Heaps

Heaps

Properties

Deletion, Insertion, Construction
Implementation of the Heap
Implementation of Priority Queue
using a Heap

An application: HeapSort

Heaps (Min-heap)

Complete binary tree that stores a collection of keys
(or key-element pairs) at its internal nodes and that satisfies
the additional property:
key(parent) < key(child)
REMEMBER:
complete binary tree

all levels are full, except the
last one, which is left-filled

Max-heap

key(parent) > key(child)

We store the keys in the internal nodes only

After adding the [leaves the resulting free is full

Height of a Heap

Theorem: A heap storing n keys has height O(log n)
Proof:
- Let hbe the height of a heap storing n keys

- Since there are 2/keys at depth /=0, ..., A - 2 and at least one
key at depth h - 1, wehave n>1+2+ 4+ +2k2 +1
- Thus,n>2+! ie, h<logn+1

depth keys
vl P
o r\/\/\”\

-2 22
h-1 at least1==—=~ -—- ——ﬁtﬁfﬁiﬁ” o
h ——— — —

Notice that ...

+ We could use a heap to implement a priority queue
+ We store a (key, element) item at each internal

node
removeMin():

- Remove the root
- Re-arrange the heap!

+ We need to fix the

Removal From a Heap

RemoveMin()
+ The removal of the top
key leaves a hole

3~q__

heap

+ First, replace the hole
with the last key in
the heap

* Then, begin Downheap

Downheap

Gﬁ)”//@\ ——
g2 P
- i -
. N
(55/ as as s R
20 =
N
ao 7> <D
e
22 28 A3 1923 O
o

+ Downheap compares the parent with the smallest

child. If the child is smaller, it switches the two.

Downheap Continues

10 6

Downheap Continues

End of Downheap

+ Downheap terminates when the key is greater than the

keys of both its children or the bottom of the heap is
reached. * (total #swaps) < (51— 1), whichis O(logn) 11

Heap Insertion

The key to insert is 6

Heap Insertion

Add the key in the next available position in the
heap.

Now begin Upleap.

Upheap
+ Swap parent-child keys out of order

Upheap Continues
G

—

@
& &
G~
4
SN A
@p) 8

End of Upheap

+ Upheap terminates when new key is greater than the key

of its parent c= the top of the heap is reached

* (total #swaps) (h - 1), which is O(log n) 10

Heap Construction

We could insert the Items one at the time with
a sequence of Heap Insertions:

2 log k = O(n log n)
k=1

But we can do better ...

Bottom-up Heap
Construction

+ We can construct a heap
storing n given keys using a
bottom-up construction

Construction of a Heap

Tdea: Recursively re-arrange each sub-tree
in the heap starting with the leaves

OO A Q@

—

Example 1 (Max-Heap)

--- keys already in the tree ---

I am now drawing the
0 eaves anymore here

Example 1

469 Of
This is not a heap ! 467 @
(ONNO;
21
--- keys given one at a time ---
Example 2 (min-heap)
[20,23,7,6,12,4,15,16,27,11,5,25,8,7,10]
O
" T
g 5 B 7 ’\)

,,,,,,,,

—c
L

“

5610 N
Example 1
Finally: 2 < 10 O
® ®
© 268
L2 &
(19)
O ()
OENORONNG!
® O 2
Example 2

20,23,7,6,12,4,15,16,27,11,5,25,8,7,10]

,,,,,,,,

—c
L

“

Example 2

20,23,7,6,12,4,15,16,27,11,5,25,8,7,10]

Example 2
20,23,7,6,12,4,15,16,27,11,5,25,8,7,10]

Analysis of Heap Construction

h=4
3swaps TTTTTTTT [mmmoomooomsoomooomoes level O
2swaps -------- of Vg Looooo...__. level 1
Iswap ------- @ L(®G@ (g ~"777TTTTTII level 2
0 swaps ----- (U) oo level 3

Let L be the max level
(L=h1)

Analysis of Heap Construction

Number of swaps)ﬁi IeveI(:

At level i the number of swaps is

Calculating O(Z(L - i)-2)

LLe‘rj = L-i, ‘rhep i=L-jand
2L-i)y2i =Xjetiz2tXj2i
i=0 j=0 =0

Consider Xj-2-i:

Y j2i=1/2+21/4+31/8+41/16 + -
=1/2+1/4 + 1/8+ 1/16+-<«=1
+ 1/4 + 1/8+ 1/16+-<=1/2
+ + 1/8+ 1/16 +-<= 1/4

EJ-Z’J <= 2
So 2Lxj2i<«= 22L=2n O(n) 2

< L-i foreachnode
At level i there are < 2inodes
s
Total: < Z(L - i)-2i
i=0
28
4
2L X < ol
=

Where L is O(log n)

So, the number of swaps is < O(n)

Implementing a Heap with an
Array

A heap can be nicely represented by a vector (array-based),

where the node at rank i has
- left child at rank 2i
and

- right child at rank 2i + 1
[tf2]3f4]s][e[7]¢8]

The leaves do no need to be explicitly stored

Example

12 3 4 5 6 7 8 9 10 11 12 13
‘H‘D‘I‘B‘h‘L‘()‘A‘C‘I—‘(i‘H‘N‘

Reminder ...
Left child of T[i] (2] if i<n
Right child of . . .
(i) T[2i+1] if 2i+1<n
Parent of T[i] Tli div 2] if i>1
The Root T[1] if T#0
Leaf? T[i] TRUE if 2i>n

Implementation of a Priority
Queue with a Heap

(upheap)

insertltem O(log n) /
minKey, minElement O(log 1)

removeMin O(log n)

/

(remove root + downheap)

Application: Sorting
Heap Sort

Construct initial heap O(n)

remove root o(1)
n re-arrange O(log n)
times remove root oQ)

re-arrange O(log (n-1))

When there are i nodes left in the PQ: Llog iJ
>TOT = zn: Llog i)
i=1

=n+1)q-29"+2
where q = Llog (n+1)J

I::> O(n log n)

