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Abstract 

Mobile e-health applications such as pulse-rate detection, blood pressure monitoring, calorie 

measurement, activity tracking, and others are in great demand especially in countries where shortages in 

qualified healthcare professionals is a challenge confronting healthcare providers. Mobile e-health 

applications provide users and healthcare practitioners with an insightful way to check users/patients’ 

status and monitor their daily activities. Our goal is to build a mobile e-health calorie based application 

that can classify the food objects in the plate and further compute the overall calorie of each food object 

with reduced response time without affecting the accuracy of the classification and calorie computation of 

the food object. To achieve reduced response time and improved accuracy, certain heavy computational 

parts of the application could be offloaded to the cloud, however, existing cloud offloading strategies 

would not be able to fully utilize the unique characteristics of food objects including: food object 

categories (single, multiple and mixed food object), food ingredients, food specific features (textures, 

shape, color and size) that could be integrated into the cloud computing model to provide more accurate 

and improved time specific results. Also, leveraging increased number of cloud resources is not only 

expensive, but also not a feasible solution. In this paper, we propose an intelligent cloud-broker 

mechanism where the food classification and the calorie computation steps are strategically integrated in 

the cloud model in a manner that it fully utilizes the unique food characteristics. We also propose a 

dynamic cloud allocation mechanism that takes decisions on allocating and de-allocating cloud instances 

in real-time for ensuring the average response time stays within a predefined threshold. We further 

demonstrate various scenarios to explain the workflow of the cloud components including: segmentation, 

deep learning, indexing food images, decision making algorithms, calorie computation, scheduling 

management and second level ingredient testing as part of the proposed cloud broker model. The 

implementation results of our system showed that the proposed cloud broker results in a 45% gain in the 

overall time taken to process the images in the cloud. With the use of dynamic cloud allocation 

mechanism, we were able to reduce the average time consumption by 77.21 % when 60 images were 

processed in parallel. 

Keywords: Food Recognition, e-Health Application, Deep Learning, Central Cloud Broker, Mixed Food 

Recognition, Single Food Recognition, Decision Algorithm, Dynamic Cloud Allocation. 

  



1. Introduction 

Mobile devices have become an indispensable gadget for many people, not just as a communication 

medium, but also as e-health applications to measure and process pulse-rate, blood pressure, calorie 

measurement, activity tracking, etc. Because mobile phone ownership and both the number and the 

complexity of health applications are likely to increase, the potential for mobile technology based health 

interventions to help populations is expanding in ways that previously were not possible [1]. These 

applications are in great demand especially in countries where shortages in qualified healthcare 

professionals is a challenge confronting healthcare providers. Mobile e-health applications provide users 

and healthcare practitioners with an insightful way to determine the users/patients’ status and their daily 

activities such as waking up times, exercising, eating habits, sleeping patterns etc. All these personal 

activities could be easily tracked and processed with the use of mobile applications. However, there are 

several technical challenges that encumber wide adoption of e-health mobile applications as described in 

[21] [28]. Amongst those challenges is the limited processing power of the mobile device. Even with the 

enhanced capabilities of today’s smartphones, like more and improved mobile sensors, better processing 

capacity in terms of quad cores and octa core chipsets, more physical storage and RAM, and intensive 

data processing, e-health applications can consume the resources of a mobile device over its limits, 

making the application unfeasible or unacceptable, from a quality of experience perspective, to run on the 

mobile device. This is especially true for multimedia e-health applications that use images, video, 

computer vision, or other computationally intensive media. To overcome this limitation, certain heavy 

computational parts of the mobile application could be offloaded to the cloud, which has the necessary 

processing power and resources to provide satisfactory performance for the mobile application and its 

features. But, the decision of offloading computationally intensive tasks to cloud instances is not trivial. 

Cloud resources must be allocated using an intelligent mechanism that dispatches the processing tasks in 

real-time while ensuring the minimum processing time possible. Furthermore, the cost of allocating cloud 

resources increases as the number of instances increases, hence, the mechanism should be able to 

dynamically free the resources when the average processing time of the resources stays within a 

predefined threshold. 

In this paper, we propose an intelligent cloud-based data processing broker mechanism for mobile e-

health multimedia applications, and we demonstrate its feasibility and performance by integrating it with 

our specific e-health mobile application, Eat Health Stay Health (EHSH). EHSH includes food image 

processing, deep learning for food recognition and classification, and calorie estimation. These data 

processing functions are computationally intensive and require resources that most current mobile devices 

cannot provide. To overcome the computationally intensive resource problem, offloading a portion or the 

application entirely to cloud would take the load away from mobile device and improve the performance 

and resource consumption of the mobile device [5] [6]. To overcome the computationally intensive 

resource problem, offloading a portion or the application entirely to cloud would take the load away from 

mobile device and improve the performance and resource consumption of the mobile device [5] [6]. 

