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Abstract. We study the classical Cops and Robber game when the
cops and the robber move on an infinite periodic sequence G =
(G0, . . . , Gp−1)

∗ of graphs on the same set V of n vertices: in round t, the
topology of G is Gi = (V, Ei) where i ≡ t (mod p). As in the traditional
case of static graphs, the main concern is on the characterization of the
class of periodic temporal graphs where k cops can capture the robber.
Concentrating on the case of a single cop, we provide a characteriza-
tion of copwin periodic temporal graphs. Based on this characterization,
we design an algorithm for determining if a periodic temporal graph is
copwin with time complexity O(p n2 + n m), where m =

∑
i∈Zp

|Ei|,
improving the existing O(p n3) bound. Let us stress that, when p = 1
(i.e., in the static case), the complexity becomes O(n m), improving the
best existing O(n3) bound.

1 Introduction

Cops & Robber Games. Cops & Robber (C&R) is a pursuit-evasion game
played in rounds on a finite graph G between a set of k ≥ 1 cops and a single
robber. Before starting the game, an initial position on the vertices of G is chosen
first by the cops, then by the robber. Then, in each round, first the cops, then
the robber, move to a neighbouring vertex or (if allowed by the variant of the
game) stay in their current location. The game ends if at least one cop moves
to the vertex currently occupied by the robber, in which case the cops capture
the robber and win. The robber wins by forever avoiding capture. In the original
version [30,33], the graph G is connected and undirected, there is a single cop
and, in each round, the players are allowed to move to a neighbouring vertex or
not to move. Moreover, the cops and the robber have perfect information. It has
been then extended to permit multiple cops [2]. This version, which we shall call
standard, is the most commonly investigated.
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Among the many variants of this game (for a partial list, see [4,5]), two
are of particular interest to us. The first is the (much less investigated) natural
generalization when the graph G is a strongly connected directed graph [25,27];
we shall refer to this version as directed. Also of interest is the variant, called fully
active (or restless), in which the players must move in every round; proposed for
the standard game [19], it can obviously be extended to the directed version.

In the extensive research (see [5] for a review), the main focus is on character-
izing the class of k-copwin graphs; i.e., those graphs where there exists a strategy
allowing k cops to capture the robber regardless of the latter’s decisions. Related
questions are to determine the minimum number of cops capable of winning in
G, called the copnumber of G, or just to decide whether k cops suffice. Currently,
the most efficient algorithm for deciding whether or not a graph is k-copwin in
the standard game is O(k nk+2) [32], which yields O(n3) for the case k = 1.

In the existing literature on the C&R game, with only a couple of recent
exceptions, all results are based on the assumption that the graph on which the
game is played is static; that is, its link structure is the same in every round.
The question naturally arises: what happens if the link structure of the graph
changes in time, possibly in every round? This question is particularly relevant
in view of the intense research on time-varying graphs in the last two decades.

Temporal Graphs. The extensive investigations on computational aspects of
time-varying graphs have been motivated by the development and increasing
importance of highly dynamic networks, where the topology is continuously
changing. Such systems occur in a variety of settings, ranging from wireless
ad-hoc networks to social networks. Various formal models have been advanced
to describe the dynamics of these networks (e.g., [8,21,34]).

When time is discrete, as in the C&R game, the dynamics of these networks
is usually described as an infinite sequence G = (G0, G1, . . . ), called temporal
graph (or evolving graph), of static graphs Gi = (V,Ei) on the same set V of
vertices; the graph Gi is called snapshot (of G at time i), and the aggregate
graph G = (V,∪iEi) is called the footprint (or underlying) graph. This model,
originally suggested in [15,20], has become the de-facto standard in the ensuing
investigations.

All the studies are being carried out under some assumptions restricting the
arbitrariness of the changes. Some of these assumptions are on the “connectiv-
ity” of the graphs Gi in the sequence; they range from the (strong) 1-interval
connectivity requiring every Gi to be connected (e.g., [22,26,31]), to the weaker
temporal connectivity allowing each Gi to be disconnected but requiring the
sequence to be connected over time (e.g., [7,17]). Another class of assumptions
is on the “frequency” of the existence of the links in the sequence. An important
assumption in this class is periodicity: there exists a positive integer p such that
Gi = Gi+p for all i ∈ Z (e.g., [16,23,24]).

A large number of studies has focused on mobile entities operating on tem-
poral graphs, under different combinations of the above (and other) restrictive
assumptions. Among them, computations include graph exploration, dispersion,
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and gathering (e.g., [1,6,10–13,17,18]; for a recent survey see [9]). Until very
recently, none of these studies considered C&R.

Conceptually, the extension of C&R to a temporal graph G = (G0, G1, . . . ) is
quite natural. Initially, first the cops, then the robber, choose a starting position
on the vertices of G0. At the beginning of round t ≥ 0, the players are in Gt

and, after making their decisions and moves (according to the rules of the game),
they find themselves in Gt+1 in the next round. The game ends if and only if a
cop moves to the vertex currently occupied by the robber; in this case the cops
have won. The robber wins by forever preventing the cops from winning.

Existing Results. This extension has been first investigated by Erlebach and
Spooner [14]. They considered the standard game with a single cop under the
periodic frequency restriction; they presented an algorithm to determine if a
periodic temporal graph is copwin, and mentioned that it can be extended to
k > 1 cops. In this pioneering study, the results are obtained by reformulating
the problem in terms of a reachability problem and solving the latter; this,
unfortunately, does not provide insights on the temporal nature of the game.

