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Abstract 

 
In recent years, autonomous driving vehicles have garnered 

substantial attention in both the commercial and scientific 
domains.  A key challenge faced by these vehicles is the accurate 
detection and recognition of objects within complex real-world 
road environments, essential for their real-time decision-making 
capabilities.  While color imaging has traditionally provided rich 
information, the utilization of LiDAR scanners presents 
advantages such as high-quality data collection under varying 
lighting conditions and the provision of precise spatial 
information with an extensive range.  By combining data from 
color cameras and LiDAR scanners, the potential for object 
detection in autonomous driving is expanded, opening up new 
avenues for advancement.  This paper introduces a novel 3D 
object detector that leverages a bird's-eye view map generated 
from a LiDAR point cloud along with RGB images as input data.  
It employs focal loss and Euler angle regression techniques to 
enhance object detection performance. Through ablation 
experiments, the achieved improvements are evaluated.  
Experimental results demonstrate the framerate and 
performance of the proposed 3D object detector, surpassing 46 
frames per second and achieving an average precision exceeding 
90%.  Additionally, a more compact version of the detector is 
introduced, processing the same input data three times faster 
while maintaining reasonably high accuracy. 

Key Words:  Object recognition, deep learning, LiDAR, 
autonomous vehicles. 
 

1 Introduction 
 

The advent of artificial intelligence has propelled autonomous 
driving vehicles into the realm of possibility, garnering 
substantial investments from major players like Tesla and 
Waymo.  Detecting and recognizing pedestrians, vehicles, and 
other objects on the road is a crucial task in autonomous driving 
systems, ensuring safe and informed driving decisions.  As a 
result, there has been a significant focus on developing efficient 
object detection and recognition technologies. 

Deep learning methods have revolutionized the field of object 
detection and recognition, demonstrating remarkable 
advancements. Recent research has emphasized the inclusion of 
depth information in detection models, surpassing the 
____________________ 
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limitations of traditional 2D mapping approaches for 
autonomous driving.  Light detection and ranging (LiDAR) 
scanners, unlike stereo cameras and active depth sensors, offer 
consistent and high-precision spatial information unaffected by 
ambient lighting conditions.  Consequently, LiDAR scanners 
have gained popularity for 3D object detection in outdoor 
environments.  However, while LiDAR scanners provide shape 
and location information of objects in the real world through 
point cloud data, they lack texture and color information.  To 
fully exploit 3D location with color and texture information, the 
point cloud from LiDAR scanners often needs to be 
preprocessed and combined with RGB images. 

This paper represents an extended version of [6] providing 
further insights into the methodology employed, along with 
conducting comprehensive experimental ablation studies and 
robustness validation.  The aim is to delve deeper into the 
intricacies of the proposed approach and to evaluate its 
performance under various scenarios and conditions.  By 
conducting these additional analyses, a more comprehensive 
understanding of the methodology's strengths, limitations, and 
overall effectiveness can be achieved.  The key original 
contributions of this research include the integration of Euler 
angle regression into the DarkNet-53 convolutional neural 
network [14] to create a 3D object detector capable of 
classifying and localizing cars, pedestrians, and cyclists using 
LiDAR point clouds and RGB images from real-world road 
scenes.  To optimize training and testing efficiency, the LiDAR 
point cloud is transformed into a bird’s-eye view (BEV) map 
using coordinate system transformation and height thresholding.  
Furthermore, the proposed architecture incorporates a focal loss 
[10] and a generalized intersection over union (GIoU) loss [15] 
to address biased data and to enhance the model’s performance.  
The solution is trained and evaluated on real-world data 
provided by the KITTI vision benchmark suite [4], 
demonstrating its object recognition capabilities. 

 
2 Literature Review on 3D Object  

Detection from LiDAR Data 
 
In recent years, significant advancements in artificial 

intelligence have been made in the field of 3D object detection 
and recognition for autonomous driving.  To fully support 3D 
object detection, which involves an important component of 
localization in the environment, the utilization of not only 
traditional RGB or grayscale images but also depth information 
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is required as it provides the spatial coordinates of each pixel.  
Consequently, the need for larger and more complex training 
and testing datasets arises to build performing deep learning 
models, posing higher demands on data processing and 
computing capabilities. 

Two-stage detectors, such as MV3D-Net [3] and AVOD [7], 
have gained prominence in this field. MV3D-Net incorporates 
both RGB images and LiDAR point clouds as input.  It 
combines a 3D object proposal network and a region-based 
fusion network to efficiently generate 3D candidate boxes from 
bird's-eye view (BEV) maps and front-view perspectives 
derived from the point cloud.  AVOD shares similarities with 
MV3D-Net but utilizes a feature pyramid network (FPN) 
instead of a VGG16 based network for feature extraction.  FPN 
helps maintain feature map resolution and preserves both low-
level and high-level information, leading to enhanced detection 
accuracy, particularly for small objects. 

Single-stage detectors, such as PIXOR [23] and PointPillars 
[8], have also made notable contributions to 3D object detection.  
PIXOR discretizes the point cloud by equally spaced units and 
encodes reflectivity to create a regular representation.  It 
employs a fully convolutional network (FCN) to estimate the 
position and heading angle of the target relative to the sensor.  
PIXOR achieves a high detection framerate of over 28 frames 
per second (FPS).  On the other hand, PointPillars directly 
aggregates points falling into each grid, forming ‘Pillars’.  The 
learned feature vector is then mapped back to grid coordinates, 
resembling an image-like representation. 

In addition to these methodologies, researchers have 
integrated the Transformer architecture [19] into 3D detection 
algorithms.  VoTr [11] employs a voxel-based Transformer as a 
3D backbone network for object detection from point cloud 
data. It utilizes self-attention mechanisms to establish long-
range relationships between voxels.  To improve attention span 
without excessive computational overhead, VoTr introduces 
local attention, dilated attention, and fast voxel query.  The 
versatility of the Transformer architecture is demonstrated 
through variants such as VoTr-SSD and VoTr-TSD [11], which 
leverage SSD and R-CNN backbones, respectively. 