However, in our mobile e-health application, the algorithm includes certain unique food characteristics 

which, if efficiently utilized would be improving the overall system performance, achieving scalability as 

well as ensuring optimal use of cloud resources. The unique food characteristics include mainly the food 

object category, food ingredients and food specific features. To incorporate these food characteristics in 

the cloud model it is important to understand why and how these characteristics can help improve the 

performance of our system.  Analyzing the food category characteristics, we observe that there are mainly 

three food categories that we look to incorporate: Single, multiple and mixed food objects. Out of these 

three, the segmentation of single food objects would result in one food object which would further be 

processed by the cloud broker to classify. Then, it is followed by calorie computation, which contributes 



to overall time taken to process the single food image (𝑇𝑠). Multiple food objects on the other hand can 

include more than two objects on the plate and hence segmentation of this will result in X number of 

images which would have to be processed to classify and compute the number of calories for each of the 

X food items. Hence, the overall time to compute for multiple food objects (𝑇𝑚) would be 𝑇𝑚 =

∑ 𝑡𝑑 + 𝑡𝑐
𝑋
1 , where 𝑡𝑑 is the time taken to classify the food object using deep learning algorithm and 𝑡𝑐 is 

time taken to compute the calorie. Considering the total multiple food objects m > 1, then 𝑇𝑚 > 𝑇𝑠. In 

case of mixed food objects, we propose a second level ingredient algorithm in section 4.2 which results in 

two levels of deep learning algorithm. Hence, the overall time taken to process the mixed food object  𝑇𝑚𝑥 

will be greater than  𝑇𝑠 due to the additional second level of processing. Taking the overall time into 

consideration it is essential to include a scheduling and decision making algorithm that takes these food 

categories in an independent queue and processes them accordingly.  

Our intelligent decision making algorithm of the proposed cloud-based broker decides on how to 

distribute the processing of the aforementioned functions based on a number of factors such as the number 

of active user connections, statistics of the broker (CPU utilization, memory utilization, queue status, 

etc.), and historical data such as the average time needed for running the deep learning algorithm for a 

single food object. The aim of our proposed broker is to significantly improve the scalability of the mobile 

application by introducing queuing management, indexing food images, allocating cloud resources, and 

other components that would smartly manage multiple food images at the same time, and provide more 

accurate calorie estimation for the food image sent by a specific user.  

The main contributions of this paper are as follows:  

 We propose an efficient cloud broker model that incorporates intelligent mechanism to decide where 

and when to offload the processing of food images to cloud instances. This is rather significant for 

our mobile e-health application given the complex nature of food images. The processing of these 

images involves computationally intensive tasks such as segmentation algorithms and deep learning 

for food object recognition. The broker uses decision making algorithms to collect performance 

metrics at regular intervals allowing the broker to make the choice of cloud instance to offload the 

computation tasks.  

 We propose an intelligent scheduling mechanism which allows the broker to provide optimal 

utilization of the cloud resources and improve the overall response time of processing the food 

images.  The implementation results of our system show that the proposed mechanism results in a 

45% gain in the overall time taken to process the images in the cloud.  

 We proposed a dynamic cloud allocation mechanism to handle parallel image processing requests 

from different users. By introducing this mechanism, the system is able to automatically add the 

cloud instance in real-time by gauging the system resource: number of available cloud instances, the 

queue length and the total number of incoming parallel food processing requests for achieving the 

pre-defined threshold value for the response time. Also, by deallocating the cloud instances when not 

in use, the system is able to avoid under-utilization of cloud resources. This will ensure that the 

system will not add additional resources exponentially, but rather gauge the requirement and 

accordingly take decision to add and remove the cloud resources. This is particularly important and 

unique because it ensures scalability when handling multiple mobile device application requests and 

different food category recognition requests. The proposed dynamic allocation mechanism along 

with the queue management strategy would smartly manage multiple food images, at the same time, 

and maintain the consistency of the system. Our results show that we were able to reduce the average 

time consumption by 77.21 % when 60 images were processed in parallel  



 We implemented the system and tested scenarios of scalability in terms of the number of users 

connecting to the cloud. Our system shows consistent calorie measurements results even when we 

increasing the number of food objects. From the user perspective it is important to provide a single 

correct result; otherwise scenarios of incorrect sequence of the recognized food objects or the calorie 

measurement results will adversely impact the user acceptance of the application.  

The rest of the paper is organized as follows: Next section provides background information about our 

application EHSH followed by the related work in section 3. In section 4, we present the design details 

and the architecture of the proposed mechanism. . In section 5, we discuss the proposed cloud broker and 

its various components, followed by Implementation Results in section 6 and lastly section 7, which 

includes the conclusion and future work.  

2. Background on EHSH 

EHSH is able to recognize a food object, the image of which is captured by the user’s smartphone, and 

can estimate the total number of calories in the food object. For recognizing the food portions in the meal, 

we proposed two approaches in [2][3] and [4]. In our first approach [2], we implemented a Support 

Vector Machine (SVM) based parallel classifier, which was implemented in parallel in multiple cloud 

instances. In our second approach, we used deep learning [4], which resulted in higher accuracy as 

compared to [2][3]. With the use of deep learning, the information of each pixel in the image was stored 

in different neurons, which were further connected to each other in the network. The network comprised 

of several layers, and each layer contained a set of neurons. The part that made the deep learning network 

different compared to other neural networks, was the inclusion of multiple hidden layers in the system.  

In our implementation, we made sure the image processing steps are performed in the cloud, in order to 

remove the overhead of processing from the mobile device [4]. For computing the calorie value of the 

food, we proposed two different techniques, each of which was running in the cloud too. For the first 

technique in [2][3], we utilized the user’s finger as a calibration reference for computing the size of food 

portions and their ensuing calorie amounts. The user had to place his finger near the food each time the 

photo was captured. For the second technique, we proposed an auto-calibration approach [4] that did not 

require the use of a reference object to calculate the food dimension and its ensuing calorie content. 