Using the same reduction to reachability games, and thus with the same
drawbacks as [14], Balev et al. [3] studied the standard game in temporal graphs
under the 1-interval connectivity restriction. They showed how to determine
whether a single cop can capture the robber in a fixed temporal window, and
indicated how their algorithm can be extended to the case of k > 1 cops. They
also considered an “on-line” version of the problem, i.e. where the sequence of
graphs is a priori unknown; these results however are not relevant for the “full-
disclosure” problem studied here.

Finally, if the temporal graph is not given explicitly (i.e., as the sequence of
snapshots), but only implicitly by means of the Boolean edge-presence function
(e.g., [8]), the problem of deciding whether a single cop has a winning strategy in
the standard game on a periodic temporal graph has been shown to be NP -hard
[28,29], answering a question raised in [14].

Contributions. We focus on the C&R game in periodic temporal graphs, con-
centrating on the case of a single cop. We study the unified version of the game
defined as follow: in every round i ≥ 0, Gi is directed and the players are restless.
Observe that the standard and the directed versions, both in the original and
restless variant, can be expressed as a restless game played on (appropriately
chosen) directed graphs.

For the unified game, we provide a complete characterization of copwin peri-
odic temporal graphs, establishing several basic properties on the nature of a
copwin game in such graphs. We do so by employing a compact representation
of periodic temporal graphs, introducing the novel notion of augmented arenas,
and using these structures to extend to the temporal domain classical concepts
such as corners and covers.

These characterization results are general, in the sense that they do not
rely on any assumption on properties such as connectivity, symmetry, reflexivity
held (or not held) by the individual snapshot graphs in the sequence. The only
requirement, for the game to be defined, and thus playable, is that every node
in the graph must have an outgoing edge.
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Based on these results, we design an algorithm that determines if a periodic
temporal graph is copwin in time O(p n2+n m), where m =

∑
i∈Zp

|Ei|, improv-
ing on the existing O(p n3) bound established by [14]. Let us stress that, in the
static case studied in the literature, the complexity becomes O(n m), improving
the best existing O(n3) bound [32]; in particular our bound becomes O(n2) for
sparse graphs.

All our results are established for the unified version of the game. Therefore,
all the characterization properties and algorithmic results hold for the standard
and for the directed games studied in the literature, both when the players
are restless and when they are not. They hold also for all those settings, not
considered in the literature, where there is a mix of nodes: those where the
players must leave and those where the players can wait; furthermore such a mix
might be time-varying (i.e., different in every round). Due to space constraints,
some proofs are missing.

2 Definitions and Terminology

2.1 Graphs and Time

Static Graphs. We denote by G = (V,E), or sometimes by G = (V (G), E(G)),
the directed graph with set of vertices V and set of edges E ⊆ V ×V . A self-loop
is an edge of the form (u, u); if (u, u) ∈ E for all u ∈ V , then we will say that G
is reflexive. If (v, u) ∈ E whenever (u, v) ∈ E, we will say that G is symmetric
(or undirected). Given a graph G′, if V (G′) ⊆ V (G) and E(G′) ⊆ E(G), then
we say G′ is a subgraph of G and write G′ ⊆ G. A subgraph G′ ⊆ G is proper,
written G′ ⊂ G, if G′ �= G. For reasons apparent later, we shall refer to a graph
G so defined as a static graph, and say it is playable if every node has at least
one outgoing edge.

Temporal Graphs. A time-varying graph G is a graph whose set of edges
changes in time1. A temporal graph is a time-varying graph where time is assumed
to be discrete and to have a start; i.e., time is the set Z

+ of positive integers
including 0. A temporal graph G is represented as an infinite sequence G =
(G0, G1, . . . ) of static graphs Gi = (V,Ei) on the same set of vertices V ; we
shall denote by n = |V | the number of vertices. The graph Gi is called the
snapshot of G at time i ∈ Z

+, and the aggregate graph G = (V,
⋃

i Ei) is called
the footprint of G. A temporal graph G is said to be reflexive if all its snapshots
are reflexive, symmetric if all its snapshots are symmetric.

Given two nodes x, y ∈ V , a strict journey (or temporal walk), from x to y
starting at time t is any finite sequence π(x, y) = 〈(z0, z1), (z1, z2), . . . , (zk−1, zk)〉
where z0 = x, zk = y, and (zi, zi+1) ∈ Et+i for 0 ≤ i < k. In the following, for
simplicity, we will omit the adjective “strict”. A temporal graph G is temporally
connected if for any u, v ∈ V and any time t ∈ Z

+ there is a journey from u
to v that starts at time t. Observe that, if G is temporally connected, then its

1 The terminology in this section is from [8].
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footprint is strongly connected even when all its snapshots are disconnected. A
temporal graph G is said to be always connected (or 1-interval connected) if all
its snapshots are strongly connected.

A temporal graph G is periodic if there exists a positive integer p such that
for all i ∈ Z

+, Gi = Gi+p. If p is the smallest such integer, then p is called
the period of G and G is said to be p-periodic. We shall represent a p-periodic
temporal graph G as G = (G0, . . . , Gp−1)

∗; all operations on the indices will be
taken modulo p. An example of a temporal periodic graph G with p = 4 is shown
in Fig. 1; observe that G is temporally connected, however most of its snapshots
are disconnected directed graphs, and none of them is strongly connected.

