

Some history

- First computer-based study: Mosteller and Wallace on The Federalist Papers (1964)
- Much controversy on statistical methods, choice of features, meaning of results, and everything else.
- Forensic applications.
- High-profile results by Donald Foster (Vassar College):
 - Attribution of A Funerall Elegye to Shakespeare (1989).
 - Matched Primary Colors to Joe Klein (1996).
 - Matching the Unabomber's manifesto to other writing by Theodore Kaczynski (1996).

15

Decision trees

- Information-gain algorithms for building decision tree from training data (vectors with known classification).
 - Greedy algorithm builds tree top down.
 - At each node, determine the test that "best" splits the remaining data.
 - "Best" split is the one that adds the most information.
- Avoid overfitting by pruning the tree after it's built.
- ML tools: C4.5, C5.0, Weka.

The perceptron

• Learn weights w and threshold t for binary classification, if the training data is linearly separable by a hyperplane in the n-dimesional space

23

24

Perceptron learning algorithm

Intialize $\vec{w} = 0, t = 0$

Repeatedly go through the training set and classify each \vec{x}_i with the current \vec{w} and t.

If correct, do nothing.

If false negative, t = t - 1, $\vec{w} = \vec{w} + \vec{x}_i$

If false positive, t = t + 1, $\vec{w} = \vec{w} - \vec{x}_j$

Stop when all \vec{x}_i are classified correctly.

Setting some values

- We need a value for k and a function sim.
- sim could be cosine measure: the cosine of the angle between the vectors d and x (n-dimensional space).

<section-header><list-item><list-item><list-item>

28

 Measures of performance If binary classification of M texts as members or not members of class c 		
Predicted	С	not c
Actual		
с	True Positive	False Negative
	ТР	FN
not c	False Positive	True Negative
	FP	TN
	1	30

Measures of performance

- Accuracy = TP + TN / (TP + FP + TN + FN)
- Precision = TP / (TP + FP)
- Recall = TP / (TP + FN)
- F-measure: trade-off between recall and precision:

$$F = \frac{2PR}{P+R} = \frac{2}{\frac{1}{R} + \frac{1}{R}}$$

• What about more than 2 classes?

Baseline performance
Baseline: The minimum performance level that you're trying to improve on.
Could be performance of competing system.
Could be performance of dumb but easy method:

Random choice, most-frequent answer, very simple heuristic, ...

Comparison should be made on the same test data for results to be fully meaningful.

Using Naive Bayes Classifiers to Classify Text: Basic method

• Attributes are text positions, values are words.

$$c_{NB} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j) \prod_i P(x_i | c_j)$$

=
$$\underset{c_j \in C}{\operatorname{argmax}} P(c_j) P(x_1 = "\operatorname{our}" | c_j) \cdots P(x_n = "\operatorname{text}" | c_j)$$

- Naive Bayes assumption is clearly violated.
- Still too many possibilities
- Assume that classification is *independent* of the positions of the words (Use same parameters for each position)