 From the above, we can see that food recognition and calorie computation are essential components of 

EHSH. However, due to the resource constraints in the mobile device, implementing them in a 

smartphone was not viable option, since the response time was very high, and the application consumed a 

large percentage of the smartphone’s resources, limiting the usability of the application and the 

smartphone. To overcome these challenges, we used the cloud to offload a bulk of the processing tasks .. 

In [2][3], we used MapReduce as a parallel classifier in the cloud to implement SVM on each of the cloud 

instances. As part of the SVM implementation in Amazon Web Services (AWS), we performed the map 

and reduce based training and testing tasks on multiple EC2 instances. Although the MapReduce model 

yielded the desired results for larger training sets, the initial time taken to distribute the data and process it 

across different Amazon EC2 instances was considerably higher for smaller training sets of data.  Based 

on the results in [6], we observed that with the increase in cloud instances (from a t2.micro one cloud 

instance to an x3.large four cloud instances), the overall response time got reduced. In a scenario where 

higher number of users is accessing EHSH in parallel, adding more cloud instances on demand would 

suffice the demand for cloud resources, but the initial time taken to allocate the cloud instances would 

adversely affect the overall response time. Hence the scalability aspect was still a challenge that had to be 

addressed.  



To address this challenge, we proposed a decision making mechanism [5] that would efficiently utilize 

the cloud resources. As shown in Figure 1, when multiple users are accessing EHSH in parallel, the 

system first performs segmentation to gauge the number of food objects on the plate. Based on the total 

number of food objects, the decision mechanism will allocate the segmented food objects to the remaining 

cloud instances.  

 

 

Figure 1: Intelligent Decision Making Mechanism [5] 

However, the decision making algorithm in [5] has two weaknesses: 1- it uses performance checks and 

needs to be further optimized to efficiently allocate the food images to the remaining cloud instances, and 

2- it needs to be further extended for each food category of single (e.g. apple, banana, pineapple, orange 

etc.), multiple (rice with chicken and salad on the same plate) and mixed food objects (pizza with mixed 

ingredients like pepporoni, chicken, pepper, olives etc.). Each of these food categories has different 

processing requirements. For example, single food items need two stages: the deep learning (feature 

extraction and classification) stage and the calorie measurement stage. On the other hand, multiple food 

has to initially be segmented to obtain the food objects from the plate, and then perform deep learning and 

classification on each of the segmented food images and finally integrate these results to give a single 

calorie output to the user. Similarly for mixed food objects, there are additional steps introduced to firstly 

recognize the food object with deep learning and further recognizing the ingredients of the food objects 

with second level of deep learning and calorie measurement steps. The processing of these food categories 

was not considered in previous work as the decision algorithm was only designed to dispatch the tasks 

based on the total number of food objects. Since for each food category the steps involved for food 

recognition and calorie measurement are different, the cloud broker must employ a completely new 

decision algorithm to accommodate those differences efficiently while offloading the processing to other 

cloud instances.  

In this paper, the cloud broker and the newly proposed decision algorithm are completely different from 

our work in [4][5][6].  The objective of the new design is twofold: The first is to handle the processing 

tasks of each food category while ensuring efficient utilization of the cloud resources. The second is to 

reduce the overall response time without having to add new cloud resources in case of non-dynamic cloud 

allocation model. The concept proposed as part of this paper specifically focuses on the scalability aspect 



of the system, taking into account each of the 3 food categories while trying to address the issue. This is 

entirely different from [5] and [6] which focused on the cloud virtualization where the goal was 

improving the application performance of the mobile application by virtually swapping the mobile session 

with the cloud session.  

 

3. Related Work 

Recently, because virtualization techniques enable cloud computing environments to remotely run 

services for mobile devices, computation offloading has attracted significant interest from researchers 

[16]. Computation offloading extends a mobile device’s capabilities when running intensive 

computational services such as e-health apps. However, seamless computation offloading from mobile 

devices to the cloud is not trivial and requires optimal offloading and scheduling decisions. These 

decisions must take into account certain parameters such as computation capability, server loads, response 

time and the amounts of exchanging data between mobile devices and cloud servers [17]. In this section, 

we investigate some of the previous studies in this area that are closely related to our work. 

 The work presented in [18] proposes two offloading schemes for mobile health applications called self-

reliant multi-cloud offloading system and multi-cloud offloading system. The study shows that self-reliant 

multi-cloud offloading systems can provide stability but with high communication cost, while multi-cloud 

offloading systems reduce communication cost but are less stable. But the study does not provide any 

mechanism regarding the offloading decision and the performance of the system is not analyzed. The 

work proposed by [19] introduces a task-level adaptive framework for real-time streaming of data for 

healthcare applications. Although the study assumes that some decision mechanism is in place for 

offloading, it focuses only on the usage effectiveness of cloud servers. The work in [20] proposes 

a Primary Node-based architecture for typical telehealth service using the cloud, which takes into account 

both storage and delivery efficiency. The study presents an algorithm to predict and allocate future 

bandwidth of all virtual machines during urgent e-health services. The authors in [21] propose a scheme 

to process part of the data processing locally on the node (e.g. mobile device), while other parts could be 

offloaded to the cloud. In the proposed design, the authors consider computation offloading from the 

cloud to the wireless nodes (and vice versa) as an effective mechanism for energy optimization. The study 

considers mobile e-health and proposes a multi-layered optimization approach that combines 

computational offloading with optimization mechanisms.  

