
Reduced Checking Sequences Using Unreliable Reset

Guy-Vincent Jourdana, Hasan Urala, Hüsnü Yenigünb,∗

aUniversity of Ottawa, Ottawa, Ontario, Canada
bSabancı University, Tuzla, Istanbul, Turkey

Abstract

The length of a checking sequence (CS) generated from a deterministic, minimal,

and completely specified finite state machine model M of a system under test

which does not have a reliable reset feature, is exponential when M does not

have a distinguishing sequence. This is due to the exponential length locating

sequences that need to be used in such a CS. In this work, we propose a method

to decrease the number of locating sequences used in CS, by first verifying the

reset input r and then using r as a reliable reset. When such a reset input is

not available, a synchronizing sequence can be used as a compound reset input,

which makes the proposed method applicable to a wide range of systems.

Keywords: Model-Based Testing, Finite State Machines, Checking Sequences,

Synchronizing Sequences

1. Introduction

Testing from a Finite State Machine (FSM) model of systems in a variety

of application areas has been used in Model-Based testing [1]. Much of the

work in Model-Based testing from an FSM has been done on specific classes of

FSMs, mostly on FSMs that have a Distinguishing Sequence (DS) [2], that is, a5

sequence of inputs that produces a unique output sequence for each state of the

FSM [3]. A DS in this context is used to identify the states of the FSM. However,

∗Corresponding author
Email addresses: gvj@eecs.uottawa.ca (Guy-Vincent Jourdan), ural@eecs.uottawa.ca

(Hasan Ural), yenigun@sabanciuniv.edu (Hüsnü Yenigün)

Preprint submitted to Journal of LATEX Templates December 11, 2014

not every FSM has a DS. A more general approach to state identification is to

use a characterization set, commonly known as W -set [4], which is a set of input

sequences producing a unique set of output sequences for each state of the FSM.10

Such a set exists for each deterministic, minimal, and completely specified FSM.

The common aim of all of the approaches for testing from an FSM is to

construct a checking sequence (CS) from an FSM model M of an implemented

system N which determines whether N is a correct implementation of M for

some fault model. Correctness of N with respect to M is established when the15

output sequence produced by N in response to the application of the CS is the

same as the expected output from M . Without a fault model, construction

of a CS is not possible, because for a given CS C for an FSM M , a faulty

implementation of M producing the expected output sequence from M for C

can be constructed. A fault model places a set of assumptions on the possible20

implementations of M that will be tested by C to be constructed from M .

Common assumptions made by approaches for testing from an FSM M include

that the implementation N has at most the same number of states as M and

does not change during testing.

CS construction methods often differ in the type of state identification25

sequences that they use, such as DS, W -sets and Unique Input-Output se-

quences [5], or the assumption that a reliable reset (a reset input for the im-

plementation N that is known to work correctly) can be used. When a reliable

reset is available in N , or a DS exists in M , a CS that is polynomial in the size

of M can be constructed [6, 4, 7].30

Otherwise (when there is no reliable reset and there is no DS), a CS can

still be constructed using a W -set [8, 9, 10, 11] which exists for every minimal,

completely specified FSM. All these methods utilize Locating Sequences which

assure that every element of the W -set is applied to the same state. However,

as pointed out in [10], when using W -sets for state identification the resulting35

checking sequence is “of exponential length in general”, because the length of

locating sequences grows exponentially with the size of the W -sets.

It should be noted that the major factor determining the length of the result-

2

ing checking sequence is the number of locating sequences used in the checking

sequence. Although [9, 11] give sufficient conditions for the construction of a40

checking sequence of minimum length, both methods use the same number of lo-

cating sequences in forming the checking sequence, without making any attempt

to reduce this number.

In this paper, we investigate when the number of locating sequences can be

reduced in forming checking sequences. We consider FSMs without a DS and45

demonstrate that for the case of the FSMs with an unreliable reset and the

FSMs with a synchronizing sequence, one can obtain a CS which is shorter than

the one obtained by [9].

2. Background

For an integer k ≥ 1, let [k] denote the set {1, 2, . . . , k}. An FSM M with50

input alphabet X and output alphabet Y is a set of state transitions among a set

S of n states where a transition from state si ∈ S to state sj ∈ S is triggered by

an input x ∈ X and produces an output y ∈ Y . For an input sequence w ∈ X?

and a state s, δ(s, w) denotes the state that is reached when w is applied at

state s. As in [9], we consider M to be deterministic, completely specified, and55

minimal. M is deterministic and completely specified, if for each state s in S,

there is exactly one transition in M outgoing from s defined for each input in

X. M is minimal if for each distinct pair of states s and s′, there exists an input

sequence for which s and s′ produce different output sequences.

