ELG4125: Electric Power Transmission, Distribution, and Utilization

Quiz 2

1. Short-circuit capacity and interconnection

Interconnecting systems has effect on both frequency control and voltage control. When a load center grows, for example because a city is expanding, it is necessary to create a stronger connection to the generating area or areas.

$1 \xrightarrow{4} 4 5$	p.u. impedances @ 100MVA	
	Line 1-2: j0.1	G1 X ₁ : 0.15
∦ ■♥	Line 2-3: j0.2	G3 X ₁ : 0.1
3 +	Line 4-5: j0.15	G5 X ₁ : 0.25

- a) The system to the right is considered weak at bus 4 (connected only to bus 5) as voltage is often outside the required range 1 ± 0.05 p.u. Determine the short-circuit capacity in MVA at the bus assuming nominal no-load voltage 1 p.u.
- b) Determine the p.u. voltage magnitude at bus 4 when a load drawing a 1 p.u. current with power factor 1 is connected there. Assume no other loads, no-load voltage 1 p.u. and that load current does not depend on voltage.
- c) To improve the situation buses 2 and 4 are connected by a line with series impedance j0.1 p.u. as indicated by the dashed line. Repeat a) for the interconnected system.
- d) Repeat b) for the interconnected system. Voltages at G1 and G3 are 1 p.u.

2. Short-circuit capacity and reactive shunt compensation

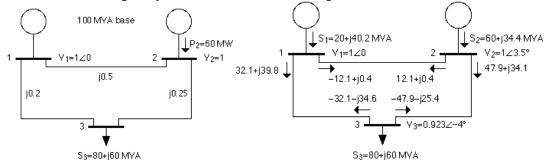


Figure 1 Three-bus power system used for load flow calculations (left) and load flow solution (right). Voltages and line impedances are in per unit.

- a) Determine the short-circuit capacity in MVA at bus 3 of the system in Figure
 1. To simplify you can neglect the load at this bus.
- b) A shunt capacitor of 50 Mvar is added to bus 3 where the load is 80+j60 MVA. This will change the voltage from the value shown in Figure 1. The voltage sensitivity to reactive power ($\partial V/\partial Q$) gives an estimate of how much the voltage will change when the reactive power load is changed. This sensitivity can be approximated:

$$\frac{\partial V}{\partial Q} = \left(\frac{\partial Q}{\partial V}\right)^{-1} \approx -\frac{1}{S_{sc}(p.u.)}$$

Estimate the voltage at bus 3 with the 50 Mvar capacitor added using this expression.