", Proc. Intl. Dagstuhl Workshop on Scenarios: Models, 

Transformations and Tools, LNCS, vol. 3466, Springer, 2003. 
[41] L. Lamport, "Time, clocks and the ordering of events in a distributed system", Comm. ACM, 21, 7, July, 1978, pp. 558-565. 
[42] H. Liang, J. Dingerl and Z. Diskin, "A comparative survey of scenario-based to state-based model synthesis approaches", Proc. 5th ICSE 

Intl. workshop on Scenarios and State Machines: models, algorithms, and tools (SCESM'06), ACM Press, 2006. 
[43] M. Lohrey, "Realizability of high-level message sequence charts: closing the gaps", Theor. Comput. Sci., 309(1-3), 2003, pp. 529–554. 
[44] B. Mitchell, "Resolving race conditions in asynchronous partial order scenarios", IEEE Trans. Softw. Eng., 31(9), 2005, pp. 767–784. 
[45] A. J. Mooij, N. Goga and J. Romijn, "Non-local choice and beyond: Intricacies of MSC choice nodes", Proc. Intl. Conf. on Fundamental 

Approaches to Soft. Eng. (FASE'05), LNCS, 3442, Springer, 2005. 
[46] A. J. Mooij, J. Romijn and W. Wesselink, "Realizability criteria for compositional MSC", Proc. 11th Intl. Conf. on Algebraic Methodology 

and Software Technology (AMAST’06), LNCS, vol. 4019, Springer, 2006. 
[47] M. Mukund, K. N. Kumar and M. A. Sohoni, “Synthesizing distributed finite-state systems from MSCs”, Proc. 11th Intl. Conf. on 

Concurrency Theory (CONCUR’00), LNCS, vol. 1877, Springer, 2000, pp. 521–535. 
[48]  [Nakata 98]  A. Nakata, T. Higashino and K. Taniguchi, "Protocol synthesis from context-free processes using event structures", Proc. 5th 

Intl. Conf. on Real-Time Computing Systems and Applications (RTCSA'98), Hiroshima, Japan, IEEE Comp. Soc. Press, 1998, pp.173-180. 
[49] OMG, UML 2.1.1 superstructure specification, accessible at http://www.omg.org/cgi-bin/apps/doc?ptc/06-04-02.pdf 
[50] [Reenskaug 92]  T. Reenskaug, E.P. Andersen, A.J. Berre, A. Hurlen, A. Landmark, O.A. Lehne, E. Nordhagen, E. Ness-Ulseth, G. 

Oftedal, A.L. Skaar and P. Stenslet, "OORASS: Seamless support for the creation and maintenance of object-oriented systems", Journal of 
Object-oriented Programming, 5(6), 1992, pp. 27-41. 

[51] [Reenskaug 95] T. Reenskaug, P. Wold and O.A. Lehne, Working with objects: The OOram software engineering method, Prentice Hall, 
1995. 

[52] [Roychoudhury 03] A. Roychoudhury and P. S. Thiagarajan, "Communicating transaction processes: An MSC-based model of 
computation for reactive embedded systems", Lectures on Concurrency and Petri Nets, LNCS, vol. 3098, Springer, 2003. 

[53]  [Sanders 00] R. T. Sanders, "Implementing from SDL", Telektronikk, vol. 96, no. 4, 2000. 
[54] [Sanders 05a] R. T. Sanders, R. Bræk, G. v. Bochmann and D. Amyot, "Service discovery and component reuse with semantic interfaces", 

Proc. 12th Intl. SDL Forum, Grimstad, Norway, LNCS, vol. 3530, Springer, 2005. 
[55] [Sanders 05b] R. Sanders, H. N. Castejón, F. A. Kraemer and R. Bræk, "Using UML 2.0 collaborations for compositional service 

specification", Proc. ACM}/IEEE 8th Intl. Conf. on Model Driven Engineering Languages and Systems (MoDELS'05), LNCS, vol. 3713, 
Springer, 2005. 

[56] [Sanders 07] R. T. Sanders, "Collaborations, semantic interfaces and service goals - a new way forward for service engineering", PhD 
thesis, Norwegian University of Science and Technology (NTNU), 2007. 

[57]  [Uchitel 04] S. Uchitel, J. Kramer and J. Magee, "Incremental elaboration of scenario-based specifications and behavior models using 
implied scenarios", ACM Trans. Softw. Eng. Methodol (TOSEM), 13(1), 2004, pp. 37–85. 

[58] [Whittle 07] J. Whittle, "Precise specification of use case scenarios", Proc. 10th Intl. Conf. on Fundamental Approaches to Software 
Engineering (FASE'07), LNCS, vol. 4422, Springer, 2007.  

[59] [Wohed 05] P. Wohed, W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede and N. Russell, "Pattern-based analysis of the control-
flow perspective of UML activity diagrams", Proc. 24th Intl. Conf. on Conceptual Modeling (ER'05), LNCS, vol. 3716, Springer, 2005.  

[60] [Yamaguchi 95] H. Yamaguchi, K. Okano, T. Higashino and K. Taniguchi, “Synthesis of protocol entities’ specifications from service 
specifications in a Perti net model with registers”, Proc. 15th Intl. Conf. on Distributed Computing Systems (ICDCS'95), IEEE Comp. Soc. 
Press, 1995. 

[61] [Yamaguchi 03a]  H. Yamaguchi, K. El-Fakih, G. v. Bochmann and T. Higashino, "Protocol synthesis and re-synthesis with optimal 
allocation of resources based on extended Petri nets", Distributed Computing, vol. 16, no. 1, March, 2003, pp. 21-36. 


