
Performance Evaluation in Parallel Systems
Alexey Borisenko

School of Information Technology
University of Ottawa
abori021@uottawa.ca

Abstract—In this paper, a summary of performance evaluation
is presented, including a discussion of different types of evalu-
ations. The following performance metrics are introduced and
defined: speedup, efficiency and scalability. The paper includes a
literature survey of performance counters used in multiprocessor
systems. A classification is established based on the various pa-
rameters of the counters. Next, applications for the performance
counters are discussed. An overview of the connection between
the hardware of the counters and the OS is given. Tracing using
the performance counters is also addressed. Finally, research
directions in multiprocessor performance counters is given.

I. INTRODUCTION

Performance evaluation can give the answer to the ques-
tion of whether a given architecture provides the necessary
performance for a chosen problem. The evaluation can take
place at different stages of system design, from requirements
gathering, to a fully implemented system. The accuracy of
the performance evaluation tends to be directly proportional
to the progress of a complete system, i.e. the more the system
is implemented, the more accurate the evaluation will be. As
the implementation of the system progresses, more details and
parameters of the system can be evaluated and measured,
rather than simulated which gives a much more accurate
outlook on the performance of the system. Criteria for deciding
performance are called metrics.

This paper starts off with a classification of various per-
formance metrics, then describes performance metrics them-
selves. The performance metrics include speed up, efficiency,
scalability. Benchmarks are ways of assessing performance,
the types of benchmarks and some practical implementations
are outlined. Next, performance monitors, monitors that collect
runtime data for system analysis, verification and management,
are introduced and some examples of them are given. How
the connection between the OS and the hardware monitors is
implemented is described briefly, as well as tracing techniques.
The paper end on the brief note of what research directions
are being taken in the field of performance monitors.

II. CLASSIFICATION

Performance evaluation can be divided into three categories:
measurement, analytical modelling and simulation [1], [2]. The
usual procedure is to analytically model the system, i.e. setup
a mathematical model with equations describing the states of
the system, then perform simulation and finally measure the
implemented system. Analytical modelling involves creating
a mathematical model of the system. Measurement usually
deals with direct measurements using software or hardware

monitors and is only done after system implementation and
is meant for performance tuning, although measurements are
also done in simulated environments. Analytical modelling and
simulation can sometimes be combined into a single modelling
scenario. They both deal with abstract models of the system
and are oriented towards performance prediction. Contrary to
measurement techniques, all three performance categories are
used at any stage of the development of the system.

Some types of the performance evaluation systems include:
• Analytical modelling

Queueing networks, Petri nets
• Simulation

Discrete events, trace/execution driven, Monte Carlo
• Measurement

Software, hardware, and hybrid

III. PERFORMANCE METRICS

A performance metric is a measure of a systems per-
formance. It focuses on measuring a certain aspect of the
system and allows comparison of various types of systems.
The criteria for evaluating performance in parallel computing
can include: speedup, efficiency and scalability.

Speedup
Speedup is the most basic of parameters in multiprocessing
systems and shows how much a parallel algorithm is faster
than a sequential algorithm. It is defined as follows:

Sp =
T1
Tp

(1)

where Sp is the speedup, T1 is the execution time for a
sequential algorithm, Tp is the execution time for a parallel
algorithm and p is the number of processors.

There are three possibilities for speedup: linear, sublinear
and super-linear, shown in Figure 1. When Sp = p, i.e.
when the speedup is equal to the number of processors, the
speedup is called linear. In such a case, doubling the number of
processors, will double the speedup. In the case of sub-linear
speedup, increasing the number of processors, decreases the
speedup. Most algorithms are sub-linear, because of various
overheads associated with multiple processors, like commu-
nication. This can occur because of the increasing parallel
overhead from such areas as: interprocessor communication,
load imbalance, synchronization, and extra computation. An
interesting case occurs in super-linear speedup, which can
mainly be due to cache size increase.



Fig. 1. Speedup vs number of processors

An important guideline in regards to speedup is Amdahl’s
Law, which states that the performance improvement that can
be achieved is limited by the fraction gained in a parallel
implementation, Eq. 2,3.