   There are also several studies proposing computational offloading schemes that are relevant, although 

they do not target e-heath applications specifically. For example, the work in [11] makes use of the Ibis 

client-server infrastructure, wherein the computation intensive work is offloaded from the Android 

smartphone to the cloud. MAUI [7] makes use of the Virtual Machine (VM) Migration and the traditional 

client server model, wherein the computation part from the mobile device is offloaded by program 

partitioning. The problem with this approach is that a smaller programming model is offloaded, which 

puts additional burden on the programmer if the entire application has to be offloaded. In [8] they propose 

a transient customization of cloudlet infrastructure using hardware VM technology wherein A VM cleanly 

encapsulates and separates the transient guest software environment from the cloudlet infrastructure’s 

permanent host software environment. With [8], the overall response time consists of the time it takes for 

the VM to start and stop, each time a request is made to the cloud server. Both [9] and [10] are client-

server Android based models, but differ in their implementation. The work in [10] is implemented as a 

map-reduce system where the computing intensive tasks are offloaded to other mobile devices, while [9] 

is implemented as a single client server cloud system.  



Most of the above work in the area of decision making algorithm focus on deciding whether or not to 

offload the bulk of processing to cloud. As compared to above models, our model focuses on the decision 

mechanism in the cloud, to decide on which cloud instance to offload depending on the performance of 

the cloud and further ensuring the consistency of food categories as described in subsection 1.1. Although 

the majority of the related work focus on the general concept of mobile cloud computing and its wide 

application in the area of decision application, there is still a need of a decision making mechanism 

specific to mobile e-health and its integration with various food categories (single, multiple and mixed 

food) since the steps for food recognition and calorie measurement are different for each food category.  

Parallel to the above work, there are several studies that focus on the scalability aspect of processing 

tasks in the cloud. For example, Ranabahu et al. [27] identified the lack of scaling strategy in Cloud 

middleware. They propose a horizontally replicating best practice that includes a load balancing layer, an 

application server layer and database layer [28]. The challenging aspect while trying to handle the 

scalability aspect in cloud is the limitation of the cloud resources provided by standard cloud service 

provider. The factor that is common to all cloud based e-health mobile application is the effect on 

response time of the mobile user while ensuring the system is scalable handling multiple requests. Our 

work most closely resembles [28], wherein they propose a real-time health monitoring mobile application, 

which collects ECG data in real-time and performs ECG beat analysis and dissemination of personal ECG 

health data to patients and health-care professionals. The high processing component in their application 

was the heartbeat waveform analysis, and in order to address multiple requests they also performed 

horizontal scalability testing (ability to system to expand resource pool to accommodate heavier load). 

However, since they are handling only one data category (ECG data) the scheduling mechanism was 

straightforward and depended on only two factors: Number of requests in the queue and the requests 

observed over a time span. Also, they do not include the decision making algorithm, as to which cloud 

instance to dispatch the task to and make use of Aneka [29] for handling scalability requests in there 

system. On the other hand, we developed a scalability model which includes scheduling and queue 

management mechanisms which is different for each food category (single, multiple and mixed food). 

Also we designed two decision algorithms, one for classifying the food categories and the other to classify 

and allocate/deallocate cloud instances in real-time. The work in [28] observed 40% improvement when 

the system had 80 parallel requests, as compared to 135.93% improvement in our system for the same set 

of parallel requests. In [30], another medical healthcare application is proposed that makes use of parallel 

image processing for image datasets from brain tumor specimens and developed pipeline analysis for 

study of brain cancers on hybrid cluster. The authors in [30], performed image analysis by breaking the 

image into rectangular tiles and performing segmentation and feature extraction process on each tile 

independently. The multi-node parallelization strategy, wherein each process (segmentation and feature 

extraction), is assigned to different worker nodes. For scheduling strategy, the study adopted Priority and 

First Come First Served (FCFS) scheduling strategy. For FCFS, the scalability assessment of [30] in terms 

of execution time had 1.7x improvement when performed over various cloud nodes. Although, we also 

used similar scheduling techniques (FCFS scheduling) and the scheduling algorithms were specific to 

various food categories and also used  feature extraction and classification based on deep belief networks 

(DBN) [23]-[26], which are based on the concept of deep learning, allow us to achieve higher accuracy 

and better generalization, even with small datasets.  

In table 1, we summarize the main differences between our work and existing studies in order to 

highlight our contribution and novelty. We provide the comparison based on: offloading technique, 

problem addressed, decision making consideration, scalability, and application description and 

implementation model. 



 

Table 1: Comparisons among Mobile Cloud Computing Models 

Methodologies Implementation OS Offload 

Technique 

App 

Description 

Goals Decision 

Making 

Scalable 

Cuckoo [11] Ibis Middleware Android, 

Ibis 

Local & 

Remote 

Implement

ation 

Image 

Recognition 

App 

Minimize 

Energy 

Usage 

Yes No 

MAUI [7] Program 

Partitioning 

Windows 

Mobile, 

Windows 

7 

Local & 

Remote 

Implement

ation 

Face 

Recognition, 

Voice 

Translation 

App. 

Response 

Time, 

Energy 

Saving & 

CPU 

Utilization. 

