ELG3175 Introduction to Communication Systems **Conventional AM**

www.uOttawa.ca

Disadvantages of DSB-SC

- The receiver must generate a replica of the carrier in order to demodulate a DSB-SC signal.
- Any phase and/or frequency error will result in a distorted estimate of the message signal.
- It is difficult to generate a perfect replica of the transmitted carrier.
- A simple modification to the technique results in a less efficient transmission but simplifies the detection process greatly.
- Conventional AM uses noncoherent demodulation.
 - Detection is possible even with frequency and phase errors.

Conventional AM

• Consider a message signal m(t) where M(f)=0 for f=0,

$$s_{AM}(t) = A_c [1 + k_a m(t)] \cos 2\pi f_c t$$

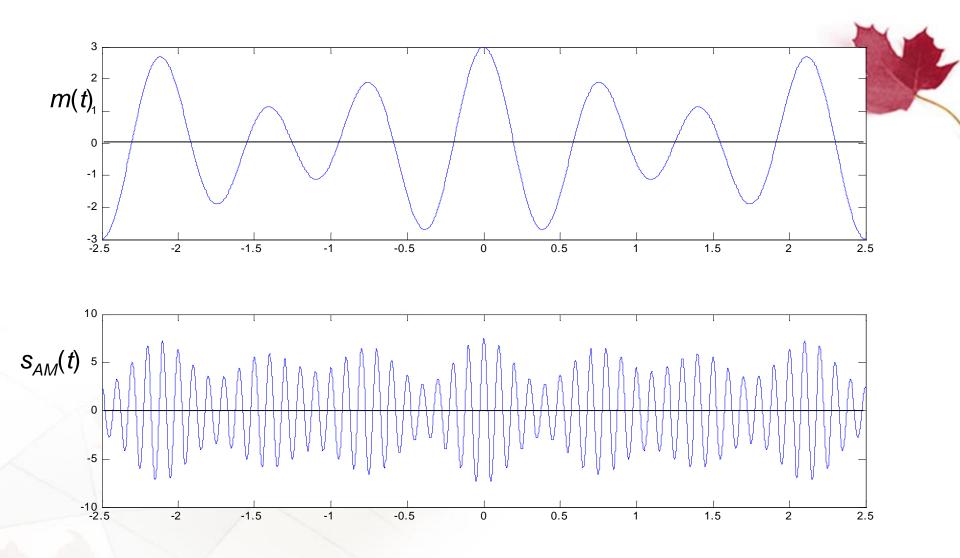
- where A_c is the carrier amplitude, k_a is the amplitude sensitivity, and f_c is the carrier frequency.
- Also, $f_c >> B_m$ where B_m is the bandwidth of m(t).

Modulation index

- Let us assume that $-m_p \le m(t) \le m_p$.
- For conventional AM, $|k_a m(t)| < 1$, or $-1 < k_a m(t) < 1$.
- Therefore, $0 < k_a m_p < 1$, or $0 < k_a < 1/m_p$.
- The modulation index is $\mu_a = k_a m_p$.
- For conventional AM, $0 < \mu_a < 1$.
- Therefore for conventional AM, $[1 + k_a m(t)] > 0$.

Example 1

- We wish to transmit $m(t) = \cos 2\pi t + 2\cos 2\pi (1.4)t$ using conventional AM. The carrier is $c(t) = 5\cos 2\pi 10t$.
 - Find the value of k_a so that the modulation index is 0.5.
- Solution
- We can show that $-3 \le m(t) \le 3$, therefore $m_p = 3$. therefore for $\mu_a = 0.5$, $k_a = 1/6$.
- The resulting AM signal is
 - $s_{AM}(t) = 5[1 + (1/6)m(t)]\cos 2\pi 10t$