Tp = (α+
1− α

p
)T1 (2)

Sp =
T1

(α+ 1−α
p )T1

=
1

α+ 1−α
p

(3)

where α is the fraction of the problem that must be computed
sequentially. An enhanced version of the law exists, called En-
hanced Amdahl’s law, which includes a parameter for overhead
in parallel systems. The overhead arises from synchronization,
interprocessor communication and other issues in parallel
systems. Eq. 4 shows Enchanced Amdahl’s law.

Sp =
T1

(α+ 1−α
p )T1 + Toverhead

(4)

Efficiency
Another performance metric in parallel computing is effi-
ciency, Eq. 5. It is defined as the achieved fraction of total
potential parallel processing gain. It estimates how well the
processors are used in solving the problem.

Ep =
Sp
p

=
T1
pTp

(5)

where Ep is the efficiency.
Scalability

Usually, as the number of processors in a system increases,
speedup and efficiency will drop because of the associated
overheads. Scalability measures the capacity to effectively
utilize an increasing number of processors. Modelling systems
can be used to predict the scalability of the system. One such
example is the SCALA system [3]. SCALA (SCALability An-
alyzer) is a framework for developing performance modelling
and prediction systems.

IV. BENCHMARKS

One way of assessing the performance of a system is
through the use of benchmarks. Three types of benchmarks
exist:

1) Synthetic benchmarks - artificial programs, which copy
the functionality of real programs. Examples include
Hyper Pi, Sis oft Sandra, wPrime.

2) Kernel benchmarks - code fragments extracted from real
programs. Examples: LINPACK, PARKBENCH.

3) Real application benchmarks - actual real-life applica-
tions. Examples: gcc, modern video games, AutoCad.

The disadvantages of synthetic benchmarks are that they are
easy to optimize for. A system architect might optimize his/her
system to provide good results in a synthetic benchmark.
Kernel and real application benchmarks tend to give better
evaluations compared to synthetic.

Challenges associated in creating benchmarks are the variety
of sources needed to be tested, i.e. processor, memory, etc.
Another issue is the variety of systems architectures needed
to be tested for. Finally, selecting a suitable workload is a
challenge in benchmark design.

Some practical examples of benchmarks include:
• SPEC suite - includes a wide range of benchmarks

for various aspects, including: testing integer arithmetic,
php/jsp performance, smtp/pop performance. A collection
of real application benchmarks.

• DMIPS - a synthetic benchmark program. Used to eval-
uate soft-core CPUs.

• PARSEC - a suite of real application benchmarks, com-
posed of multithreaded programs.

V. PERFORMANCE MONITORS

Performance monitors collect runtime data which can then
be analysed for system analysis, verification, and management
[4]. Monitors could be used in real-time to auto-tune the
performance of the system or the scheduling in a multipro-
cessor environment. The basic steps of the monitor are: DAQ,
Analysis and Result output, some can identify the weak spots
of a program and suggest a remedy.

Performance monitoring of multiprocessor systems is a
greater task than a single-processor system. The number of
additional metrics involved in a multiprocessor system, like
processor interconnection networks, synchronization overhead
make the system more complex. The metrics for performance
monitoring stems from the areas of major performance loss
in multiprocessor environments. The following are the major
areas of performance loss in multiprocessor systems:

• Software- inefficient algorithms, synchronization, load
imbalance

• Hardware- instruction scheduling, instruction, memory
stalls, interrupts, branch misprediction

For multiprocessing systems, a list of 23 specific parameters
was set out by [5]. These parameters need to be monitored to
have the full state of the system. An extract of some of the
parameters follows:



• Total cache miss cycles
• invalidation miss count
• TLB faults
• Cycles lost due to stalls

Performance montiors for multiprocessing systems usually
implement only one or a small subset of these. The most
significant source of performance loss are cache misses which
account for 50% of performance loss [6].

Auto-tuning algorithms can use these performance counters
to find when and where the program is experiencing perfor-
mance loss, and adapt to improve the program.

VI. MONITOR CLASSIFICATION

A wide variety of performance monitors exist, ranging from
simple counters implemented in virtually every processor to
FPGA-based hardware systems. A classification was estab-
lished in [4], [2] Types of monitor classifications include:

• Software vs Hardware vs Hybrid
Depending upon the level at which a monitor is imple-
mented. Most common classification. Software monitors
tend to be more popular.