In summary, notable progress has been made in 3D object 
detection and recognition for autonomous driving applications 
through various approaches. Two-stage detectors, such as 
MV3D-Net and AVOD, offer efficient fusion of RGB images 
and LiDAR point clouds, while single-stage detectors like 
PIXOR and PointPillars provide rapid detection capabilities. 
Additionally, the incorporation of the Transformer architecture, 
exemplified by VoTr, shows promise in capturing long-range 
dependencies in point cloud data. 

 
3 Point Cloud Preprocessing and Registration  

with RGB Data 
 
A 3D point cloud is the default representation of the data 

collected by a LiDAR scanner.  The LiDAR scanner used to 
collect point clouds for the KITTI dataset [4] and considered in 
this research is the Velodyne’s HDL-64E.  It is a 64-channel 
multi-beam mechanical LiDAR that continuously rotates the 

head to achieve dynamic 3D scanning.  It covers a 360° 
horizontal and 26.9° vertical field of view [4].  Although the 
data provided by LiDAR reports an accurate 3D location, it does 
not contain color information. Therefore, in this work, both the 
color images provided by a collocated RGB camera, and the 3D 
point clouds provided by the LiDAR are used.  

There are two major ways to process a 3D point cloud: one is 
directly processing a 3D matrix, while an alternative approach 
involves projecting the 3D map to its corresponding 2D 
representation.  In recent work using LiDAR point clouds for 
object detection and recognition [5, 9, 26], researchers directly 
train the detector on the 3D point clouds [18] with the 
consequence that convolution operations are more time and 
memory intensive compared to when information is encoded in 
2D.  Alternatively, some models like MV3D-Net [3] opt for 
converting the point cloud to a front view and a BEV map, 
which is more efficient than processing the 3D point cloud 
directly, while not lowering the accuracy. 

The detector proposed in this work uses BEV maps that are 
initially encoded as 2-channel bidimensional grids where each 
pixel of a 2D map contains respectively a ‘cumulated height’ 
parameter associated with 3D points mapped to the pixel, and a 
‘cumulated intensity’ estimate provided by the LiDAR sensor 
along with every 3D point measurement.  The BEV maps 
converted from point cloud data collected by the LiDAR 
scanner are further combined with registered front forward view 
images collected by the RGB camera as inputs.  This section 
details how the LiDAR point clouds are preprocessed and 
converted to the BEV maps, as shown in Figure 1. 

 
3.1 Data Registration  

 
The BEV map is a graphical representation of the point clouds 

from a bird’s-eye view.  It is obtained by projecting the discrete 
LiDAR point cloud on a plane perpendicular to the height 
direction.  Therefore, a BEV map forms an equivalent 
representation of the 3D location information contained in the 
LiDAR point cloud, hence it is more efficient when a large 
amount of data is being processed.  The front forward view and 
color information is provided from corresponding RGB images.  
Therefore, all the required information can be obtained by 
combining the BEV maps converted from LiDAR point clouds 
and the RGB images.  

The 3D point cloud and RGB images are obtained from 
different sensors and must be registered before the two sets of 
data are used together as input.  With the help of the calibration 
matrices from the dataset, the registration of the LiDAR point 
clouds and RGB images is performed using matrix 
transformation to align LiDAR coordinate axes and origin to the 
RGB coordinates. 

 
3.2 Mapping 3D Points within Region of Interest to 2D Pixels 

 
In the dataset considered, the point cloud of each scene 

represents approximately 1.9 MB, which requires significant 
memory space, highly increases computation for both training 
and testing, and reduces detection efficiency.  Therefore, 
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Figure 1:  3D point cloud preprocessing and registration with RGB image. 
 
 

detection is focused over a pre-selected region of interest (ROI) 
in the point cloud.  To balance the model’s efficiency while 
covering all the annotated target objects in the corresponding 
RGB image, the ROI of the point cloud is manually set as a 
rectangular area that spans 40m on either side of the LiDAR 
scanner, and 80m in front of it.  The point cloud data collected 
from the LiDAR scanner are 3D points with real (x, y, z) values 
that carry depth information.  The registered points within the 
ROI carrying real number values are then mapped into integer 
values (u, v) that represent the pixel location on the discretized 
bird’s-eye view (BEV) map. 

 
3.3  Recording the Height and Intensity Information in the 

BEV Map 
 
Once the coordinates (u, v) that represent each pixel in the 

BEV map are obtained, the height information represented by 
the values on the Z-axis and the intensity information 
represented by a 4th parameter contained in the source point 
cloud matrix are extracted from the 3D point cloud to be 
encoded in the corresponding BEV map. 

Inspired by the representation adopted in PIXOR [23], a 
vertical ROI on the Z-axis is selected to support a height 
thresholding operation that is applied to preserve only data from 
the point cloud that are within the selected height of the ROI.  
Next, the height coordinates (on Z-axis) within the ROI are 
rescaled to the ]0, 255[ range, and the height coordinates 
exceeding the ROI are forced to 0 or 255.  Finally, the height 
values of the points in the point cloud that are mapped into the 
same 2D pixel position on the BEV map are cumulated and 
recorded to the “cumulated height” channel of the BEV map.  
Compared with using the maximum height of each pixel 
position [1], the cumulation method appears to be less affected 

by changes in the elevation of the objects due to the 
characteristics of the environment, such as the slope of the road. 
Unlike MV3D-Net [3] that manually selects multiple ranges on 
the Z-axis and accumulate the values of the points within the 
ranges to generate multiple height channels for each 2D point in 
the BEV map, the proposed method performs a single height 
thresholding operation to create one height channel.  This 
contributes to improve the efficiency of the detection process. 