A checking sequence for an FSM M is typically constructed in two phases60

(which may be interleaved): a state identification phase, and a transition veri-

fication phase. The state identification phase includes input sequences to verify

that an implementation N of M has n states, and to recognize each state of N

as corresponding to a state of M . This is achieved by bringing N to a state

s (for each s ∈ S) and applying the state identification procedure there. The65

transition verification phase includes input sequences to verify that each tran-

sition of M is correctly implemented in N . This is achieved by bringing N to

3

the state si (for each transition from si to sj with input x and output y), by

applying x at si, observing the output y, and by applying the state identification

procedure at δ(si, x).70

When a W -set is used to construct a checking sequence, the state identifica-

tion procedure demands that every element of the W -set is applied to the same

implementation state in order to identify that state of N as one of the states of

M . In the absence of a reliable reset, the methods in [8, 3, 10] use a Locating

Sequence Lsi , for each si ∈ S, which meets this demand. That is, Lsi assures75

that every element of the W -set is applied to the same implementation state,

which corresponds to the specification state si.

Locating sequences are constructed in the following way [9]: Let W =

{w1, w2, . . . , wk} be a W -set. Given a state si and an input sequence wp ∈ W ,

p ∈ [k], let U ip be an input sequence such that wp is a prefix of U ip and80

δ(si, U
i
p) = si. The locating sequence Lsi for state si is defined as the sequence

Lsi = Fk−2(U i1, U
i
2, . . . , U

i
k), where F0(a1, a2) is defined as the concatenation

of n + 1 copies of a1 followed by a2, and for p > 0, Fp(a1, a2, . . . , ap+2) is de-

fined as the concatenation of n+ 1 copies of Fp−1(a1, a2, . . . , ap+1) followed by

Fp−1(a1, a2, . . . , ap, ap+2).85

As can be seen from the definition, locating sequences grow exponentially

quickly with the number of states n and the number of elements in the W -set

k, with elements of W -set being applied in the order of nk times.

In [9], state identification is achieved by applying at each state si a sequence

αi = Lsiw1I
1
i Lsiw2I

2
i . . . LsiwkI

k
i Lsi , where Ipi is a transfer sequence of inputs90

from δ(si, wp) to si. The verification of a transition from a state si to a state sj

with an input x is performed by applying at the state recognized as si the set

of input sequences βi,x,p = xwpLδ(sj ,wp), for p ∈ [k]. Each transition thus yields

k input sequences. Given that we are dealing with complete FSMs, there are

exactly q.n transitions, where q is the size of the input alphabet. The method95

forms a checking sequence by concatenating the set of αi and βi,x,p sequences,

using appropriate transfer sequences for concatenation whenever necessary. In

terms of cost, defined as the total number of inputs in the CS, the main factor

4

in [9] comes from the applications of locating sequences: each αi (i ∈ [n])

requires the application of k+ 1 locating sequences, and each βi,x,p (i ∈ [n], x ∈100

X, p ∈ [k]) contains one locating sequence. Therefore, in [9], the total number

of application of locating sequences is Q[9] = n(k + 1 + qk).

3. Proposed Improvements

In this paper, we show that under some conditions, we can generate a CS

that has fewer than Q[9] applications of locating sequences. The first such105

condition is when the specification FSM M has a reset feature where at every

state of M the reset input r brings M to state s1 and when this feature is not

considered reliable in an implementation N of M . In this case, we propose to

use locating sequences to verify the reliability of the reset, and use the verified

reset instead of the locating sequence for the transition verification phase of the110

CS. The CS constructed using this approach will therefore have three phases:

state identification, reset verification, and transition verification.

The state verification phase is performed almost exactly as in [9]. However,

we do not need to ensure that the implementation ends at the state recognized

as si after the application of αi, so we can remove the last Lsi from αi, which115

yields a sequence α′i = Lsiw1I
1
i Lsiw2I

2
i . . . Lsiwk.

In order to verify the reset input r at each state, a CS needs to show that

applying r from every state of N resets N to a state corresponding to state s1

of M . For this reason, we include the sequences γi,p = Lsirwp, i ∈ [n], p ∈ [k] in

CS for the reset verification phase. The transition verification phase will then120

proceed as in the case of the methods that use reliable reset (see for example [4]).

Similar to these methods, suppose that a spanning tree for M rooted at state

s1 is constructed, where the edges are only labeled by the input symbols of

the corresponding transitions. Let ti be the label of the path from the root to

the node labeled by si in this spanning tree. The transition verification phase125

includes sequences of the form β′i,x,p = rtixwp, i ∈ [n], x ∈ X, p ∈ [k]. Note that

β′i,x,p is exactly the same as the transition verification phase of CS construction

5

methods that are used when a reliable reset is available [8] and it does not

incorporate the use of locating sequences.