Let G = (G0, G1, . . . , Gp−1)
∗ and H = (H0,H1, . . . , Hp−1)

∗ be two temporal
periodic graphs with the same period on the same set V of vertices; we say H
is a periodic subgraph of G, written H ⊆ G, if Hi ⊆ Gi for every i ∈ Zp =
{0, 1, . . . , p− 1}. We shall denote by H ⊂ G the fact that H is a proper subgraph
of G; i.e., H ⊆ G but H �= G. Let us point out the obvious but useful fact that
static graphs are temporal periodic graphs with period p = 1. In this paper we
focus on C&R games in periodic temporal graphs, henceforth referred to simply
as periodic graphs, concentrating on the case of a single cop.

Consider the following class of directed static graphs, we shall call arenas.

Definition 1 (Arena). Let k ≥ 1 be an integer and W be a non-empty finite
set. An arena of length k on W is any static directed graph M = (Zk×W,E(M))
where E(M) ⊆ {((i, w), ([i + 1]k, w′))|i ∈ Zk and w,w′ ∈ W}, and [i]k denotes i
modulo k.

A periodic graph G = (G0, . . . , Gp−1)
∗ with period p and set of nodes V

has a unique correspondence with the arena D = (Zp × V,E(D)) where, for
all i ∈ Zp, ((i, u), ([i + 1]p, v)) ∈ E(D) if and only if (u, v) ∈ Ei, called the
arena of G. In particular, the arena D of G explicitly preserves the snapshot
structure of G: for all i ∈ Zp, there is an obvious one-to-one correspondence
between the snapshot Gi of G and the subgraph Si of D, called slice (or stage),
where V (Si) = {(i, v), v ∈ V } and E(Si) = {((i, u), ([i + 1]p, v))|(u, v) ∈ Ei)}.
An example of a periodic graph G and its arena D is shown in Fig. 1. In the
following, when no ambiguity arises, D shall indicate the arena of G.

The vertices of an arena D will be called temporal nodes. Given a temporal
node (i, u) ∈ V (Si) we shall denote by Ni(u,D) the set of its outneighbours,
and by Γi(u,D) = {v ∈ V |([i + 1]p, v) ∈ Ni(u,D)} the corresponding set of
nodes in Gi. We define Γ in

i (u,D) similarly for the inneighbours. A temporal
node (i, u) ∈ V (Si) is said to be a star if Γi(u,D) = V . It is said to be anchored
if there exists a journey from some node (0, v) ∈ V (S0) to (i, u). A subarena of
D = (Zp ×V,E(D)) is any arena D′ = (Zp ×V,E(D′)) where E(D′) ⊆ E(D); we
shall denote by D′ ⊂ D the fact that D′ is a subarena of D with E(D′) ⊂ E(D).

2.2 Cop & Robber Game in Periodic Graphs

The extension of the game from static to temporal graphs is quite natural.
Initially, first the cop, then the robber, chooses a starting position on the vertices
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Fig. 1. A periodic graph G = (G0, G1, G2, G3)
∗, its footprint G, and the corresponding

arena.

of G0. Then, at each time t ∈ Z
+, first the cop, then the robber, moves to a

vertex adjacent to its current position in Gi, where i = [t]p. Thus, in round t,
the players are in G[t]p and, after making their decisions and moves, they find
themselves in G[t+1]p in the next round. The game ends if and only if the cop
moves to the vertex currently occupied by the robber; in this case the cop has
won. The robber wins by forever preventing the cop from winning. Moreover,
the cops and the robber have perfect information.

A play on the arena D of G follows the play on G in a direct obvious way:
at each time t ∈ Z

+, first the cop, then the robber, chooses a new node in the
outneighbourhood of its current position and moves there. The cop wins and
the game ends if it manages to move to a temporal node ([t + 1]p, u) while the
robber is on ([t]p, u). The robber wins by forever escaping capture from the cop,
in which case the game never ends.

We consider the version of the game where all players are restless, i.e., they all
move to a different node in each round. In this version, the only requirement on
G is that it is playable: in each snapshot, every node must have an outgoing edge.
In what follows we only consider playable periodic graphs. No other requirement
such as connectivity, symmetry or reflexivity is imposed on G.

We call this version of the game unified. Observe that the standard version,
both in the original or restless variant, as well as the non-restless directed version
can actually be redefined as a restless game played in this unified version: a
pair of directed edges between a pair of nodes corresponds to an unidirected
link between them, and the presence of a self-loop at a node allows the players
currently there not to move to a different node in the current round.
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A configuration is a triple (t, c, r) ∈ Z
+ × V × V , denoting the position

c ∈ V of the cop and r ∈ V of the robber at the beginning of round t ∈ Z
+.

Let CG = (V (CG), E(CG)) be the infinite directed graph, called configuration
graph of D, describing all the possible configurations (t, u, v) together with the
following subset of their temporal connections in D:

V (CG) = {(t, u, v)| t ∈ Z
+; ([t]p, u), ([t]p, v) ∈ V (D)}

E(CG) = {((t, u, v), (t + 1, u′, v′))| t ∈ Z
+; u �= v; u′ ∈ Γ[t]p (u, D) , v′ ∈ Γ[t]p (v, D)}.