• Passive vs. Active
Passive monitors observe, collect and store, while active
also analyse the data and take corrective action.

• Centralized vs Distributed
Centralized monitors exist at a single central location of
a system, typically some communication path. Locating
a point which is central to all processors can be an
issue, which is overcome by using distributed monitors.
Distributed monitors are spread out and associated with
multiple corresponding processors.

• Event driven vs Sampling
Event-driven activate only on certain events, while sam-
pling are activated at fixed time intervals.

• On-line monitors vs Batch monitors
Online-monitors display the system state continuously,
while batch monitor collect the data, which will later be
analysed by a different program.

The following are examples of some of the implementations
of monitors.

A. Software monitors

The most ubiquitous example of a software monitor is the
UNIX program gprof [7], counts number of times a subroutine
is called. Although not meant for parallel programs, a lot of
monitors for parallel systems were based on gprof.

Quartz [8], designed for tuning parallel program perfor-
mance on shared memory multiprocessors. Principle metric
of Quartz is normalized processor time which is the total
processor time spent in each section of the code divided by the
number of other processors that are concurrently busy when
that section of code is being executed. Paradyn[9] is also a
parallel performance tool that can automatically search for
performance problems in large-scale parallel programs.

Fig. 2. TED hardware monitor[4]

B. Hardware monitors

TED hardware monitor is a distributed, event triggered
monitor. Figure 2 shows its architecture. The probes of the
monitor connect to the bus within the cluster. An event filter
looks for the set of events specified in terms of the signals that
are being monitored. The counter enumerates the number of
events. A FSM unit coordinates the actions of all components.
Applications for TED include: event recording and fault-
tolerance aid.

C. Hybrid monitors

Hybrid monitors offer a mid-ground between hardware and
software monitors. They are less intrusive than purely software
monitors and less hardware costs are associated with them. An
example of such a monitor is the MSPARC multicomputer
performance monitor[10].

Another example of a hardware monitor is the DASH[11],
shown in Figure 3. The DASH performance monitor is placed
on the directory controller. The monitor consists of two banks
of SRAM-based counters, a DRAM-based trace buffer and a
programmable controller.

VII. AUTO-TUNING AND SCHEDULING WITH
PERFORMANCE MONITORS

One of the main applications of performance monitors
is autotuning and scheduling. One goal of scheduling is to
effectively use locality of reference, i.e. frequently accessed
locations. Scheduling of threads should be aimed at reducing
the number if cache misses.

There are three scheduling guidelines employed in CMP
(Chip Multiprocessor) platforms with multiple shared caches:

1) Better to schedule applications that contend less with
each other on the same cache.

2) It is better to schedule applications or threads that share
3) It is better to affinitize applications to caches if their

working set is still available on the cache from the
previous scheduling.



Fig. 3. DASH performance monitoring hardware[11]

One example of using scheduling with performance monitors
is CacheScout[12]. A CacheScout enabled scheduler detects
sharing between threads and employs this knowledge to co-
schedule sharing threads on the same cache. A CacheScout
aware scheduler looks ahead in the queue and attempts to
find a waiting task that has significant sharing with the other
threads already running on other cores that share the same
cache. The CacheScouts’ sharing matrix provides accurate
information on sharing between applications and therefore this
is used by the scheduler to perform this optimization.

VIII. CONNECTION OF OS/USER SOFTWARE AND
PERFORMANCE MONITORS

Software monitors and user programs can get data from
hardware counters and monitors through the following inter-
faces:

Performance Application Programming Interface
(PAPI)[13]
Common interface to performance-monitoring hardware for
many different processors. Gives access to instruction counts,
clock cycles, cache misses.

Intel VTune Performance Analyzer[14]
Supports performance-monitoring hardware of all Intel Pen-
tium and Itanium processors, and provides additional per-
formance analysis tools such as call graph profiling and
processor-specific tuning advice.

The Rabbit Performance Counter Library
Provides a high-level interface to P6-based Pentium processors
and AMD Athlon processors on Linux systems. Read and
manipulate Intel or AMD processor hardware event counters
in C under the Linux operating system.