Similarly, the intensity information already contained in the 
point cloud as the 4th value for each 3D point is extracted. For 
all 3D points contained within the selected height ROI and 
falling within the same 2D pixel position on the BEV map, these 
intensity values are accumulated and recorded to the ‘cumulated 
intensity’ channel of the BEV map.  The resulting preprocessed 
point cloud data leads to a 2-channel bidimensional BEV map 
which is used as part of the input for the proposed 3D object 
detector along with the corresponding 3-channel RGB image 
input. 

 
4 3D Object Detector Architecture 

 
The proposed method for 3D object detection combines the 

BEV map generated from a LiDAR point cloud and the 
associated RGB image information to form a single 5-channel 
(height, intensity, R, G, B) input for every 2D pixel coordinate 
in the BEV map, as depicted in Figure 2a.  The BEV map part 
of the input represents the bird’s-eye view over the detection 
range, with a cumulated height channel and cumulated intensity 
channel, as detailed in Section 3.  The RGB image is 
subsampled and padded with [𝑅𝑅,𝐺𝐺,𝐵𝐵] = [128, 128, 128]  to 
match the size of the BEV map, as shown in Figure 2a.  It forms 
the RGB component of the input, which represents the front 
forward view as found in autonomous driving, with three 
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different color channels (R, G, B).  Doing so preserves both the 
3D information collected by the LiDAR scanner in the 
distribution of feature points in the 2D BEV map and the color 
information collected by the RGB camera.  

The output of the proposed model represents the detection and 
recognition confidence over three object classes (car, 
pedestrian, cyclist), with prediction matrices at three different 
scales.  The prediction matrices are used to draw bounding 
boxes (B-Box) around detected objects and to label them with 
their respective classification.  Given the importance of making 
fast decisions in autonomous driving, any improvement in 
object detection speed while maximizing object detection and 
classification accuracy is prioritized.  For this reason, a single-
stage detection model is proposed in this paper. 

As shown in Figure 2, the backbone of the proposed object 
detection model is based on DarkNet-53 [14], modified to 
include the preprocessing stage of the BEV maps and the RGB 
images described in Section 3.  The detection head is based on 
the YOLOv3 anchor regression method, modified by adding 
BEV variables and rotation angle regression.  For the latter, the 
rotation angle encoding uses the Euler representation, as 
inspired by complex YOLO [17]. 

 
4.1 Detection Head with Euler Angle Regression 

 
Through the backbone convolutional neural networks and the 

FPN layers feature maps at three different scales are extracted 
from the input.  As shown in Figure 2d, a detection head is used 
to generate the detection and recognition results based on these 
feature maps.  

Within the detection head, each feature map is divided into 
grid cells.  For each grid cell there are three anchors at different 
scales. These anchors represent priors for bounding boxes (B-
Box).  They are equivalent to a reference frame for the predicted 
B-Box. Based on this reference, the predicted B-Box generated 
by the detection head only needs to be fine-tuned with respect 
to the corresponding anchor.  As a result, for every anchor, there 
is a prediction matrix that contains the parameters used for 
regression during training and the detection result.  The output 
prediction matrix of the proposed detection head contains the B-
Box prediction matrix for both the RGB front forward view and 
the BEV, a confidence score, and classification scores over the 
3 object classes considered. 

To adapt to the different perspectives of the predicted input, 
based on Yolov3 [14], the B-Box prediction matrix for the 
proposed detection head is modified.  It is divided into two parts: 
one for the front forward view, another one for the BEV, as 
shown in Figure 3.  The prediction matrix contains 14 
parameters (i.e., N = 14 in Figure 2d).  The confidence score 𝑝𝑝0 
indicates the confidence that the predicted B-Box contains an 
object.  If this predicted B-Box corresponds to the background, 
then this value should be 0.  The classification scores 𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3 
represent the probability that the category of the predicted B-
Box corresponds to ‘car’, ‘pedestrian’, or ‘cyclist’ respectively.  
For the final output, only the B-Box with 𝑝𝑝0  higher than a 
detection threshold will be kept and the classification shows 
max(𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3). 

 
 

Figure 2: Proposed 3D object detection model architecture:  (a) 
preprocessing stage to convert a 3D point cloud and 
corresponding remapped RGB image into a 5-channel 
2D BEV map; (b) backbone of the proposed model 
(DarkNet-53); (c) feature pyramid network (FPN); 
and (d) detection head with outputs prediction 
matrices at three different scales; with (e) details of 
the respective structure of CBL (top) and res unit 
(bottom) 

 
 

Considering that objects of primary interest in the context of 
autonomous driving, such as cars, pedestrians, and cyclists can 
generally be assumed to stand or move on the ground, the front 
forward view bounding box (B-Box) surrounding a detected 
object on the RGB image can be represented by 4 parameters.  
These are the center coordinates, (𝑡𝑡𝑐𝑐𝑐𝑐 , 𝑡𝑡𝑐𝑐𝑐𝑐), and the width and 
height, (𝑡𝑡𝑐𝑐𝑐𝑐, 𝑡𝑡𝑐𝑐ℎ), of the B-Box as shown in Figure 3a.  

Unlike the B-Box on RGB images, the BEV B-Box might not 
be parallel to the BEV map’s coordinate axes, as exemplified in 
Figure 3b.  To predict the relative rotation of the B-Box, as 
inspired by complex YOLO [17], a Euler representation of the 
rotation angle is added to the prediction matrix in the proposed  

detection model.  Hence, the BEV prediction matrix obtained 
from the regression of the proposed model contains 6 variables.   
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Figure 3: Converting the prediction matrix into B-Box: (a) front forward view B-Box; (b) BEV 
B-Box; and (c) prediction matrix of the detector with 14 parameters 

 
 

Aside from the offsets of the B-Box center coordinate, 
(𝑡𝑡𝑏𝑏𝑏𝑏, 𝑡𝑡𝑏𝑏𝑏𝑏 ), and its width and height (𝑡𝑡𝑏𝑏𝑏𝑏, 𝑡𝑡𝑏𝑏ℎ ), the Euler 
representation of the rotation angle of the B-Box, (𝑡𝑡𝐼𝐼𝐼𝐼, 𝑡𝑡𝑅𝑅𝑅𝑅), is 
also encoded in the 6 parameters. 