Observe that CG is acyclic; the source nodes (i.e., the nodes with no in-edges)
are those with t = 0, the sink nodes (i.e., the nodes with no out-edges) are those
with u = v. A playing strategy for the cop is any function σc : V (CG) → V where,
for every (t, u, v) ∈ V (CG), σc(t, u, v) ∈ Γ[t]p(u,D), and σc(t, u, v) = u if u = v;
it specifies where the cop should move in round t if the cop is at ([t]p, u), the
robber is at ([t]p, v), and it is the cop’s turn to move. A playing strategy σr for
the robber is defined in a similar way.

A configuration (t, u, v) is said to be copwin if there exists a strategy σc such
that, starting from (t, u, v), the cop wins the game regardless of the strategy
σr of the robber; such a strategy σc will be said to be copwin for (t, u, v). A
strategy σc is said to be copwin if there exists a temporal node (0, u) such that
σc is winning for all (0, u, v), v ∈ V . If a copwin strategy exists, then G and its
arena D are said to be copwin, else they are robberwin.

3 Copwin Periodic Graphs

3.1 Preliminary

In the analysis of the standard game played in a static graph, an important role
is played by the notions of corner node and its cover. The usual meaning is that
if the robber is on the corner, after the cop has moved to the cover, no matter
where the robber plays, the robber gets captured by the cop in the next round.

In an arena D, the same meaning is provided directly by the notions of
“temporal corner” and “temporal cover”.

Definition 2 (Temporal Corner and Temporal Cover). A temporal node (t, u)
in an arena D is said to be a temporal corner of temporal node (t+1, v) if u �= v
and Γt (u,D) ⊆ Γt+1 (v,D). The temporal node (t+1, v) is said to be a temporal
cover of (t, u).

Lemma 1. Every copwin arena contains a temporal corner.

This necessary condition, although important, provides only limited indica-
tions on how to solve the characterization problem.

3.2 Augmented Arenas and Characterization

The crucial element in the characterization of copwin periodic graphs is the
notion of augmented arena.
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Definition 3 (Augmented Arena). Let D be the arena of G. An augmented
arena A of D is an arena of length p such that D ⊆ A and, for each edge
((t, x), (t + 1, y)) ∈ E(A), the configuration (t, x, y) is winning for the cop in D.

We shall refer to the edges of the augmented arena A of D as shadow edges.
Observe that, by definition, all edges of D are shadow edges of A. Let A(D)
denote the set of augmented arenas of D. Observe that, by definition of D, for
each edge ((t, x), (t + 1, y)) ∈ E(D), the configuration (t, x, y) is winning for the
cop in D. Therefore, D ∈ A(D). Further observe the following:

Property 1. The partial order (A(D),⊂) induced by edge-set inclusion on A(D)
is a complete lattice. Hence (A(D),⊂) has a maximum which we denote by A∗.

We have now the elements for the characterization of copwin periodic graphs.

Theorem 1 (Characterization Property). An arena D is copwin if and only A∗

contains an anchored star.

Proof (only if). Let A∗ contain an anchored star (t, u), t ∈ Zp. By definition of
star, Γt (u,A∗) = V ; thus, by definition of augmented arena, for every v ∈ V the
configuration (t, u, v) is copwin, i.e. there is a copwin strategy σc from (t, u, v).

Since (t, u) is anchored, there exists a journey π((0, x), (t, u)), starting at time
0 and ending at time t, to (t, u) from some temporal node (0, x). Consider now
the cop strategy σ′

c of: (1) initially positioning itself on the temporal node (0, x),
(2) then moving according to the journey π((0, x), (t, u)) and, once on (t, u), (3)
following the copwin strategy σc from (t, u, w), where w is the position of the
robber at the beginning of round t. This strategy σ′

c is winning for all (0, x, v),
v ∈ V ; hence D is copwin.

(if) Let D be copwin. We then show that there must exist an augmented arena
A of D that contains an anchored star. Since D is copwin, by definition, there
must exist some starting position (0, c) for the cop such that, for all positions
(0, r) initially chosen by the robber, the cop eventually captures the robber. In
other words, all the configurations (0, c, v) with v ∈ V are copwin; thus the
arena A obtained by adding to E(D) the set of edges {((0, c), (1, v))|v ∈ V }
is an augmented arena of D and (0, c) is an anchored star. By Property 1,
E(A) ⊆ E(A∗) and the theorem follows. �

The characterization of copwin periodic graphs provided by Theorem 1 indi-
cates that, to determine whether or not an arena D is copwin, it suffices to check
whether A∗ contains an anchored star. To be able to transform this fact into
an effective solution procedure, some additional concepts need to be introduced
and properties established.

3.3 Shadow Corners and Augmentation

Other crucial elements in the analysis of copwin periodic graphs are the concepts
of corner and cover, introduced in Sect. 3.1 for arenas, now in the context of
augmented arenas.
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Definition 4 (Shadow Corner and Shadow Cover). Let A be an augmented
arena of D. A temporal node (t, u) is a shadow corner of a temporal node (t+1, v),
with v �= u, if Γt (u,D) ⊆ Γt+1 (v,A). The temporal node (t + 1, v) will then be
called the shadow cover of (t, u).

By definition, any temporal corner is a shadow corner, and its temporal covers
are shadow covers. An example is shown in Fig. 2; the red links indicate the
neighbours of node (t, u) in D, while in green are indicated the edges to the
neighbours of (t + 1, v) that exists in A but not in D.

Fig. 2. Node (t, u) is a shadow corner of (t + 1, v). (Color figure online)

The role that shadow corners play with regards to the set A(D) of augmented
arenas of D is expressed by the following.