Yes No 

Cloudlets [8] Cloudlets Nokia 

with 

Maemo 

Linux, 

Linux 

OS 

Remote 

Implement

ation 

Linux 

App(AbiWo

rd, PathFind, 

SnapFind) 

Response 

Time 

No Yes 

GEM Cloud[9] Client-Server 

Model 

Android, 

Linux 

Remote 

Implement

ation 

Not 

Mentioned 

Response 

Time & 

Energy 

Consumpti

on 

No No 

Hyrax [10] Hadoop 

MapReduce 

Android Remote 

Implement

ation 

Sort & Word 

Count App. 

Response 

Time  

No Yes 

ECG 

Analysis[28] 

Aneka[29] 

Middleware 

All 

Wearable 

Devices. 

Remote 

Implement

ation. 

ECG-Heart 

Beat 

Waveform 

Analysis 

Response 

Time 

No Yes 

Brain-Tumor 

Analysis[30] 

Multi-Node 

Parallelization, 

Keeneland [31] 

Not 

Mentione

d. 

Remote 

Implement

ation. 

Brain tumor 

specimen’s 

analysis. 

Response 

Time, 

Speedup 

Estimation, 

Efficiency. 

Yes Yes 

EHSH 

(proposed) 

Cloud Based 

Virtualization 

Android, 

Android 

x86, 

Linux 

Local & 

Remote 

Implement

ation 

(Cloud 

Broker) 

Food 

Recognition, 

Calorie 

Measuremen

t App. 

Response 

Time, 

Battery & 

CPU 

Utilization 

Yes Yes 

 

  



4. EHSH Design  

To understand our cloud broker, it is imperative to first understand how our food classification and 

calorie measurement system works. In this section, we give a brief explanation of how EHSH detects food 

and measures their calorie. 

4.1 Single and Multiple Food Objects 

In Figure 2, we provide a block diagram of our Single and Multiple Food Object recognition and calorie 

measurement system. The system consists of the following stages: Image acquisition and pre-processing, 

image segmentation, classification, and calorie measurements.  

 

 
Figure 2: Image Analysis System 

 When the system receives  an image of food, taken by the user’s smartphone, it does preprocessing, and 

then applies different methods such as color segmentation, K-mean clustering, Texture segmentation and 

graph cut segmentation, described in [15], for segmentation and for  extracting various food portions and 

further saving them as a single food image. Then, it applies image classification to each extracted food 

portion to find out what food they are; e.g., chicken, fries, rice and cucumber for Figure 3, etc.  To ensure 

the classification is correct, it shows a menu to the user to confirm all detected food portions and to 

correct them if there are any missed recognitions. Once the user confirms or corrects the food portions, 

the calorie calculation method will be applied to each food portion and the result is shown on the screen, 

as shown in Figure 3 wherein each food portion is bounded by Region Of Interest (ROI). 



 

Figure 3: Segmentation for Multiple Food Objects on a Plate 

4.2 Mixed Food Objects 

    For computing calories for mixed foods, the system undergoes two levels of ingredient recognition. 

In the first level, the food object is tested against a generic model file that is trained with all mixed food 

objects, to recognize the food as a whole. In the second level, the food object is tested against a model file 

that is trained with all the ingredients of the specific food that was recognized in the first level. Let’s 

elaborate with an example. As shown in Figure 4, the image of a pizza is fed to the first level, and 

undergoes segmentation and feature extraction, which are followed by testing it against the generic 

trained model. When the specific food object is recognized, pizza in this case, the image is analyzed to 

determine the size of the food and its corresponding calorie value. Then a rough calorie value is 

determined, 2000 Cal in this example. Then, the image again goes through a second level of ingredient 

testing, where it is tested against the model file that is specifically trained to detect all ingredients in that 

food object, in this case, pizza ingredients. In this level, the model file is trained with a set of 100 images 

of each of peppers, pepperoni, chicken pieces, mushrooms, and other pizza ingredients. When the 

ingredients are classified, their calorie values will be mapped against the values stored in the database. 

The calorie value obtained from level 1 (in this case 2000 Cal) is an approximate value for the average 

pizza without considering its ingredients, and the calorie value obtained from level 2 (in this case 2400 

Cal) will be more accurate, as it takes into account the ingredients. Hence, the results of the second level 

testing will be the food object and its overall calorie value, 2400 Cal in this case. 

 

 

 

 

 

 

 

  



 

 
Figure 4: First (left) and Second (right) level ingredient testing of the Mixed Food Objects (pizza) [12] 

4.3  Deep Belief Network Based Feature Extraction and Classification  

For food image feature extraction and classification, deep belief networks (DBN) [23]-[26], which are 

based on the concept of deep learning, allow us to achieve higher accuracy and better generalization, even 

with small datasets. This is a well-known property of deep learning. It further gives us the flexibility to 

integrate its feature extraction model with other linear classifiers, including SVM. Hence, for EHSH’s 

food recognition part, we use DBN, wherein we initially perform unsupervised training without labelling 

the images, which further assist the deep learning network to find the suitable parameters (determines the 

hidden nodes and the edge parameters) that is further used as part of the supervised learning to achieve 

accurate results. The back-propagation algorithm as part of the supervised learning is used to compute the 

gradient of the cost function quickly [13]. Training the deep neural network in this way will allow us to 

make the necessary changes to the weight and bias, from which we obtain the desired results. We label 

these random training inputs X1, X2, …, Xm. The stochastic gradient descent algorithm then selects a 

randomly chosen mini-batch of training inputs [14], and trains with those. The weights and biases are 

further modified to accurately train the system [12]. As shown in Figure 5, DBN is a hierarchical model 

with many hidden layers in the network. Two hidden layers combine to form the RBM (Restricted 

