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Use light as a carrier and use photonic and optoelectronic devices 
for the generation, transmission, control, and processing of 
microwave signals, to implement microwave devices and systems 
with improved perfromance.

What is MWP

Laser Modulator）

Optical processing unit

Microwave in

MW 
Out 

Photodetector
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Advantages of MWP
To solve the bottleneck problems ( limited bandwidth) 
To make microwave devices and systems to be higher frequency， 

wider bandwidth and lower loss
Photonics vs Microwave:
Wide bandwidth：

2,000 ~ 10,000 wider than RF
  Immune to electromagnetic 

interference (EMI)

Light weight：fiber: 1.7 kg/km << 
copper cable 567 kg/km 

 Integratable and small (Photonic 
Integrated Circuits or PICs)

Low loss: fiber 0.2 dB/km << copper 
cable 360 dB/km 

 Fast and parallel processing -
Important for Optical Computing
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MWP Applications

 Optical computing：ultra-high 
speed and parallel computing

 Low phase noise microwave generation 
     (ultra-low phase noise, -170 dBc/Hz at 10 kHz) 

 Microwave photonic links (low loss and wideband) 

 True time delay for broadband beamforming 
 Photonic ADC (high speed and low time jitter) 
 MWP sensors and radar (high resolution, wide 

bandwidth)

DSP
信号处理

Fiber link

Re  
an
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What is MWP
MWP and Optical Computing
MWP and AI
Convolutional Neural Network

– Fiber-optic implementation
– Photonic integrated implementation

Optical Reservoir Computing
– Fiber optic implementation
– Photonic integrated implementation

Conclusion

Outline
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Laser Modulator

Optical computing unit

Signal to be processed

Processed signal

Photodetector

• Temporal Integrator 
• Temporal Differentiator
• Temporal Hilbert Transformer
• Fourier transformer

MWP and Optical Computing
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Temporal Integrator and Applications 

M. Ferrera et al., “On-chip CMOS-compatible all-optical integrator,” Nature Commun., vol. 1, 
2010, Article 29.

Optical computing
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Photonic Temporal Integrator Implementation 

Mathematically, a temporal integrator can be implemented using a linear device with a transfer function given by 

A photonic temporal integrator can be implemented using a fiber Bragg grating (FBG) or a microring resonator.
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Temporal Differentiator 

( )H ω ( )HΦ

where n is the order of differentiation, and n can be a 
fractional order. When n = 1, it is a first order differentiator.

/ 2π

/ 2π−

/ 2nπ

/ 2nπ−
ω0

1n =
Input Pulse

( )H ω

( ) ( )0
nH jω ω ω = − 

ω

1

ω0
ω

( )( )
n

n

d x ty t
dt

=

monocycle

0.25n = 0.50n =



11

Photonic Temporal Differentiator Implementation

Practically, a temporal differentiator can 
be implemented using an optical 
interferometer, such as a Michelson 
interferometer, or a Mach-Zehnder 
interferometer (MZI).

MZI

FSR

ω
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Michelson Interferometer
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Temporal Differentiators and Applications 

Tunable image enhancement or edge 
detection

UWB pulse sequence 
generation and coding

Y. Dai and J. Yao, “High-chip-count UWB bi-phase coding for multi-user UWB-over-fiber system,” 
IEEE/OSA J. Lightw. Technol., vol. 27, no. 11, pp. 1448-1453, Jun. 2009.

monocycle UWB 
communications
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Temporal Hilbert Transformer and Applications

Single Sideband (SSB) Modulation
Image processing - edge detection/enhancement

where n is the order of 
differentiation, and n can be a 
fractional order. When n = 1, it is a 
first order differentiator.
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Photonic Temporal Hilbert transformer 

Practically, a Hilbert transformer 
can be implemented using a linear 
optical device with an ultra-narrow 
notch. 

A photonic Hilbert transformer can be implemented using a phase shifted fiber Bragg grating (FBG) or a 
microring resonator （Ideal case，notch width is zero practical implementation using high Q ultra-narrow 
notch filter）
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15W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully 
reconfigurable photonic integrated signal processor,” Nature Photon., vol. 10, pp. 190-195, Mar. 2016.
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A fully reconfigurable photonic integrated signal processor 
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Reconfigurable - The 
reconfigurability is achieved by 
tuning the injection currents to the 
semiconductor optical amplifiers (9 
SOAs) and current injection phase 
modulators (3 PMs) in the design, 4 
tunable couplers (TCs). 

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully 
reconfigurable photonic integrated signal processor,” Nature Photon., vol. 10, pp. 190-195, Mar. 2016.