Theorem 2 (Augmentation Property). Let A ∈ A(D); (t, x), (t, y) ∈ V (D);
and z ∈ Γt (x,D). If (t, y) is a shadow corner of (t + 1, z), then the arena
A′ = A ∪ {((t, x), (t + 1, y))} is an augmented arena of D.

Proof. Let A be an augmented arena of D and let (t, x), (t, y), (t + 1, z) ∈ V (D)
where z ∈ Γt (x,D) and (t, y) is a shadow corner of (t + 1, z). The theorem
follows if ((t, x), (t + 1, y)) is already an edge of A. Consider the case where
((t, x), (t + 1, y)) /∈ E(A). Since (t, y) is a shadow corner of (t + 1, z), then for
every w ∈ Γt (y,D) we have that ((t+1, z), (t+2, w)) ∈ E(A); i.e., (t+1, z, w) is
winning for the cop. Since z ∈ Γt (x,D), if the cop moves from (t, x) to (t + 1, z)
when the robber is on (t, y), then regardless of the robber’s move, the resulting
configuration would be winning for the cop. In other words, (t, x, y) is a winning
configuration for the cop. It follows that A′ = A ∪ {((t, x), (t + 1, y))} is an
augmented arena of D. �
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In other words, given an augmented arena, by identifying a (still unconsid-
ered) shadow corner and its covers, new shadow edges may be determined and
added to form a denser augmented arena.

3.4 Determining A∗

The properties expressed by Theorem 2, in conjunction with that of Theorem 1,
provide an algorithmic strategy to construct A∗: start from an augmented arena;
determine new shadow edges; add them to the set of shadow edges, creating a
denser augmented arena; repeat this process until the current augmented arena
A either contains an anchored star or is A∗.

To be able to employ the above strategy, a condition is needed to determine if
the current augmented arena of D is indeed A∗. This is provided by the following.

Theorem 3 (Maximality Property). Let A ∈ A(D). Then A = A∗ if and only
if, for every edge ((t, x), (t + 1, y)) /∈ E(A), there exists no z ∈ Γt (x,D) such
that Γt (y,D) ⊆ Γt+1 (z,A).

Proof (only if). By contradiction, let A = A∗ but there exists an edge
((t, x), (t + 1, y)) /∈ E(A) and a temporal node z ∈ Γt (x,D) such that
Γt (y,D) ⊆ Γt+1 (z,A). This means that (t, y) is a shadow corner of (t+1, z). By
Theorem 2, A′ = A ∪ {((t, x), (t + 1, y))} is an augmented arena of D; however,
E(A′) contains one more edge than E(A), contradicting the assumption that A
is maximum.

(if) Let A �= A∗; that is, there exists ((t, x), (t + 1, y)) ∈ E(A∗) \ E(A). By
definition, the configuration (t, x, y) is copwin; let σc be a cop winning strategy
for the configuration (t, x, y); i.e., starting from (t, x, y), the cop wins the game
regardless of the strategy σr of the robber.

Let C = (V (C), E(C)) ⊆ CG be the directed acyclic graph of configurations
induced by σc starting from (t, x, y), and defined as follows: (1) (t, x, y) ∈ V (C);
(2) if (t′, u, v) ∈ V (C) with t′ ≥ t and u �= v, then, for all w ∈ Γt′(v,D),
(t′+1, σc(t′+1, u, v), w) ∈ V (C) and ((t′, u, v), (t′+1, σc(t′+1, u, v), w))) ∈ E(C).

Observe that in C there is only one source (or root) node, (t, x, y), and every
(t′, w, w) ∈ V (C) is a sink (or terminal) node. Since σc is a winning strategy for
the root, every node in C is a copwin configuration, and every path from the
root terminates in a sink node (see Fig. 3).

Partition V (C) into two sets, U and W where U = {(i, u, v)|((i, u), (i+1, v)) ∈
E(A)} and W = V (C)\U . Observe that every sink of V (C) belongs to U ; on the
other hand, since ((t, x), (t + 1, y)) /∈ E(A) by assumption, the root belongs to
W (see Fig. 4). Given a node κ = (i, u, v) ∈ V (C), let C[κ] denote the subgraph
of C rooted in κ.

Claim. There exists κ ∈ V (C) such that all nodes of C[κ] except the root belong
to U .

Proof of Claim. Let P0 be the set of sinks of C. Starting from k = 0, consider
the set Pk+1 of all in-neighbours of any node of Pk; if Pk+1 does not contains an
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Fig. 3. The directed acyclic graph C of configurations induced by σc starting from
(t, x, y). (Color figure online)

Fig. 4. The sets U (green) and W (purple). (Color figure online)

element of W , then increase k and repeat the process. Since (t, x, y) ∈ W , this
process terminates for some j ≥ 1, and the Claim holds for every κ ∈ Pj . �

Let (t′, x′, y′) be a node of V (C) satisfying the above Claim (see Fig. 5). Thus
((t′, x′), (t′ + 1, y′)) /∈ E(A) but, since (t′, x′, y′) is copwin, ((t′, x′), (t′ + 1, y′)) ∈
A∗. By the Claim, all other nodes of C[(t′, x′, y′)] belong to U , in particular the
set of nodes {(t′ + 1, w, z)|w = σc(t′, x′, y′), z ∈ Γt′(y′,D)}. This means that,
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Fig. 5. (t′, x′, y′) satisfies the Claim. (Color figure online)

for every z ∈ Γt′(y′,D), (t′ + 1, w, z) ∈ E(A). In other words, Γt′ (y′,D) ⊆
Γt′+1 (w,A); that is, (t′, y′) is a shadow corner of (t′ + 1, w) (see Fig. 6).