Boltzmann Machine) which further form a stack of RBMs. Each layer, including the hidden layers, 

contain a set of neurons, ik being the input vectors, hk being the hidden neuron and Ok being the output 

neuron of the kth layer in the figure. As part of the feature extraction process, the unsupervised and 

supervised learning (backward propagation) together generate the desired feature vectors that are used by 



the classifiers (feed forward propagation). Hence, we derive the high level features from the low level 

features further. The prediction is based on the probabilistic model [10], where p(label|n input image) is 

the probability of the match with the corresponding label set.   

 
Figure 5: Deep Belief Network Model for Food Recognition 

4.4 Calorie Computation 

    For computing calories, we have proposed an auto-calibration approach in [4] which makes use of the 

distance between the user and food to calibrate the food dimensions. It further makes use of mobile 

sensors like accelerometer and magnetic field sensor to compute the distance between the food object and 

the person capturing the image. This computed distance is used to calibrate the dimensions, without using 

the user’s thumb discussed earlier. The distance value acts like a reference for calculating the block 

dimension which is further picked from the database in the cloud. The block dimensions themselves are 

used to calculate the area of the food portion, based on which the volume, hence mass, and finally the 

calorie value of the food portion is calculated.  

5. Proposed Cloud Broker  

   In this section, we describe the proposed cloud-based broker mechanism for handling single, multiple, 

and mixed foods. We specifically describe how the broker handles multiple and concurrent requests from 

a large number of users. The decision making algorithm of the broker is also described in this section.   



 

Figure 6: Intelligent Cloud Broker Architecture for Single & Multiple Food Objects 

5.1  Cloud Broker Mechanism for Handling Single and Multiple Food Objects 

     Figure 6 describes the cloud broker mechanism for handling single and multiple food objects. Initially 

the users send the food object images from their mobile devices to the cloud broker, wherein they get 

stored in the first queue. The initial queue management sequentially dispatches the images for 

segmentation. In this scenario, the first step for the cloud broker would be to perform segmentation of the 

food portions, to determine if it is a single or multiple food object. The first step (segmentation) is 

imperative in determining the food category and hence all the food objects have to sequentially go 

through this process in order for the cloud broker to efficiently allocate them to other cloud instances for 

further parallel processing. Also to avoid failures as part of the initial queue, we implemented a caching 

mechanism wherein the cache will back up the images in the queue for a fixed time-span (in our scenario 

it is 1 hour) after which will refresh the queue to add newer images. 

In the case of single food, the cloud broker will initiate Decision Algorithm 1, described in section 4.2 

below, to decide whether the image processing is to be performed locally or on a separate cloud server. 

This is decided based on the number of active user connections, statistics of the broker (CPU Utilization, 

Memory Utilization, Queue Status, etc.), and historical data (average time consumption for running deep 



learning for single food object, etc.). Once it decides to implement locally, it performs the remaining steps 

of Deep Learning and Calorie Computation on the cloud broker itself. Based on Decision Algo.1, if it 

decides to run the remaining steps on remote cloud servers, it will then index the food objects. It does this 

to maintain consistency for the food objects. After indexing the food images, it sends the images to queue 

management. The queue management maintains the queue of the food image, prioritizes them, and 

decides to offload the images, sequentially to other cloud servers. The offloading part is handled by 

Decision Algorithm 2, described in section 4.3 below, whose primary goal would be to assess statistics of 

the remote cloud servers and efficiently offload the food images to reduce the overall time consumption. 

After the image is offloaded to the remote cloud server, the remaining steps of deep learning and calorie 

computation are performed. 

As shown in the Figure 6 and described above, two decision making algorithms are running on the 

cloud broker. Decision algorithm 1 is responsible for analyzing the performance of the local cloud broker 

and checking if it is within the specified threshold levels. Decision algorithm 2 on the other hand, is 

responsible for analyzing the performance of local server and further comparing it against the remaining 3 

cloud instances. Let us now describe these two algorithms in details. 

5.2 Decision Algorithm 1 

The decision algorithm 1 determines if the image could processed locally or be dispatched to the queue 

management component, from where the images are further sent to the cloud instances. It firstly checks 

for disk space utilization followed by CPU utilization of the local cloud broker and whether it is below the 

threshold value (initially set to 85%). If the disk space utilization is not within the threshold of 85%, it 

will reject further incoming images, and reclaim space by removing the processed images from the server. 

The reason for setting the threshold value for the CPU Utilization to 85% is to allow the cloud broker to 

perform optimally without affecting the queue length. If it becomes 100 %, then the cloud broker will fail 

to function, which might result in stockpile of images in the queue management component, further 

effecting the overall response time. If the CPU utilization, is however greater than 85%, then it will send 

the image to queue management for further processing. But if the CPU utilization is below the threshold 

level, it will further check for memory utilization. Once the memory utilization is below the threshold 

level too, the local cloud broker will process the image by running deep learning to classify the food 

object, followed by calorie computation. 