In terms of cost, the main factor remains the applications of locating se-130

quences. For the state identification phase, each α′i yields k applications of

Lsi , and there are n such α′i. For the additional phase of reset verification,

from each state we include one locating sequence for each of the k sequences

verifying the reset from that state, which yields nk applications of the locating

sequences. Thus, the overall number of applications of locating sequences is135

Qnew = 2nk < Q[9].

3.1. Correctness of the method

In order to construct a checking sequence, the sequences α′i, γi,p, and β′i,x,p

explained above need to be concatenated to form a single sequence. Note that,

each one of these sequences needs to be applied at a state of the implementation140

N of FSM M that will necessarily be recognized as a state si of M . Therefore,

appropriate transfer sequences need to be used to concatenate these sequences

when necessary. Let CS be an input sequence that is constructed from an FSM

M in this way.

Lemma 1. If N produces the expected output to CS then r is a reliable reset145

for N .

Proof. CS includes Lsi for each i ∈ [n]. Having the expected outputs from N

for Lsi sequences assures the existence of n states in N , and also the state qi in

N right before the application of the last element U ik in Lsi is recognized as si

of M [8]. The state reached in N after an application of Lsi is also recognized150

as the state si of M due the inclusion of α′i in CS. Therefore, the state of N at

the end of an application of Lsi is qi as well.

In each sequence γi,p, for p ∈ [k], after Lsi is applied N is at qi again, by

the argument above. The reset input r is applied from qi and the state reached

after the application of r is recognized by applying the elements of the W -set155

as s1 of M .

6

Lemma 2. Every transition of M is verified by CS.

Proof. The proof is by induction on the length of ti in β′i,x,p.

Base step (|ti| = 0): This means that si = s1. In this case, in β′i,x,p, x is

applied after r. Using Lemma 1, x is applied to the state recognized as s1. The160

state reached in N after the application of the input x will be recognized as the

state δ(s1, x) by the application of the elements of the W -set.

Inductive step: Let sj be the parent of si in the spanning tree used, and x

be the label of the edge from sj to si in the spanning tree. By the induction

hypothesis, the transition from sj to si with input x is verified, hence it is known165

that the sequence rti brings N to the state qi that is recognized as si. Since x is

applied after rti in β′i,x,p, x is applied to the state qi recognized as si. Similarly,

the state reached in N after the application of the input x will be recognized as

the state δ(si, x) by the application of the elements of the W -set.

Theorem 1. CS is a checking sequence for M .170

Proof. CS is a checking sequence for M if every transition of M is verified by

CS (see Theorem 1 in [9]). Using Lemma 2 the result follows.

3.2. A generalization of the method

The method explained so far depends on the existence of a reset input r in

the implementation. However, the method can be directly adopted to FSMs175

without such a reset input, but with a synchronizing sequence. A synchronizing

sequence R is an input sequence such that δ(s,R) = δ(s′, R) for every pair of

states s and s′. In other words R resets M to a particular state. Therefore, a

synchronizing sequence is in fact effectively a compound reset input.

In order to adopt our method to use a synchronizing sequence R instead of180

a reset input r, the only modifications needed are to replace the occurrence of

r in γi,p and β′i,x,p with R. This does not change the number of application of

locating sequences, which is also Qnew = 2nk < Q[9] in this case.

7

4. Discussion

The method proposed in this paper will reduce the number of application185

of locating sequences by a factor greater than 2/(1 + q), where q is the size of

the input alphabet. Given that systems will typically have at least two inputs,

and usually more, it means that our method will apply at most two-third of the

locating sequences of the previous method, usually less. We thus expect our

method to yield significantly shorter CSs.190

A necessary condition to use our method is to have some sort of reset capa-

bility, which might seem as a limitation. However, being able to use a synchro-

nizing sequence for reset means that our method is in fact widely applicable.

Berlinkov [12] claims that a random FSM with n states and q inputs has a

synchronizing sequence with probability 1−Θ(1/n0.5×q). This claim was exper-195

imentally supported by Kisielewicz et. al [13]. Therefore, our method becomes

applicable for virtually all FSMs as the size of the FSM increases.

One optimization that is used for reducing the length of checking sequences

when a W -set is used is the following. Based on the knowledge that the given

W -set for M is also a W -set for the implementation N , further recognitions for a200

state si can be performed by using a subset Wi = {wi1, wi2, . . . , wi|Wi|} of W (see

for example [14]). The set Wi, called an identification set for state si, has the

following property: The set of responses of si to the sequences in Wi is unique

and no subset of Wi has this property. Applying Lsi , i ∈ [n], guarantees that W

is a W -set for the implementation as well. Thus, we can avoid using the entire205

W -set elsewhere, and simply use the sequences in each Wi’s at different places.