Fig. 6. (t′, y′) is a shadow corner of (t′ + 1, w). (Color figure online)

Summarizing: by assumption A �= A∗; as shown, ((t′, x′), (t′ + 1, y′)) /∈
E(A∗) \ E(A), and w ∈ Γt′ (x′,D) is a shadow cover of (t′, y′); that is,
Γt′ (y′,D) ⊆ Γt′+1 (w,A), concluding the proof of the if part of the theorem.

�
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4 Algorithmic Determination

In this section we show that the results established in the previous sections
provide all the tools necessary to design an algorithm to determine whether or
not a periodic graph G is copwin. Furthermore, if G is copwin, the algorithm can
actually provide a winning cop strategy σc.

4.1 Solution Algorithm

General Strategy. Given a periodic graph G, or equivalently its arena D, to
determine whether or not it is copwin, by Theorem 1, it is sufficient to determine
whether or not its maximal augmented arena A∗ contains an anchored star.
Hence, informally, a basic solution approach is to start from A = D, repeatedly
determine a “new” shadow edge (i.e., in E(A∗) \ E(A)), using Theorem 2, and
consider the new augmented arena obtained by adding such an edge. This process
is repeated until either the current augmented arena A contains an anchored star,
or no other “missing” shadow edge exists. In the former case, by Theorem 1, D
is copwin; in the latter case, by Theorem 3, the current augmented arena is A∗

and, if it does not contain an anchored star, D is robberwin.
A general strategy based on this approach operates in a sequence of iterations,

each composed of two operations: the examination of a shadow edge, and the
examination of new shadow corners (if any) determined in the first operation.
More precisely, in each iteration: (i) A “new” (i.e., not yet examined) shadow
edge e = ((t, x), (t + 1, y)) is examined to determine if its presence transforms
some nodes into new shadow corners of (t, x). (ii) Each of these new shadow
corners is examined, determining if its presence generates new shadow edges. By
the end of the iteration, the shadow edge e and the new shadow corners of (t, x)
examined in this iteration are removed from consideration. This iterative process
continues until there are no new shadow edges to be examined (i.e. A = A∗) or
there is an anchored star in A.

Fig. 7. Outline of general strategy where the iterative process terminates when A = A∗.
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An outline of the strategy, where the iterative process is made to terminate
when A = A∗, is shown in Fig. 7.

Algorithm Description. Let us present the proposed algorithm, CopRob-
berPeriodic, which follows directly the general strategy described above to
determine whether or not an arena D = ((Zp × V ), E(D)) is copwin, where
V = {v1, . . . , vn}.

We denote by A the current augmented arena of D, by A its adjacency
matrix, and by At the adjacency matrix of slice St of A. Auxiliary structures
used by the algorithm include the queue SE , of the known shadow edges that
have not been examined yet; a n × n Boolean matrix SEt for each t, initialized
to At, used to indicate shadow edges already known; a n×n Boolean matrix SCt

for each t, initialized to zero and used to indicate the detected shadow corners;
more precisely, SCt[x, y] = 1 indicates that (t, x) has been determined to be a
shadow corner of (t + 1, y),

The algorithm is composed of two phases: Initialization, in which all the
necessary structures are set up and preliminary computations are performed;
and Iteration, a repetitive process where the two basic operations of the general
strategy (described in Sect. 4.1) are performed in each iteration: examination of
a “new” shadow edge (to determine “new” shadow corners generated by that
edge) and examination of the “new” shadow corners (to determine “new” shadow
edges generated by that corner).

The structure used to determine new shadow corners is the set {DIF(t, x, y) :
t ∈ Zp, x, y ∈ V } of n2p Boolean arrays of dimension n. For all x, v ∈ V and
t ∈ Zp, the value of the cell DIF(t, x, y)[i] indicates whether vi ∈ Γt (x,D) \
Γt+1 (y,A) (in which case DIF(t, x, y)[i] = 1) or vi ∈ Γt (x,D) ∩ Γt+1 (y,A)
(in which case DIF(t, x, y)[i] = 0). Note that, if vi /∈ Γt(x,D), the value of
DIF(t, x, y)[i] is left undefined; indeed, the algorithm only initializes and uses
the |Γt(x,D)| cells corresponding to the elements of Γt(x,D); we shall call those
cells the core of DIF(t, x, y).

The algorithm also maintains a variable φ (DIF(t, x, y)) indicating the current
number of core cells with value “1” in array DIF(t, x, y); this variable is initialized
to |Γt(x,D)|. Observe that, by definition of DIF(t, x, y), φ (DIF(t, x, y)) = 0 iff
(t, x) is a shadow corner of (t + 1, y).