Three rings 
with 2 SOAs 
and 1 PM in 
each ring, and a 
bypass SOA
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A fully reconfigurable photonic integrated signal processor –
Integrator and results
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A fully reconfigurable photonic integrated signal processor –
Hilbert transformer 

High Q micro-ring 
resonator 高Q值微
环谐振腔

First order



20

A fully reconfigurable photonic integrated signal processor –
Hilbert transformer

Output with different Hilbert 
transform order
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A fully reconfigurable photonic integrated signal 
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23Feng, H., Ge, T., Guo, X. et al. Integrated lithium niobate microwave photonic processing 
engine. Nature 627, 80–87 (2024).



24Deep convolution neural network (DCNN)-based image segmentation model

High-speed photonic-assisted medical image segmentation
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What is MWP
MWP and Optical Computing
MWP and AI
Convolutional Neural Network

– Fiber-optic implementation
– Photonic integrated implementation

Optical Reservoir Computing
– Fiber optic implementation
– Photonic integrated implementation

Conclusion

Outline
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Artificial Intelligence – Neural Networks
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Single layer NN

ANNs involve heavy calculations, especially matrix 
operations (Multiply–Accumulate（MAC) operations) 
– we may use optical processors (pass and done)。

Advantages of optical processing：
• High speed (pass and done)
• Parallel
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MWP 

MWP and AI 微波光子学与人工智能的关系

MWP: microwave modulation, true 
time delay, etc Meng, X., Zhang, G., Shi, N. et al.

Nat Commun 14, 3000 (2023)

Convolutional processor 
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Outline

What is MWP
MWP and Optical Computing
MWP and AI
Convolutional Neural Network

– Fiber-optic implementation
– Photonic integrated implementation

Optical Reservoir Computing
– Fiber optic implementation
– Photonic integrated implementation

Conclusion
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MWP and AI – Convolutional Neural Networks (CNNs)

CNN: three functions convolution, pooling (down-sampling) and 
activation (nonlinearity). 
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Outline

What is MWP
MWP and Optical Computing
MWP and AI
Convolutional Neural Network

– Fiber-optic implementation
– Photonic integrated implementation

Optical Reservoir Computing
– Fiber optic implementation
– Photonic integrated implementation

Conclusion
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Photonic convolutional accelerator – fiber optics based

Xu, X., Tan, M., Corcoran, B. et al. 11 TOPS photonic convolutional 
accelerator for optical neural networks. Nature 589, 44–51 (2021)

w1 w2 w3 w3 Weights (Kernel)

Convolution output
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• Binary weights are 
introduced to simplify the 
implementation of NNs.

• Binarized NNs can approach 
the performance of full-
precision NNs on small 
datasets.
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MWP-assisted binarized neural network Accumulate (addition) using fiber 
(dispersion) and PD

Multiply using MZM

L. Huang and J. P. Yao, "An optical processor for a binarized neural network," Opt. Lett., 
vol. 47, no. 15, pp. 3892-3895, Aug. 2022.

v

Weights control via bias switch –
widely used by MWP



34

MWP-assisted neural network with real-valued weights

( )1 1 1 2 2 3 3 4 4z x w x w x w x w= + + +

w1 w2 w3 w3

Weights (Kernel)
Real-valued weights
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Outline

What is MWP
MWP and Optical Computing
MWP and AI
Convolutional Neural Network

– Fiber-optic implementation
– Photonic integrated implementation

Optical Reservoir Computing
– Fiber optic implementation
– Photonic integrated implementation

Conclusion
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Similar to an electronic 
FPGA

W. Zhang and J. Yao, Nat. Comm., 11, Article number: 406 (2020)
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Photonic integrated field-programmable disk array signal processor

W. Zhang and J. Yao, Nat. Comm., 11, Article number: 406 (2020)
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CNN based on a MRR crossbar array 



39Feldmann, J., Youngblood, N., Karpov, M. et al. Parallel convolutional processing using 
an integrated photonic tensor core. Nature 589, 52–58 (2021)

Phase Change Material (PCM) 
tunable optical divider

MAC unit
High speed 
modulation
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41
X. Meng, G. Zhang, N. Shi, G. Li, J. Azaña, J. Capmany, J. P. Yao, Y. Shen, W. Li, N. Zhu, and M. Li, "Compact 
optical convolution processing unit based on multimode interference," Nature Comm., vol. 14, Article number: 
3000, May 2023.

MMI

MMI
Phase shifter



42Meng, X., Zhang, G., Shi, N. et al. Compact optical convolution processing unit based on multimode 
interference. Nat Commun 14, 3000 (2023)

Implementation involves MWP 
(modulation and time delay) 

Optical Convolution Processing Unit 
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Optical on-chip signal processor based on matrix operations
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Adaptive on-chip multi-path decoupling (implementation of an adaptive 
delay line filter to equalize the channel)Channel equalization

Silicon 
photonic chip

An MWP 
system - An 
adaptive delay 
line MWP filter 
to equalize the 
channel
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Chip on PCB

Experimental setup
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Decoupling four interferences from 
4 paths, carrier frequency 2.5GHz, 
bit rate 500MHz, 0 bit-error.