5.3 Decision Algorithm 2 

Decision algorithm 2 is responsible for deciding the cloud node (instance) among the list of nodes 

(including the cloud broker) that would be take the least response time in terms of image processing and 

calorie computation. As shown in Algorithm 2, it will decide based on the following parameters: CPU 

Utilization (CU), Memory Utilization (MU) and the historical data. The historical data helps the cloud 

broker estimate the approximate time that the node my take and further assist the broker in choosing the 

cloud broker with the least timing. 

     

Algorithm 2: Decision Algorithm 2 

1: CPU Utilization for node cx  CUcx 

2: Memory Utilization for node cx  MUcx 

3: Estimated Time taken for node cx  Tcx; 

4: for image ik from images i1, i2, i3, … ik ... in do 

5: CUc1 check CU for node c1; 

6: if CUc1 < THRESHLD then 



7:  MUc1 check MU for node c1; 

8:  if MUc1 < THRESHLD then 

9:   dispatch (ik) to node c1; break; 

10:   initiateDeepLearning (ik , c1); 

11: else 

12:   

13:  check the estimated Time Tc1 for CUc1; 

14:  for each node ck do 

15:   CUck check CU for node ck; 

16:   check the estimated Time Tck for CUck; break; 

17:   MUck check MU for node ck; 

18:   check the estimated Time Tck2 for MUck; break; 

19:   if Tck > Tck2 then 

20:    Tcf  Tck; 

21:   else  

22:    Tcf  Tck2;             //where Tcf is the Desired Time 

23:   if Tc1 < Tcf then 

24:    dispatch (ik) to node c1;  

25:    initiateDeepLearning (ik ,c1); break; 

26:   else 

27:    dispatch (ik) to node ck;  

28:    initiateDeepLearning (ik , ck); break; 

29:  end for 

30: break; 

31: end for 

  

Based on the historical data, we were able to estimate the expected time that the cloud instance might 

take, depending on CPU and memory utilization. For computing the expected time taken by the cloud 

instances, we perform a linear regression model between, firstly, CPU utilization (shown in  

Figure 7) and secondly memory Utilization (shown in  

Figure 8), against the real time taken by the cloud instances to perform deep learning and calorie 

estimation steps as shown in Figure 2.  
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Figure 7: Linear Regression Model of CPU Utilization vs. time taken to process each image. 

 
 

Figure 8: Linear Regression Model of Memory Utilization vs. Time Taken to Process each image. 

We were hence be able to determine the correlation coefficient from Figure 7 and  

Figure 8 that would further enable us to determine the expected time for the cloud instances to perform 

the image processing steps in different CPU and memory utilization scenarios. We notice that the R2 for 

Memory Utilization is 0.9778, which is better as compared to the CPU Utilization (0.9623). Hence the 

readings from memory utilization are more reliable, due to which we firstly check the CPU Utilization 

followed by Memory Utilization in Decision Algo.2. As shown in Decision Algo. 2, we would further 

compare the two expected times as a result of both the linear regression models and select the largest of 

the two models. 
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5.4  Cloud Broker Mechanism for Handling Mixed Food Objects 

For mixed food objects, the cloud broker uses the two level ingredient testing algorithm described in 

section 3.3.  
 

 
Figure 9: Intelligent Cloud Broker Architecture for Mixed Food Objects 

The cloud broker sequentially pick images from the queue management (as shown in Figure 9), 

performs the first level of ingredient testing algorithm on the first image, and pass the result to Decision 

Algo.1, which would further offload it to other cloud instances for implementing the second level of 

ingredient testing algorithm. During the time the second level is being implemented by the remaining 

cloud servers, the cloud broker would pick the 2nd image and start the first level classification step. In this 

manner, the cloud broker would be efficiently handle the processing of the mixed food objects in the 

cloud. 

5.5 Indexing Food Images 

Indexing the food images is an essential part of the system, as it ensures the segmented food object 

images are consistently tagged. Indexing the food objects means to tag the segmented food images with a 

sequence number, to ensure the food images are processed in the same sequence and the results are 



further retrieved in the same manner. For example, multiple food objects on the same plate, including 

orange and apple will be tagged with 1a and 1b, indicating that 1 is referring to user 1, a refers to the 

orange, and b to the apple, both for user 1. This also ensures the aforementioned consistency at the time of 

integration of the calorie and food item information from different cloud instances. The calorie value 

along with the classified food object name is sent as one cohesive answer to the mobile device. 

For mixed food objects, the indexing of the food images ensures that the values from level 1 and level 2 

are consistently tagged, in order to be indexed at the time of information retrieval from different cloud 

instances. 

5.6 Scheduling and Queue Management 

Once decision algorithm 1 decides to offload the target image, the image is indexed after which it is 

placed in the queue. The queue management component stores the images in the queue and further 

dispatches them to decision algorithm 2. The images are dispatched in the batch of 10 images, wherein 

they are further sent to the remote cloud instances for processing. The images are dispatched based on the 

First Come First Served (FCFS) scheduling mechanism, wherein the images that were sent to the queue 

first, will be the first to be dispatched to the cloud instances. 