In each iteration of the Iteration phase, a new shadow edge is taken from SE ,
added to the augmented arena A, and examined. The examination of a shadow
edge ((t, x), (t + 1, y)) involves (i) the update of DIF(t − 1, z, x)[y] for any in-
neighbour (t − 1, z), in D, of (t, y) and, for any such in-neighbour, (ii) the test
to see if the presence of the edge ((t, x), (t + 1, y)) in the augmented arena has
created new shadow corners among such in-neighbours2. If new shadow corners
exist, they may in turn have created new shadow edges originating from the
in-neighbours, in D, of (t, x). In fact, any in-neighbour (t − 1, w) of (t, x) such
that ((t − 1, w), (t, z)) is not already in the augmented arena is a new shadow
2 Such would be any (t − 1, z) for which the update has resulted in an array DIF(t −

1, z, x) that contains only zero entries.
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edge: a move of the cop from (t − 1, w) to (t, x) is fatal for the robber wherever
it goes; in such a case, the algorithm then adds ((t − 1, w), (t, z)) to SE .

The pseudo code of the algorithm is shown in Algorithm1. Not shown are
several very low level (rather trivial) implementation details. These include, for
example, the fact that the core cells of DIF(t, x, y) are connected through a dou-
bly linked list, and that, for efficiency reasons, we also maintain two additional
doubly linked lists: one going through the core cells of the array containing “1”,
the other linking the core cells containing “0”.

4.2 Analysis

Correctness. Let us prove the correctness of Algorithm CopRobberPeriodic.
Let D = (Zp × V,E(D)) be the arena of a p-periodic graph with n = |V | and
m = |E(D)|.
Lemma 2. Algorithm CopRobberPeriodic terminates after at most |E(A∗)|
− |E(D)| iterations.

Given an augmented arena A and a shadow edge e = ((t, x), (t + 1, y)) ∈
E(A∗) \E(A), we shall say that e is an implicit shadow edge of A if there exists
z ∈ Γt (x,D) such that (t, y) is a shadow corner of (t + 1, z) in A.

Lemma 3. At the end of the Initialization phase: (i) for all and only the tem-
poral corners (t, x) of (t + 1, y) in D, SCt[x, y] = 1 and φ (DIF(t, x, y)) = 0; (ii)
all implicit shadow edges of D are in SE; furthermore, the entry in SE of all
edges of D and implicit shadow edges of D, is 1.

Let us consider the Initialization phase as iteration 0 of the Iteration phase;
hence, the entire algorithm can be viewed as a sequence of iterations. Denote by
Aj the augmented arena at the beginning of the j-th iteration, with A0 = D.
We now show that, at the beginning of iteration j, all shadow corners of Aj−1

have been examined and all implicit shadow edges of Aj−1 are in SE .

Lemma 4. At the beginning of iteration j > 0:

(a) φ (DIF(t, x, y)) = 0 if and only if (t, x) is a shadow corner of (t + 1, y) in
Aj−1; furthermore, in such a case, SCt[x, y] = 1.

(b) SE contains all the implicit shadow edges of Aj−1; furthermore, in SE, the
entry of the edges of Aj−1 and of the implicit shadow edges of Aj−1 is 1.

Theorem 4. Algorithm CopRobberPeriodic correctly determines whether or
not an arena D is copwin.

Complexity. Let us analyze the cost of Algorithm CopRobberPeriodic.
Given D = (Zp × V,E(D)), let mi denote the number of edges of slice Si of
D, i ∈ Zp, and m = |E(D)| =

∑p−1
i=0 mi the total number of edges of D. As

usual, n = |V |.



Cops & Robber on Periodic Temporal Graphs 401

Algorithm 1: CopRobberPeriodic

Input: Arena D = (Zp × V, E(D)), with V = {v1, . . . , vn}
1 Initialization
2 A := D
3 SE := A
4 SE := ∅
5 SC :=Zero /* a table of p zero matrices, each of size n × n */
6 foreach t ∈ Zp, u, v ∈ V do
7 φ (DIF(t, u, v)) := |Γt(u, D)|
8 foreach w ∈ Γt (u, D) do
9 if At+1[v, w] = 1 then

10 DIF(t, u, v)[w] := 0
11 φ (DIF(t, u, v)) := φ (DIF(t, u, v)) − 1
12 if φ (DIF(t, u, v)) = 0 and SCt[u, v] = 0 then
13 SCt[u, v] := 1

14 foreach z ∈ Γ in
t+1 (v, D) do

15 if SEt[z, u] = 0 then
16 SEt[z, u] := 1
17 SE ← ((t, z), (t + 1, u))

18 else
19 DIF(t, u, v)[w] := 1

20 Iteration
21 while SE �= ∅ do
22 ((t, x), (t + 1, y)) ← SE
23 At(x, y) := 1

24 foreach z ∈ Γ in
t (y, D) do

25 if DIF(t − 1, z, x)[y] = 1 then
26 DIF(t − 1, z, x)[y] := 0
27 φ (DIF(t − 1, z, x)) := φ (DIF(t − 1, z, x)) − 1

28 if φ (DIF(t − 1, z, x)) = 0 and SCt−1[z, x] = 0 then
29 SCt−1[z, x] := 1

30 foreach w ∈ Γ in
t (x, D) do

31 if SEt−1[w, z] = 0 then
32 SEt−1[w, z] := 1
33 SE ← ((t − 1, w), (t, z))

34 if A contains an anchored star then D is copwin
35 else D is robberwin

Theorem 5. Algorithm CopRobberPeriodic determines in time O(n2p +
nm) whether or not D is copwin.