 
4.2 Loss Functions 
 

The loss function used in the proposed detector model 
consists of a combination of a classification loss, a B-Box 
regression loss, and a confidence loss.  Compared to YOLOv3 
[14], the regression loss uses Generalized Intersection over 
Union (GIoU) [15] instead of mean square error (MSE).  To 
further optimize the performance of the detector, the Euler angle 
is added to the B-Box regression loss.  For the classification 
loss, a focal loss [10] is added to address the imbalance problem 
observed in the KITTI vision benchmark suite [4] training 
dataset for the considered three classes. 

 
4.2.1 Regression Loss.  To match with the Euler angle 

regression network, a combination of GIoU [15] and Euler angle 
regression is used for the B-Box regression.  The GIoU of the 
predicted B-Box and ground truth B-Box is computed as: 

 
 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  𝐼𝐼

𝐵𝐵𝑔𝑔∪𝐵𝐵𝑝𝑝
−  𝐴𝐴

𝑐𝑐−(𝐵𝐵𝑔𝑔∪𝐵𝐵𝑝𝑝)
𝐴𝐴𝑐𝑐

 (1) 
 
Where 𝐵𝐵𝑔𝑔, 𝐵𝐵𝑝𝑝 are the ground truth B-Box and the predicted 

B-Box respectively.  𝐼𝐼 is the intersection of the ground truth and 
predicted B-Boxes, and 𝐵𝐵𝑔𝑔 ∪ 𝐵𝐵𝑝𝑝  is the union of the two B-
Boxes.  𝐴𝐴𝑐𝑐  represents the smallest convex shape that encloses 
both 𝐵𝐵𝑔𝑔  and 𝐵𝐵𝑝𝑝 .  𝐴𝐴𝑐𝑐 − (𝐵𝐵𝑔𝑔 ∪ 𝐵𝐵𝑝𝑝)  represents the area that is 
inside 𝐴𝐴𝑐𝑐 but outside (𝐵𝐵𝑔𝑔 ∪ 𝐵𝐵𝑝𝑝).  The GIoU loss for the front 

forward RGB view is represented by: 

  𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 1 −  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  (2) 
 
Since the B-Box prediction matrix contains 4 variables for the 

front forward view and 6 variables for the BEV, the B-Box 
regression loss is divided into two parts: GIoU loss (𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) for 
the front forward view prediction matrix, and an Euler defined 
GIoU loss (𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐸𝐸 ) for the BEV prediction matrix which is also 
computed with Equation (2) but on the BEV view. 

 
4.2.2 Classification Loss.  In YOLOv3 [14], cross entropy 

loss [25] is used for classification.  In ideal circumstances, a 
non-biased training dataset helps the model learn the features 
for multi-class object detection and recognition, and cross 
entropy loss would be suitable.  However, among the three 
classes considered in this research (car, pedestrian, cyclist), the 
training data provided by KITTI [4] contains 82% of the total 
objects in the class ‘car’, 13% in the ‘pedestrian’ class, and less 
than 5% in the ‘cyclist’ class.  This represents a significant bias 
toward the ‘car’ category which must be addressed to achieve 
fair comparative results.  Inspired by [10], a focal loss is used to 
substitute the cross entropy loss.  This strategy represents a first 
usage of focal loss on BEV maps to the best of our knowledge. 
The classification loss is defined as: 

 
𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝐹𝐹 = ∑ ∑ I𝑖𝑖,𝑗𝑗

𝑜𝑜𝑜𝑜𝑜𝑜 ∑ [𝑝̂𝑝𝑐𝑐(1 − 𝑝𝑝𝑐𝑐)𝛾𝛾log(𝑝𝑝𝑐𝑐) +c∈classes
𝐵𝐵
𝑗𝑗=0

𝑆𝑆2
𝑖𝑖=0

(1 − 𝑝̂𝑝𝑐𝑐)𝑝̂𝑝𝑐𝑐
𝛾𝛾log(1 − 𝑝𝑝𝑐𝑐)]         

(3) 
 

 𝐼𝐼𝑖𝑖,𝑗𝑗
𝑜𝑜𝑜𝑜𝑜𝑜 = �1, if  object ∈ the 𝑗𝑗th anchor

0, otherwise 
  (4) 
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Where 𝛾𝛾 is the relaxation parameter.  The higher value of γ, 
the more ‘focus’ will be given to misclassified examples, and the 
less loss will be propagated from examples.  𝑆𝑆2 represents the 
number of grid cells, which is equal to the size of the feature map. 
In the proposed model with three different scales, 𝑆𝑆2 has sizes 
19 × 19, 38 × 38, 76 × 76, respectively.  𝐵𝐵 represents the B-
Box. I𝑖𝑖,𝑗𝑗

𝑜𝑜𝑜𝑜𝑜𝑜 is a binary value that indicates whether the 𝑗𝑗𝑡𝑡ℎ B-Box 
of the 𝑖𝑖𝑡𝑡ℎ  grid cell’s GIoU value is larger than the GIoU 
threshold. 𝑝𝑝𝑐𝑐  and 𝑝̂𝑝𝑐𝑐  are the ground truth and the prediction 
classification score for class c. 