For the state recognition sequences, each state si can be recognized using the

sequence α′i = Lsiw
i
1I

1
i Lsiw

i
2I

2
i . . . Lsiw

i
|Wi|.

For the reset verification, if the reset input r resets the FSM to state s1,

and if W1 is the identification set for s1, then the number of sequences for reset210

verification can be reduced by using γ′i,p = Lsirw
1
p, i ∈ [n], p ∈ [|W1|] instead of

γi,p. Although this would in most case further reduce the number of applications

of the locating sequence, in the worst case this number remains unchanged.

8

The idea of verifying resets or synchronizing sequences as an intermediate

step in the CS generation algorithm can also be used in the case of FSM having215

distinguishing sequences. However, in that case, well known methods do gener-

ate CS that do not have a particular element which is order of magnitude longer

than the other elements of the sequence (i.e. nothing like a locating sequence).

Thus, we do not expect that the added cost of a separated reset/synchronizing

sequence verification will be justified and the resulting CS would probably be220

of comparable length, if not longer.

Finally, we note that Lee and Yannakakis introduce the idea of constructing

a reliable reset and then using it to build the CS [10]. However, their suggestion

was to simulate a reset by transferring from the current state back to the initial

state s1 and then applying the locating sequence L1. This approach would not225

reduce the overall length of the CS, since the number of applications of locating

sequences would not decrease. In another paper, the same authors suggest a

randomized algorithm for FSMs with unreliable reset [15]. However as they

point out, the generated sequence may not necessarily be a checking sequence.

In contrast our method produces a checking sequence. If one does not require230

such a guarantee, the approach given in [15] is a reasonable alternative.

References

[1] M. Broy, B. Jonsson, J.-P. Katoen, Model-Based Testing of Reactive Sys-

tems: Advanced Lectures (LNCS), Springer, 2005.

[2] A. da Silva Simão, A. Petrenko, Generating checking sequences for partial235

reduced finite state machines, in: TestCom/FATES, 2008, pp. 153–168.

[3] Z. Kohavi, Switching and Finite State Automata Theory, McGraw-Hill,

New York, 1978.

[4] T. S. Chow, Testing software design modelled by finite state machines,

IEEE Transactions on Software Engineering 4 (1978) 178–187.240

9

[5] K. Sabnani, A. Dahbura, A protocol test generation procedure, Computer

Networks 15 (4) (1988) 285–297.

[6] M. P. Vasilevskii, Failure diagnosis of automata, Cybernetics and Systems

Analysis 9 (1973) 653–665, 10.1007/BF01068590.

[7] W. Y. L. Chan, C. T. Vuong, M. R. Otp, An improved protocol test gener-245

ation procedure based on uios, SIGCOMM Comput. Commun. Rev. 19 (4)

(1989) 283–294. doi:10.1145/75247.75274.

[8] F. C. Hennie, Fault-detecting experiments for sequential circuits, in: Pro-

ceedings of Fifth Annual Symposium on Switching Circuit Theory and

Logical Design, Princeton, New Jersey, 1964, pp. 95–110.250

[9] A. Rezaki, H. Ural, Construction of checking sequences based on charac-

terization sets, Computer Communications 18 (12) (1995) 911–920.

[10] D. Lee, M. Yannakakis, Testing finite-state machines: State identification

and verification, IEEE Transactions on Computers 43 (3) (1994) 306–320.

[11] K. Inan, H. Ural, Efficient checking sequences for testing finite state ma-255

chines, Information and Software Technology 41 (11–12) (1999) 799–812.

[12] M. V. Berlinkov, On the probability of being synchronizable, CoRR

abs/1304.5774.

[13] A. Kisielewicz, J. Kowalski, M. Szykula, Computing the shortest reset

words of synchronizing automata, Journal of Combinatorial Optimization260

(2013) 1–37doi:10.1007/s10878-013-9682-0.

[14] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, A. Ghedamsi,

Test selection based on finite state models, IEEE Transactions on Software

Engineering 17 (6) (1991) 591–603.

[15] M. Yannakakis, D. Lee, Testing finite state machines: Fault detection, J.265

Comput. Syst. Sci. 50 (2) (1995) 209–227.

10

http://dx.doi.org/10.1145/75247.75274
http://dx.doi.org/10.1007/s10878-013-9682-0

	Introduction
	Background
	Proposed Improvements
	Correctness of the method
	A generalization of the method

	Discussion