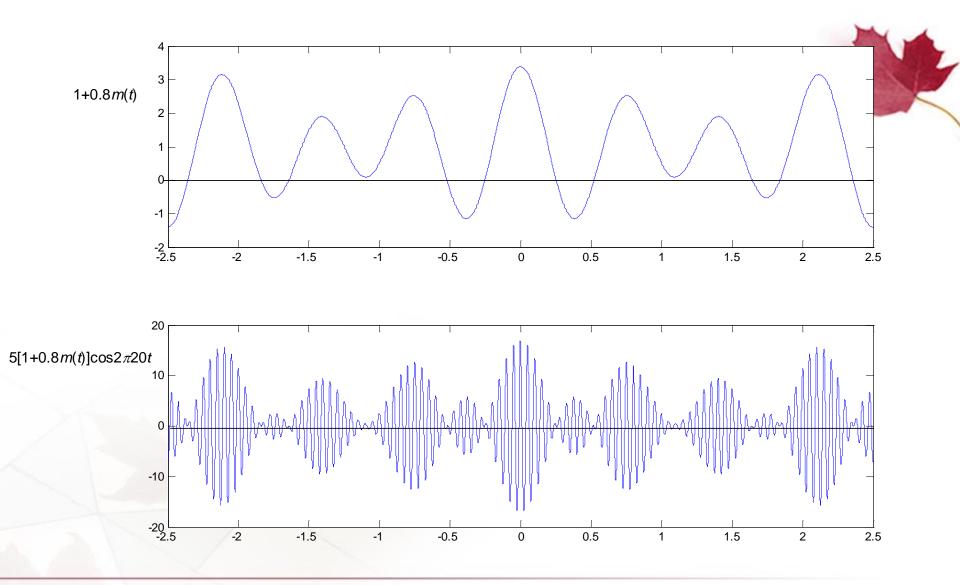


The envelope of an AM signal

- The instantaneous amplitude of $s_{AM}(t)$ is $A_c[1+k_am(t)]$.
- This instantaneous amplitude is called the signal's envelope.
- The message signal m(t) can be extracted directly from the envelope of $s_{AM}(t)$.

Overmodulation

- If $\mu_a > 1$, we say that $s_{AM}(t)$ is overmodulated.
- An overmodulated signal cannot be detected using the noncoherent method that is used for conventional AM.
- Take our previous example with $k_a = 0.8$.
- In this case, $\mu_a = k_a m_p = 0.8 \times 3 = 2.4$.
- Therefore, sometimes k_am(t) < -1 leading to A_c[1+k_am(t)] < 0.



Spectrum of Conventional AM signals

• We can express the AM signal as :

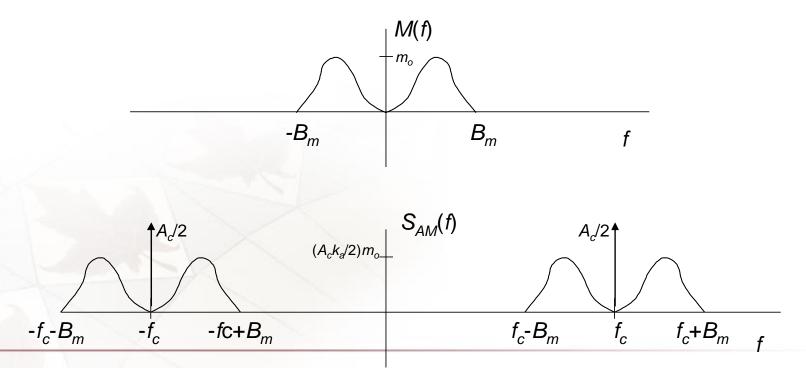
 $s_{AM}(t) = A_c \cos 2\pi f_c t + A_c k_a m(t) \cos 2\pi f_c t$

• Its Fourier transform is $S_{AM}(f) = F\{s_{AM}(t)\}$ which is given by:

$$S_{AM}(f) = \frac{A_c}{2} \delta(f - f_c) + \frac{A_c}{2} \delta(f + f_c) + \frac{A_c k_a}{2} M(f - f_c) + \frac{A_c k_a}{2} M(f + f_c)$$