Optical on-chip signal processor based on matrix operations
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Outline

What is MWP
MWP and Optical Computing
MWP and AI
Convolutional Neural Network

– Fiber-optic implementation
– Photonic integrated implementation

Optical Reservoir Computing
– Fiber optic implementation
– Photonic integrated implementation

Conclusion
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The reservoir NN consists of three layers, the input layer, the 
middle layer, and the output layer. The middle layer is also called 
the reservoir. 

Optical reservoir computing 

Training a reservoir NN, only the 
output layer Wo needs to be trained, 
and the input layer Wi and the 
internal interconnection weights 
Wres can remain fixed.
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Optical reservoir computing structure 

Spatially Distributed RC (SD-RC) on a 
silicon photonic chip: The reservoir consists 
solely of on-chip low-loss waveguides, 
optical beam splitters, and optical beam 
combiners. Nonlinearity is introduced by the 
squared nonlinearity of the photodetectors.

Time-delayed RC (TD-RC) ： 
• Masking is done on each bit of an input signal.
• Mask is randomly generated. It determines the node interval

（τ/θ）and determines the weights (binary or real-valued)
• The masked signal is applied to the nonlinear node (MZM). 
• The response enters the delay line and is fed back to the 

nonlinear node after time τ, forming a closed loop.
Vandoorne, K. et al. Experimental demonstration of 
reservoir computing on a silicon photonics chip. Nat 
Commun 5, 3541 (2014).

F. Köster et al., "Master memory function for delay-based reservoir computers with single-variable 
dynamics," in IEEE Transactions on Neural Networks and Learning Systems, to be published

非线性节点

Node number = τ/θ loop 
time delay / bit duration 
of the masking signal

Silicon 
photonic chip
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What is MWP
MWP and Optical Computing
MWP and AI
Convolutional Neural Network

– Fiber-optic implementation
– Photonic integrated implementation

Optical Reservoir Computing
– Fiber optic implementation
– Photonic integrated implementation

Conclusion

Outline
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Optical Reservoir Computing- Microwave Photonic Implementation

OEO

W. Zhang and J. Yao, J. Lightw. Technol., vol. 36, no. 19, pp. 4655-4663, Oct. 
(2018 MWP special issue 2018)

Narrow-band tunable 
bandpass filter

OEO

Silicon photonic integrated 
optoelectronic oscillator (OEO)
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Optical Reservoir Computing- MWP 
Implementation

PolM+ PC + Pol = MZM，bias point can be 
adjusted by tuning the PCadjustable nonlinearity

The difference an RC from an OEO is that 
• narrowband bandpass filter to be removed
• Net gain slightly smaller than 1

L. Huang and J. P. Yao, "Multi-task photonic time-delay reservoir computing based on 
polarization modulation," Opt. Lett., vol. 47, no. 24, pp. 6464-6467, Dec. 2022.

Task 1 Task 2
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What is MWP
MWP and Optical Computing 
MWP and AI
Convolutional Neural Network

– Fiber-optic implementation
– Photonic integrated implementation

Optical Reservoir Computing
– Fiber optic implementation
– Photonic integrated implementation

Conclusion

Outline
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An integrated OEO for microwave generation in which 
a narrow passband filter is employed for frequency 
selection 

RC implementation based on PIC 

For optoelectronic reservoir computing, the 
bandpass filter should be changed to a 
wideband low-pass filter 

W. Zhang and J. P. Yao, “Silicon photonic integrated optoelectronic oscillator for frequency-tunable 
microwave generation,” IEEE/OSA J. Lightw. Technol., vol. 36, no. 19, pp. 4655-4663, Oct. 2018.

Wideband lowpass filter

PIC based RC: higher speed and better stability

Fandiño, J., Muñoz, P., Doménech, D. et al. A monolithic 
integrated photonic microwave filter. Nature Photon 11, 124–
129 (2017).



53Shastri, B.J., Tait, A.N., Ferreira de Lima, T. et al. Photonics for artificial intelligence and 
neuromorphic computing. Nat. Photonics 15, 102–114 (2021).

Conclusion:

• Microwave photonics enables high-speed optical computing

• High-speed optical computing can assist AI implementation at high speed 
(especially for neural networks)

• A fully integrated signal processor should have ICs and PICs, Analog and 
Digital the architecture on next page

MWP and AI 



54Shastri, B.J., Tait, A.N., Ferreira de Lima, T. et al. Photonics for artificial intelligence and 
neuromorphic computing. Nat. Photonics 15, 102–114 (2021).

Photon-assisted fully integrated signal processor 
architecture

Fully hybrid integrated 
signal processor:

• The light source is connected 
to the I/O chip through 
“optical wire bonding” 

•The I/O chip includes a 
modulator and a detector 
(MWP part) I/O

• CMOS ASIC controls optical 
networks, including 
programmable analog optical 
memory units (composed of 
phase change materials) to 
complete high-speed 
computing 
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