 
4.2.3 Confidence Loss.  The confidence loss is used to 

measure the objectiveness of the B-Box.  The proposed model 
uses focal loss as its confidence loss, defined as follows: 

 
𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐  =  ∑ ∑ 𝐼𝐼𝑖𝑖𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜𝐵𝐵
𝑗𝑗=0

𝑆𝑆2
𝑖𝑖=0 �𝐶̂𝐶𝑖𝑖(1 − 𝐶𝐶𝑖𝑖)𝛾𝛾 log(𝐶𝐶𝑖𝑖) + �1 −

𝐶̂𝐶𝑖𝑖�𝐶̂𝐶𝑖𝑖
𝛾𝛾 log(1 − 𝐶𝐶𝑖𝑖)� +

                                         𝜆𝜆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∑ ∑ 𝐼𝐼𝑖𝑖𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐵𝐵

𝑗𝑗=0
𝑆𝑆2
𝑖𝑖=0 �𝐶̂𝐶𝑖𝑖(1 −

𝐶𝐶𝑖𝑖)𝛾𝛾 log(𝐶𝐶𝑖𝑖) + �1 − 𝐶̂𝐶𝑖𝑖�𝐶̂𝐶𝑖𝑖
𝛾𝛾 log(1 − 𝐶𝐶𝑖𝑖)�  

 (5) 
 

𝐼𝐼𝑖𝑖,𝑗𝑗
𝑜𝑜𝑜𝑜𝑜𝑜 = �1, if  object ∈ the 𝑗𝑗th anchor

0, otherwise 
 (6) 

 

𝐼𝐼𝑖𝑖,𝑗𝑗
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = �1, if the 𝑗𝑗th anchor is background

0, otherwise 
  (7) 

 
𝐶̂𝐶𝑖𝑖 =  𝑝̂𝑝𝑖𝑖(𝑐𝑐) × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐸𝐸)   (8) 

 

𝐶𝐶𝑖𝑖 = �1, if  object ∈ the 𝑗𝑗th anchor
0, otherwise 

  (9) 

 
If an object is detected in the B-Box, the confidence loss is 

∑ ∑ 𝐼𝐼𝑖𝑖𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜𝐵𝐵

𝑗𝑗=0
𝑆𝑆2
𝑖𝑖=0 �𝐶̂𝐶𝑖𝑖(1 − 𝐶𝐶𝑖𝑖)𝛾𝛾 log(𝐶𝐶𝑖𝑖) + �1 − 𝐶̂𝐶𝑖𝑖�𝐶̂𝐶𝑖𝑖

𝛾𝛾 log(1 −
𝐶𝐶𝑖𝑖)�.   𝐶̂𝐶𝑖𝑖 is the confidence score of the 𝑗𝑗𝑡𝑡ℎ prediction B-box in 
𝑖𝑖𝑡𝑡ℎ grid cell, and 𝐶𝐶𝑖𝑖 is the ground truth, that is whether the B-Box 
contains an object. 

In realistic scenarios, most bounding boxes do not contain any 
object.  This causes an imbalance problem where the background 
or negative samples are more frequently detected by the model 
than the objects of some positive samples.  To alleviate this issue, 
the confidence loss is weighted down by a factor 𝜆𝜆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, which 
intervenes when no object is detected in the box (detected 
background only).  In such a case, the confidence loss is 
𝜆𝜆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∑ ∑ I𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐵𝐵
𝑗𝑗=0

𝑆𝑆2
𝑖𝑖=0 �𝐶̂𝐶𝑖𝑖(1 − 𝐶𝐶𝑖𝑖)𝛾𝛾 log(𝐶𝐶𝑖𝑖) + �1 −

𝐶̂𝐶𝑖𝑖�𝐶̂𝐶𝑖𝑖
𝛾𝛾 log(1 − 𝐶𝐶𝑖𝑖)� , where 𝐼𝐼𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  is the complement of the 
binary value 𝐼𝐼𝑖𝑖𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜 , and 𝜆𝜆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  weighs the loss down.  
In summary, the loss function of the proposed 3D object 

detector combines the two GIoU regression losses (𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 applied 
on the front forward view and the Euler angle loss 𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐸𝐸  applied 
on the BEV view), the focal classification loss (𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝐹𝐹 ), and the 
confidence loss (𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐).  The combination of all components leads 

to the general loss function: 
 

 𝐿𝐿 =  𝛼𝛼1𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝐹𝐹  + 𝛼𝛼2𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝛼𝛼3 𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐸𝐸  + 𝛼𝛼4 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐  (10) 
 
Where 𝛼𝛼1, 𝛼𝛼2, 𝛼𝛼3, 𝛼𝛼4 are the weights for each component of 

the loss function, which are empirically determined based on 
experimental results. 

 
5 Experimental Results 

 
5.1 Performance Evaluation 

 
The performance of the proposed architecture is compared 

with other popular 3D object detectors that also use the KITTI 
LiDAR data as input.  Table 1 summarizes the mean average 
precision (mAP) performance and framerate achieved while 
considering three difficulty levels for the object detection 
process, as defined in the KITTI evaluation metrics.  The 
category ‘easy’ represents cases where low objects occlusion 
occurs and with objects’ B-Box height reaching over 40 pixels 
in the front forward RGB image.  ‘Moderate’ cases involve 
objects that are at least partially visible and taller than 25 pixels.  
Finally, ‘hard’ cases correspond to significantly occluded 
objects that are difficult to observe in images. 

In terms of the detector framerate, the experimental 
evaluation demonstrates that the proposed model reaches 46.4 
frames per second (FPS) in an implementation using a single 
NVIDIA Tesla V100 GPU.  This is more than 3 times faster than 
the transformer-based detector VoTr-SSD, 3 to 4 times faster 
than two-stage detectors with similar detection accuracy, and 
faster than PointPillars by over 4 FPS with similar or exceeding 
accuracy.  