IX. TRACING

Apart from using performance monitors for performance
measurement, they can be used for debugging. Tracing all
available events over time can generate billions of events
even for a moderate program runtime of a few minutes and
a handful of CPUs. Intel’s Trace Analyzer and Collector can
be used to filter out and present the events, such as cache
misses, . It is supported on all Intel processors. The analyzer
uses the PAPI interface to communicate with the hardware
counters. The tool itself consists of two major parts: the Trace
Collector and the Trace Analyzer. The Trace Analyzer simply
provides a graphical representation of the trace data. The
Trace Collector provides a method for recording performance
data. The following can be traced with it: routine calls,
communication data, hardware counter data, statistics. With
this set of data, the programmer can identify bottlenecks of
the program.

X. RESEARCH DIRECTIONS

The current research avenues in this domain are increasing
the number of concurrent events that can be handled and
supporting more types of events, such as core events, memory
hierarchy and coherence, I/O and network traffic. These next-
gen properties are being implemented in the BlueGene/P
system[15].

XI. CONCLUSION

This paper presented a summary of existing solutions of
performance monitors. First, performance parameters were
defined. Net, types of monitors were introduced and some
real-life examples were given. The topics of tracing, auto-
tuning, and OS to performance hardware connection were
touched upon. Finally, the research directions, and what can be
expected from future performance monitors was mentioned.

REFERENCES

[1] E. Brewer, “Aspects of a high-performance parallel-architecture simula-
tor,” Master’s thesis, Massachusetts Institute of Technology, 1991.

[2] R. Jain, The art of computer systems performance analysis: techniques
for experimental design, measurement, simulation, and modeling. John
Wiley & Sons New York, 1991.

[3] X. Sun, T. Fahringer, and M. Pantano, “SCALA: A performance system
for scalable computing,” International Journal of High Performance
Computing Applications, vol. 16, no. 4, pp. 357–370, 2002.

[4] A. Liu and R. Parthasarathi, “Hardware monitoring of a multiprocessor
system,” Micro, IEEE, vol. 9, no. 5, pp. 44–51, 2002.

[5] G. Lemieux, “Hardware performance monitoring in multiprocessors,”
Ph.D. dissertation, Citeseer, 1996.

[6] J. Hennessy, D. Patterson, and D. Goldberg, Computer architecture: a
quantitative approach. Morgan Kaufmann, 2003.

[7] S. Graham, P. Kessler, and M. Mckusick, “Gprof: A call graph execution
profiler,” ACM Sigplan Notices, vol. 17, no. 6, pp. 120–126, 1982.

[8] T. Anderson and E. Lazowska, “Quartz: A tool for tuning parallel
program performance,” ACM SIGMETRICS Performance Evaluation
Review, vol. 18, no. 1, pp. 115–125, 1990.

[9] “Paradyn parallel tools project,” http://pages.cs.wisc.edu/ paradyn/.
[10] J. Harden, D. Reese, F. To, D. Linder, C. Borchert, and G. Jones, “A

performance monitor for the msparc multicomputer,” in Southeastcon
’92, Proceedings., IEEE, Apr. 1992, pp. 724 –729 vol.2.

[11] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hen-
nessy, M. Horowitz, and M. Lam, “The stanford dash multiprocessor,”
Computer, vol. 25, no. 3, p. 79, 1992.



[12] L. Zhao, R. Iyer, R. Illikkal, J. Moses, S. Makineni, and D. Newell,
“Cachescouts: Fine-grain monitoring of shared caches in cmp plat-
forms,” in Parallel Architecture and Compilation Techniques, 2007.
PACT 2007. 16th International Conference on, 2007, pp. 339 –352.

[13] S. Moore, D. Terpstra, K. London, P. Mucci, P. Teller, L. Salayandia,
A. Bayona, and M. Nieto, “Papi deployment, evaluation, and exten-
sions,” in User Group Conference, 2003. Proceedings, 2003, pp. 349 –
353.

[14] Intel, “Intel vtune performance analyzer how to guide,” 2010.
[15] V. Salapura, K. Ganesan, A. Gara, M. Gschwind, J. Sexton, and

R. Walkup, “Next-generation performance counters: Towards monitoring
over thousand concurrent events,” in Performance Analysis of Systems
and software, 2008. ISPASS 2008. IEEE International Symposium on.
IEEE, 2008, pp. 139–146.