Spectrum of AM signal

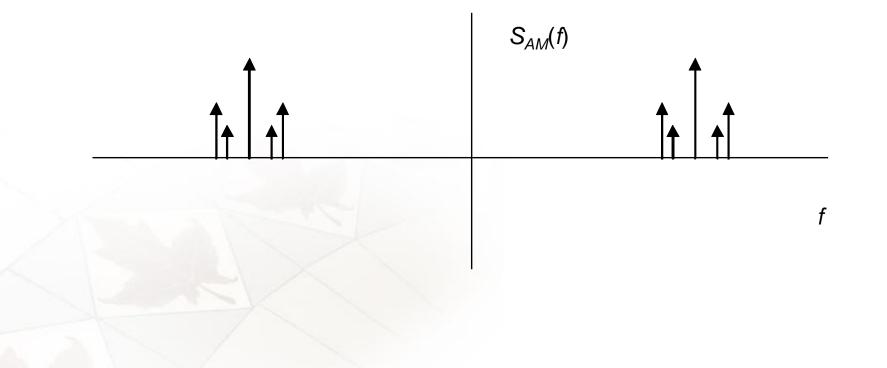
• Assuming that m(t) has no DC component, then $M(f-f_c)$ has no spectral component at $f = f_c$ and $M(f+f_c)$ has no spectral component at $f = -f_c$.



Example 2

- Find the spectrum of $s_{AM}(t) = 5[1+(1/6)m(t)]\cos 2\pi 10t$ where $m(t) = \cos 2\pi t + 2\cos 2\pi (1.4)t$
- SOLUTION
- The signal m(t) has spectrum $M(f) = \frac{1}{2}\delta(f-1) + \frac{1}{2}\delta(f+1) + \delta(f-1.4) + \delta(f+1.4)$. Therefore the spectrum of $s_{AM}(t)$ is:

$$\begin{split} S_{AM}(f) &= \frac{5}{2}\delta(f-10) + \frac{5}{2}\delta(f+10) + \frac{5}{12}M(f-10) + \frac{5}{12}M(f+10) \\ &= \frac{5}{2}\delta(f-10) + \frac{5}{2}\delta(f+10) + \frac{5}{24}\delta(f-11) + \frac{5}{24}\delta(f-9) + \frac{5}{12}\delta(f-11.4) \\ &+ \frac{5}{12}\delta(f-8.6) + \frac{5}{24}\delta(f+11) + \frac{5}{24}\delta(f+9) + \frac{5}{12}\delta(f+11.4) + \frac{5}{12}\delta(f+8.6) \end{split}$$



Power of a conventional AM signal

- Let's assume that m(t) is a power signal.
- If m(t) has no DC component, then we can find that:

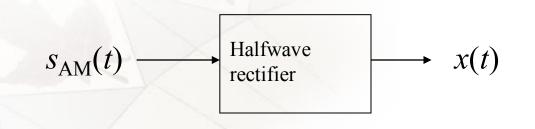
$$P_{s} = \frac{A_{c}^{2}}{2} + \frac{A_{c}^{2}k_{a}^{2}P_{m}}{2}$$

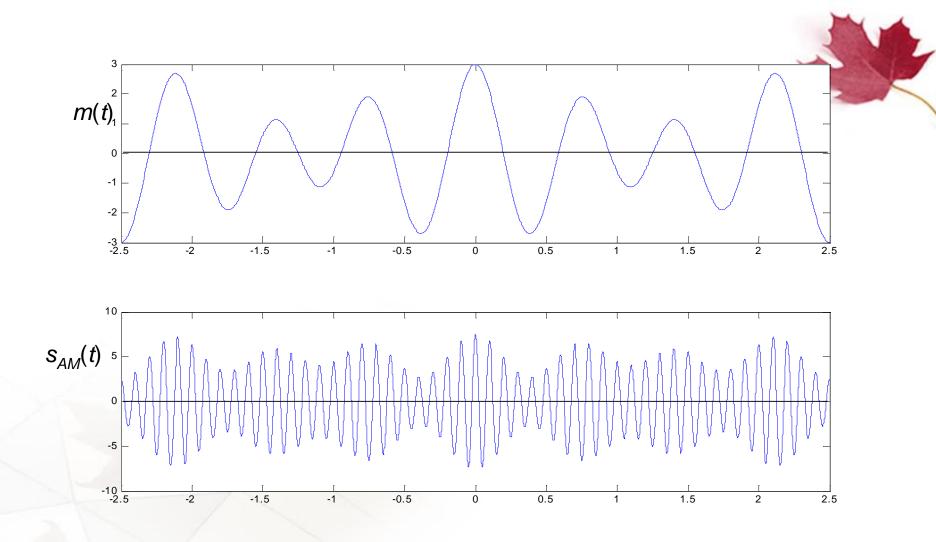
- where $A_c^2/2$ is the power of the carrier and $A_c^2 k_a^2 P_m/2$ is the power of the component that carries the message.
- The efficiency of a modulation scheme is the ratio of the power dedicated to the transmission of message to the total power of the transmission.
- Therefore the efficiency of conventional AM is:

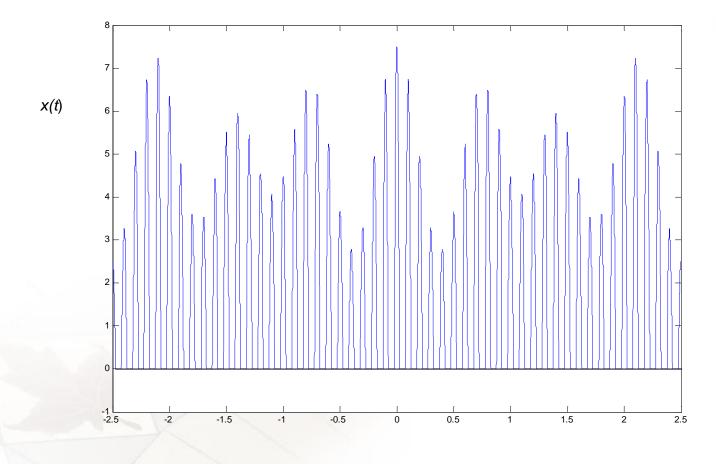
$$\eta = \frac{A_c^2 k_a^2 P_m}{2} / \left(\frac{A_c^2}{2} + \frac{A_c^2 k_a^2 P_m}{2}\right)$$
$$= k_a^2 P_m / (1 + k_a^2 P_m)$$

Noncoherent detection

- We know that the envelope of $s_{AM}(t)$ is $A_c[1+k_am(t)]$.
- An envelope detector is a circuit that outputs the envelope of a bandpass signal.
- A half-wave rectifier with a capacitor filter is a simple envelope detector.
- If $f_c >> B_m$, the output of a halfwave rectifier ressembles a sampled version of the envelope.







Simple envelope detector

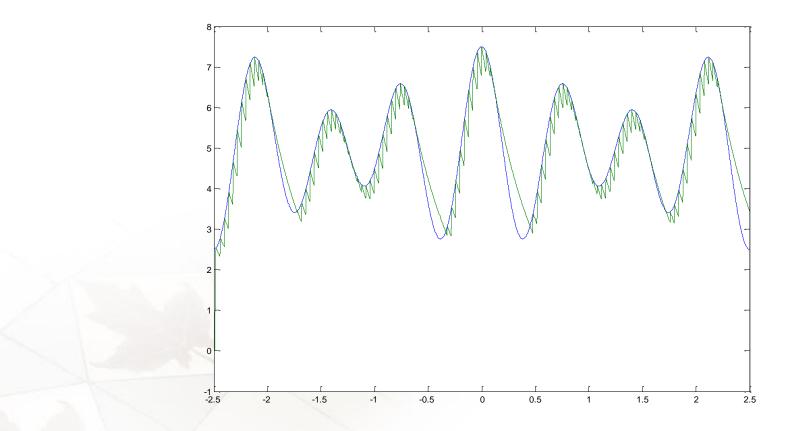
- Applying a low pass filter at the output of the halfwave rectifier should give us a signal that ressembles A_c[1+k_am(t)].
- Placing a capacitor at the output of the rectifier provides a simple solution.

+

$$s_{AM}(t)$$
 +
-
 $A_c[1+k_am(t)] + v_r(t)$ -

• The power of $v_r(t)$ is inversely proportional to f_c .

Output of envelope detector compared to actual envelope.



Obtaining m(t) from the envelope

- If we neglect $v_r(t)$, the output of the envelope detector is $A_c + A_c k_a m(t)$.
- Passing this through a device that blocks DC components, such as a transformer, we have A_ck_am(t) at the output as long as m(t) has no DC component.