The proposed detector also demonstrates superior precision 
performance compared to other models listed in Table 1, 
including the recently introduced transformer architectures.  In 
this case, it outperforms the dominant two-stage F-ConvNet 
detector by a significant margin of over 3%. Performance gains 
are particularly visible in cases categorized as ‘easy’, as 
illustrated in the corresponding results shown in Figure 4.  For 
visualization purposes, 3D B-Boxes are plotted around the 
detected objects over the testing RGB images (top part of 
results), and the corresponding 2D BEV B-Boxes are plotted 
over the BEV maps (lower part of results).  The color coding of 
the B-Boxes represents the class of the detected objects: yellow 
for ‘car’, red for ‘pedestrian’, and blue for ‘cyclist’.  

Compared with other detectors that use both the LiDAR point 
cloud and RGB images, such as MV3D-Net [3], AVOD [7], 
PIXOR [23], MMF [9], F-PointNet [12] and F-ConvNet [20], 
the proposed detector demonstrates higher mAP on ‘moderate’ 
and ‘hard’ samples.  As shown in Table 1, some models that use 
only a LiDAR point cloud as input reach slightly higher mAP 
on ‘hard’ cases compared with models that combine LiDAR 
point clouds with RGB images as input.  Sample experimental 
results achieved with the proposed LiDAR+RGB single-stage 
detector are presented for ‘moderate’ and ‘hard’ cases in Figures 
5 and 6, respectively. 
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Table 1:  Comparison of performance among 3D object detectors using the KITTI LiDAR dataset 

 
Globally, when examining performance over all classes and 

independently from the ‘easy’, ‘moderate’, or ‘hard’ 
categorization of sample test cases, the mAP over all object 
classes reaches 90.26%, with the average precision (AP) for 
each specific class corresponding to 97.94% for ‘car’, 82.72% 
for ‘pedestrian’, and 90.13% for ‘cyclist’ respectively. 
Statistical details about the performance achieved are detailed 
in Table 2 when considering 1500 pairs of the LiDAR point 
cloud and the corresponding RGB images including all three 
classes of objects considered. 

 
5.2 Ablation Studies with Different Loss Functions 

 
The proposed detector merges Euler angle regression to the 

DarkNet-53 backbone to improve the detection accuracy and 
uses Euler angle regression loss and GIoU loss to optimize the 
training.  To reduce the bias caused by the imbalance in the 
number of samples in each class of the dataset, focal loss [10] is 
also used as the classification loss and the confidence loss.  To 
evaluate if these methods improve the performance of the 
proposed model, ablation studies are designed to test the 
performance of different regression loss and to verify that the 
proposed Euler angle regression does contribute to increase the 
detection accuracy of the proposed model.  The results of the 
ablation experiments are listed in Table 3 where various 
combinations of loss functions are considered as the 
components of Equation (10). 

The ablation studies with different regression loss show that 
the consideration of Euler angle regression increases the 
detection accuracy of the proposed object detector.  Compared 
to MSE, GIoU loss also shows better performance on the 
regression of the proposed model.  Finally, when comparing 
with the use of cross entropy as the classification loss, focal loss 

significantly increases the average precision (AP) for the 
‘pedestrian’ and ‘cyclist’ classes although it slightly decreases 
AP for ‘car’.  Hence, it is concluded that focal loss does 
contribute to better balance the AP over all considered classes. 

 
5.3 Masked BEV Map 

 
In another set of experiments conducted as part of this 

research, a mask in the form of an empty rectangle was 
superimposed over the bird’s-eye view map to selectively 
exclude certain information from the detector’s input.  This 
investigation aimed to determine whether the proposed model 
can handle damaged data.  The experiments demonstrate that the 
proposed detector remains functional even when presented with 
damaged data, with only a marginal decrease in mean average 
precision (mAP) of less than 5%.  Our observations revealed 
that in most cases if a target object is completely hidden or 
missing in the BEV map data, the proposed detector fails to 
detect the object reliably, as illustrated in Figure 7.  This 
indicates that the detector cannot operate with reasonable 
accuracy solely based on the RGB image input.  Conversely, if 
a randomly positioned mask partially occludes an object, as 
depicted in Figure 8, it generally does not significantly affect 
the detection and recognition outcome, as long as partial 
information about the target object remains available in the BEV 
map.  Finally, when the mask covers a background area without 
occluding any target object of interest, as shown in Figure 9, the 
detection result remains unaffected. 

 
 
 

6 Mini 3D Object Detector 
 
As part of the continuous development of deep convolutional 

neural networks and aiming at always pursuing higher accuracy, 

 Method Data Framerate 
(FPS) 

mAP (%) 
Easy Moderate Hard 

Transformer 
VoTr-SSD [11] LiDAR 14.7 87.86 78.27 76.93 
VoTr-TSD  [11] LiDAR 7.2 89.04 84.04 78.68 

Two Stages 

MV3D-Net [3] LiDAR + RGB 2.7 86.49 78.98 72.23 
AVOD [7] LiDAR + RGB 10.0 89.74 84.81 78.12 

F-PointNet [12] LiDAR + RGB 5.7 91.16 84.61 74.77 
F-ConvNet [20] LiDAR + RGB 1.9 91.44 85.84 76.11 

Fast Point R-CNN [2] LiDAR 15.3 90.87 87.71 80.51 
MMF [9] LiDAR + RGB 12.2 86.81 76.75 68.41 
STD [24] LiDAR 10.0 89.93 86.20 79.42 

Single Stage 

VoxelNet [26] LiDAR 4.2 87.95 78.39 71.29 
SECOND [22] LiDAR 19.7 89.33 82.87 78.51 
PointPillars [8] LiDAR 41.9 90.07 86.56 82.81 