Proof. We first derive the cost of the Initialization phase. Observe that the
initialization of A, SE, SC (Lines 2–4) can be performed with O(n2p) operations.
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Then, Line 7 is executed n2p times. The cost of the initialization of DIF and of
φ (DIF) (Lines 6–13, 18–19), which includes the update of some entries of SC,
plus the cost of the initialization of SE (Lines 14–17), which includes the update
of some entries of SE, require at most

n2p +
∑

i∈Zp,u∈V

O(|Γi(u,D)|) +
∑

i∈Zp,v∈V

O(|Γ in
i (v,D)|) =

p−1∑

i=0

O(n(mi + mi−1)),

which sums up to O(n2p + nm) operations for the Initialization phase.
Let us consider now the Iteration phase. The while loop will be repeated

until in the current augmented arena A there are no more shadow edges to
be examined (i.e. A = A∗). By Lemma 2, the total number of iterations is
|E(A∗)| − |E(D)| ≤ n2p − m. Further observe that every operation performed
during an iteration requires constant time.

In each iteration, two processes are being carried out. The first process (Lines
24–27) is the determination of all new shadow corners (if any) of (t, x) created
by (the addition of) the shadow edge ((t, x), (t + 1, y)) being examined. The
total cost of this process in this iteration is at most two operations for each in-
neighbour of (t, y), i.e., at most 2c1|Γ in

t (y,D)|, where c1 ∈ O(1) is the constant
cost of performing a single operation in this process.

This process is repeated in all iterations, each time with a different shadow
edge being examined. Thus, the cost of 2c1|Γ in

t (y,D)| will be incurred for all
((t, x), (t + 1, y)) ∈ E(A∗); that is, at most n times. Summarizing, for each
y ∈ V, t ∈ Zp this process costs 2c1n|Γ in

t (y,D)|. Hence the total cost of this
process over all iterations is

∑

y∈V,t∈Zp

2 c1 n |Γ in
t (y,D)| = 4 c1 n

p−1∑

t=0

mt = O(nm).

The second process, to be performed only if new shadow corners of (t, x)
have been found in the first process, is the determination (Lines 28–33) of all
the new shadow edges (if any) created by the found new shadow corners, and
their addition to SE . The cost of this process for a new shadow corner in this
iteration is c2|Γ in

t (x,D)|, where c2 ∈ O(1) is the constant cost of performing a
single operation in this process. Observe that, if a new shadow corner of (t, x)
is found in this iteration, it will not be considered in any subsequent iteration
(Lines 28–29). Hence, the cost c2|Γ in

t (x,D)| will be incurred at most once for
each shadow corner of (t, x); that is, at most n times. Summarizing, for each
x ∈ V, t ∈ Zp this process costs at most 2c2n|Γ in

t (x,D)|. Hence the total cost of
this process over all iterations is

∑

x∈V,t∈Zp

2 c2 n |Γ in
t (x,D)| = 4 c2 n

p−1∑

t=0

mt = O(nm).

Consider now the last step of the algorithm, of determining if the constructed
A contains an anchored star. To determine all the stars (if any) in A∗ can be
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done by checking the degree of each temporal node in A∗, i.e., in O(np) time.
To determine if at least one of them is anchored can be done by a DFS traversal
of A∗ starting from each root node (0, x), for a total of at most O(n2 + nm)
operations. It follows that the total cost of the algorithm is O(pn2 + nm) as
claimed. �

The bound established by Theorem 5 improves on the existing O(p n3) bound
[14]; in particular, in periodic graphs with sparse snapshots the proposed algo-
rithm terminates in O(p n2) time. Furthermore, since a static graph is a periodic
graph with p = 1, the bound of Theorem 5 becomes O(n m), improving the exist-
ing O(n3) bound [32]; in particular our bound becomes O(n2) for sparse graphs.

4.3 Extensions

Determining a Copwin Strategy. The algorithm, as described, determines
whether or not the arena D (and, thus, the corresponding temporal graph G) is
copwin. Simple additions to the algorithm would allow it to easily determine a
copwin strategy σc if D is copwin. For any shadow edge e = ((t, x), (t + 1, y), let
ρ(t, x, y) be defined as follows. If e = ((t, x), (t+1, y) ∈ E(D), then ρ(t, x, y) = y.
If e = ((t, x), (t + 1, y) ∈ E(A∗) \ E(D), when e is inserted in SE , either during
the Initialization or the Iteration phase, then ρ(t, x, y) = z where (t+1, z) is the
shadow cover of (t, y) determined in the corresponding phase of the algorithm
(Line 12 if Initialization, Line 28 if Iteration).

Recall that, if D is copwin, A∗ must contain an anchored star, say (t, x),
Since (t, x) is a star, if the cop is located on (t, x) and the robber is located on
(t, y), by moving according to ρ (starting with ρ(t, x, y)) the cop will eventually
capture the robber. Since (t, x) is anchored, it is reachable from some node in
G0, say (0, v); that is, there is a journey π((0, v), (t, x)) from (0, v) to (T, x),
where [T ]p = t. Consider now the following strategy σc for the cop: (1) choose as
initial location (0, v); (2) follow π((0, v), (t, x)); (3) follow ρ. Using this strategy,
the cop will eventually capture the robber.

More Cops & One Robber. The framework presented so far can be gener-
alized to the case when there are k > 1 cops. By shifting from a representation
in terms of directed graphs to one in terms of directed multi-hypergraphs, it is
possible to extend all the basic concepts introduced for k = 1. Indeed, all the
fundamental properties of augmented arenas continue to hold in this extended
setting, and the same strategy can be used to determine if a periodic graph is
k-copwin. The strategy can be implemented by a direct extension of the solution
algorithm for k = 1.
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