SA-SSD [5] LiDAR 24.4 88.75 79.79 74.16 
PIXOR [23] LiDAR + RGB 28.6 86.78 80.75 76.77 

Proposed detector LiDAR + RGB 46.4 94.71 87.33 81.52 
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Figure 4: Samples of ‘easy’ scenes in the KITTI testing dataset.  In each case (a,b,c), the upper row shows ground truth bounding 

boxes, and the bottom row shows detection results achieved with the proposed detector [yellow = car, red = pedestrian, 
blue = cyclist] 

 
 

researchers are motivated to propose various strategies to 
increase object detection framerate, especially in speed sensitive 
context such as autonomous vehicles navigation.  Ideally, a 
detector should be compact from both the memory requirement 
and amount of calculation perspectives, mainly because of the 
availability of limited hardware resources that can be embedded 
on autonomous platforms.  These constraints motivate the 
development of deep convolutional neural architectures well 
adapted for widespread deployment on embedded devices.  
Therefore, although the framerate of the original detector 
introduced in Section 4 reaches up to 46.4 FPS, we still wish to 
explore the design of a lightweight network that involves fewer 
feature matrices to perform even faster on the same 3D object 
detection and recognition tasks. 

 
6.1 Mini Detector Architecture 

 
The proposed mini detector merges the structure of tiny-YOLO 

[16] and the proposed detector from Section 4 to generate 
feature maps at 2 different scales, as shown in Figure 10.  The 
main difference of the mini detector compared to its full-size 
version is the backbone and FPN.  The mini detector uses a 
DarkNet-19 [13] based backbone, modified to adapt to the input 
of the BEV map and corresponding RGB image.  Compared to 
the 53-layers backbone of the original detector, the mini 
detector’s backbone only has 19 layers, that is about 1/3 the 
depth.  Moreover, with the mini detector implementation, only 
two different scales of feature maps are generated and passed to 
the detection head, compared to three in the initial version, to 
further reduce the calculation load and minimize the depth of 
the mini detector model.  The detection head then converts the 
reduced size feature maps into prediction result.  Otherwise, the 
detection head uses the same design as in the proposed full-size 
model and the same combined loss function, Equation (10), for 
training. 

Being more compact, the mini detector’s framerate can reach  
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Figure 5:  Samples of ‘moderate’ scenes in the KITTI testing dataset.  In each case (a,b,c), the upper row shows 

ground truth bounding boxes, and the bottom row shows detection results achieved with the proposed 
detector [yellow = car, red = pedestrian, blue = cyclist] 

 
 

up to over 3 times that of the original full-size detector.  
Therefore, it is better suited for real-time autonomous driving 
applications running on mobile devices, while offering a 
satisfactory compromise on detection performance. 

 
6.2 Experimental Results with the Mini Detector 

 
For a fair comparison of performance with the two proposed 

detectors, the mini detector is trained and tested on the same 
software and hardware environment as the original full-size 
detector presented in Section 4.  Moreover, the training and 
testing dataset remains the same.  Table 4 presents the detection 
and recognition results of both the mini detector and the full-
size detector on 1500 pairs of the LiDAR point cloud and the 
corresponding RGB images. 

As shown in Table 4, the mini detector achieves a good 
performance on detecting ‘cars’ with AP higher than 0.97, but 
lower AP is observed on detecting the ‘pedestrian’ and ‘cyclist’ 
targets.   This is explained by the fact that the training dataset 

used for both proposed models is imbalanced, with less than  
20% of positive samples exemplifying the pedestrian and cyclist 
classes.  Although FPN and focal loss [10] are used to reduce 
the impact of the data imbalance, with fewer layers and less 
features extracted in the mini detector model, the testing 
performance is more severely impacted by the data imbalance 
than with the full-size detector.  Figures 11 and 12 visually 
compare the performance against ground truth labels of both 
versions of the detector by displaying the predicted bounding 
boxes over the front forward RGB image and corresponding 
BEV map for detected objects belonging to the three considered 
classes. 

Conversely, the framerate of the mini detector reaches up to 
158.97 frames per second, which is 3.4 times faster than the full- 
size detector when testing in the same environment, while a 
7.5% reduction of the mAP is observed overall on all three 
combined classes.  Comparing with alternative compact 
implementations of objects detectors, as shown in Table 5, the 
proposed mini detector exhibits relatively high detection 
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Figure 6: Samples of ‘hard’ scenes in the KITTI testing dataset.  In each case (a,b,c), the upper row shows 
ground truth bounding boxes, and the bottom row shows detection results achieved with the proposed 
detector [yellow = car, red = pedestrian, blue = cyclist] 

 
Table 2: Object detection performance on the KITTI LiDAR dataset 

 
Table 3: Effect of different regression loss on the detection results 

 
 
 
 
 
 
 
 
 
 

Class Precision Recall AP F1 mAP (%) Framerate (FPS) 
Car 90.65 98.68 97.94 94.50 

90.26 46.4 Pedestrian 63.89 93.17 82.72 75.80 
Cyclist 79.51 95.24 90.13 86.67 

Classification 
Loss 

Regression 
Loss 

Confidence 
Loss 

AP mAP 
(%) Car Pedestrian Cyclist 

focal MSE focal  95.11 53.93 62.58 70.56 

focal GIoU focal  96.78 64.61 83.83 81.74 
focal MSE + Euler focal  96.88 78.48 90.96 88.77 

focal GIoU + Euler focal 97.94 82.72 90.13 90.26 

cross entropy GIoU + Euler focal 98.03 79.91 88.35 88.76 
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Figure 7: Objects detected on sample test cases with fully 
masked objects in the BEV map (left: without 
mask; right: with occluding mask) 

        
 

 
Figure 8: Objects detected on sample test case with partially 

masked object (left: without mask; right: with 
occluding mask) 

 
 

accuracy when compared to tiny YOLO [16] and tiny SSD [21], 
which are designed for 2D image-based only object detection.  
While expanding the architecture to benefit from 3D 

 
Figure 9: Objects detected on sample test case with mask over 

the background only (left: without mask; right: with 
occluding mask) 

 
 

information issued from LiDAR data, the proposed mini 
detector remains competitive with the performance of similar 
scale detectors reported in the literature.  The mini detector also 
achieves significantly higher detection framerate. 

 
7 Conclusion and Future Work 

 
This paper proposes two original formulations for 3D object 

detectors that leverage 3-dimensional location information from 
a LiDAR point cloud in combination with RGB images.  With 
the objective to optimize the computation and memory usage of 
the detection models, a preprocessing step is performed to 
convert the point cloud data into a bird's-eye view (BEV) map.  
The latter emphasizes the height range of interest through 
height thresholding, while intensity values from the LiDAR 
sensor are accumulated and recorded on the corresponding 
pixel positions.  When combined with color information from 
a registered frontal view RGB image, the process leads to a 5-
dimensional BEV map that serves as input to the detectors. 

The design of the proposed full-size detector model 
combines the GIoU loss and DarkNet-53 architecture from the 
YOLOv3 single-stage detector.  Additionally, Euler angle 
orientation is incorporated into the detection head and an 
original formulation for a combined loss function is introduced.  
Experimental results reveal that the integration of Euler angle 
regression and GIoU losses enhances the performance of the 
proposed detector compared to the original YOLOv3 model, 
which utilizes MSE regression loss. 

To address the bias in detection results caused by imbalanced 
training data, focal loss is employed as the classification loss.  
Ablation studies demonstrate that focal loss partially 
compensates for data imbalance in the proposed models and 
improves the mean average precision (mAP) across different 
classes.  Furthermore, experiments using masked BEV maps 
showcase the robustness of the proposed model to degraded 
sensor inputs.  Overall, the proposed full-size model achieves a 
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Figure 10: Proposed 3D object mini-detector architecture:  (a) preprocessing converts point cloud and 
rescaled RGB image into a 5-channel 2D BEV map; (b) reduced backbone of proposed mini 
detector (DarkNet-19); (c) mini FPN; and (d) detection head with output prediction at 2 different 
scales; with (e) details of the respective structure of CBL (top) and Res Unit (bottom) 

 
 
Table 4: Detection framerate, precision, recall, AP and F1 estimated on each class and overall mAP for the proposed mini detector 

compared with the full-size detector 

 

 Class Mini detector Full-size detector 
Framerate (FPS)  158.97 46.4 

Precision 
Car 89.22 90.65 

Pedestrian 47.83 63.89 
Cyclist 68.74 79.51 

Recall 
Car 95.72 98.68 

Pedestrian 62.31 93.17 
Cyclist 87.72 95.24 

AP 
Car 93.71 97.94 

Pedestrian 69.08 82.72 
Cyclist 85.44 90.13 

F1 
Car 92.47 94.50 

Pedestrian 38.38 75.80 
Cyclist 78.32 86.67 

mAP (%)  82.74 90.26 
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Figure 11: Three sample test cases comparing the ground truth (left), with results of the mini detector (center), 
and results of the full-size detector (right), with B-Boxes [yellow = car; red = pedestrian; blue = 
cyclist] superimposed over front forward RGB image (upper part) and over corresponding BEV map 
(lower part) 

 
Table 5:  Comparison of performance between lightweight detection models 

Model Size Nb of trained parameters Framerate (FPS) mAP (%) 
Tiny YOLO [16] 60.5 MB - 133 57.1 
Tiny SSD [21] 2.3 MB 1.13 M - 61.3 

Proposed mini detector 44.9 MB 7.19 M 158.97 82.7 
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Figure 12: Additional sample cases comparing the ground truth (left), with results of the mini 
detector (center), and results of the full-size detector (right), with B-Boxes [yellow 
= car; red = pedestrian; blue = cyclist] superimposed over front forward RGB 
image (upper part) and over corresponding BEV map (lower part) 

 
 

detection framerate of up to 46.4 frames per second (FPS) in a 
single GPU-based implementation with mAP exceeding 90%.  
Experimental results indicate that the model adapts well to real-
life autonomous driving scenarios with varying levels of 
occlusions. 

To explore faster and lighter detection models suitable for 

real-time and embedded vehicle applications, a mini detector is 
also introduced.  By integrating a lightweight deep learning 
detector into the 3D data processing domain and leveraging key 
concepts from the full-size detector, a compact 19-layer network 
model is developed for 3D object detection and recognition, 
achieving mAP above 82%.  Experiments demonstrate that 
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compared to the full-size detector, the mini detector requires 
approximately 2/3 of the training time and 1/3 of the testing 
time.  This trade-off between processing time and accuracy 
allows for effective performance in time-critical applications.  
The proposed mini detector also shows superior performance in 
terms of both detection accuracy and framerate compared to 
other lightweight 3D detectors. 

While this research brings significant contributions to 3D 
object recognition, some limitations remain and open areas for 
future research.  First, it will be beneficial to develop a self-
optimizing training model that can automatically adjust training 
parameters and feature maps to improve the generalization 
ability of the detectors.  This will allow to adapt better to 
different operational conditions, such as occlusion, low 
resolution, and varying scene complexity.  Second, a sensor-
independent fusion framework is essential to ensure the safety 
of autonomous vehicles.  Further research is needed to explore 
the signal coupling issues that may arise when fusing LiDAR 
scanner and camera inputs, especially in safety-critical 
environments. 

Moreover, addressing the imbalance in the training dataset is 
crucial for improving object recognition accuracy.  While we 
employed focal loss to reduce bias, there is still room for 
improvement, particularly in detecting cyclists and pedestrians, 
which are as important as detecting cars in autonomous driving 
scenarios.  Future research will investigate methods to make the 
model less sensitive to the number of training samples or adjust 
the training dataset to improve balance in the number of samples 
from different classes. 
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