1. Dynamic Cloud Allocation Mechanism 

Based on the current model, in order to address the issue of scalability when parallel food processing 

requests is received by the cloud broker, based on decision algorithm 1 and decision algorithm 2, the 

broker makes decision to dispatch the food images to the remaining three cloud instances. However, from 

the results we concluded that after 60 images, the system reached to its threshold of efficiently processing 

the food images and the time increased cumulatively. One way to address the issue was to add more cloud 

instances to the current architecture for improving performance. But adding more cloud instances, would 

lead to under-utilization of the cloud resources and large cost for maintenance during off-peak time, when 

less parallel requests are received by the broker. We hence modified our decision algorithm 2 and 

incorporated a technique wherein the system was able to dynamically add and remove cloud instances 

whenever the overall time of processing was severely impacted. In this manner, the system was intelligent 

to decide on when and how many cloud instances would be needed to process the food images on a given 

time instance. The ability of the system to take intelligent decision to add more cloud instances other than 

the existing 3 cloud instances and to further remove the instances to ensure the overall time taken to 

process the food images when sent in parallel, remains consistent (the condition that avg. time is greater 

than 70 seconds) as shown in Figure 3. This approach allows us to achieve the scalability in the system to 

handle multiple requests when sent in parallel. In our experimental setup, cloud instances were added 

when the total number of parallel requests were 50, 60 and 80 parallel image processing requests in order 

to ensure the overall response time was less than 70 seconds. 

2. Scheduling and Queue Management 

We restructured the scheduling algorithm to incorporate priority scheduling along with the existing FCFS 

scheduling and also explained 3 independent food queues (Single, Multiple and Mixed Food Queues). 

Since the overall time for calorie computation and deep learning algorithm for single food object 

processing is less, all the single food object images will be sent to single food queue to cloud instance 1. 

For the multiple food queue, since the queue included the segmented food objects, the total calorie value 

of multiple food object can only be sent when all the indexed food items are processed.  For example, if 

there were 3 food objects in plate 1 (1a, 1b and 1c), the final calorie results will only be sent to the user 

when each of the food objects (1a, 1b and 1c) has been received from cloud instance. For mixed food 



objects, since the images in the queue were part of the second iteration, the overall time taken to process 

the single food object was ranging from 8-10 seconds which was less than processing a single food 

object. 

 

 

Figure 10: Scheduling & Queue Management 

Since the time taken to process the second iteration of mixed food image is less (considering the smaller 

trained model file M2 when compared to generic model file (M1)), the system will preempt the single 

food queue in order to give higher priority to mixed food image over the single food image only if the 

single food queue is less than 5 food images. The reason for this condition was, due to the cloud instance 

ability to process images in batch of 5 images in parallel. If the condition is not met, then single food 

image will be given priority over the mixed food image and will be processed with the dedicated cloud 

instance 1, and the mixed food image will be processed as part of the existing methodology wherein it 

would wait for remaining cloud instances to finish the current batch processing. 

To provide a better understanding of the queue management, we proposed a queue management 

algorithm which includes scenario for each of the queues including: Initial Queue Qi where the food 

images are sequentially dispatched to the segmentation algorithm, Single Queue Qs which includes the 

single food object after segmentation, multiple queue Qm which includes more than one and less than 

four food objects after segmentation and mixed queue Qmx which includes food objects in the second 

level of the  ingredient testing. 
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Algorithm 3: Queue Management  

1: Segmentation of image ik  S(ik) 

2: Initiating Decision Algorithm 1 for image ik  decisionAlgo1(ik) 

3: Count of Total number of ROI from Segmentation S(ik) count (S(ik)) 

4: Level of the Image ik processed  in the 2nd Level Ingredient Testing  level (ik) 

5. Initial Queue, Single Food Queue, Multiple Food Queue, Mixed Food Queue  Qi, Qs, Qm, Qmx 

6. Image Ik pre-empting Single Queue Qs preempt (Qs(ik))                                                  

7: for image ik from images i1, i2, i3, … ik ... in do 

8: QueueM(ik) { 

9:    Switch (Q){ 

10:      Case (Qi,): segmentation (ik)                                                    

11:                            decisionAlgo1(ik);                                                  

12:                            if (count (S(ik)) = = 1) then 

13:                    dispatch (ik) to queue (Qs) 

14:                            else if (count (S(ik)) > 1 && count (S(ik)) < 4) 

15:                     for image ik from images i1, i2, i3, … ikn ... in do 

16:                       ikn  indexFoodImage(ik)                            

17:                        dispatch (ikn) to queue (Qm) 

18:                                  end for 

19:                           else if (level(ik) = = 2)                                   

20:                                   dispatch (ik) to queue (Qmx) 

21:      Case (Qs): append (ik, Qs)                                                        

22:                           if (j(ik) = end) 

23:                             decisionAlgo2(ik) 

24:                           else wait(Qi(ik)) 

25:      Case (Qm): append (ik, Qm) 

26:                           if (j(ik) = end) 

27:                               decisionAlgo2(ik) 

28:                           else wait (Qi(ik)) 

29:      Case (Qmx): append (ik, Qm) 

30:                            if (j(ik) = end && length (Qs) < 5 ) 

31:                               preempt (Qs(ik))                                              

32:                            else if ( j(ik) = end && length (Qs) > 5) 

33:                                decisionAlgo2(ik) 

34:                            else wait(Qmx(ik)) 

35:      default (Qi,): wait (Qi(ik)) 

36:                   } 

37: end for 

 

Once the images are dispatched from the queue to the remote cloud server, the images are processed in 

parallel on multiple threads. On each thread, the cloud instance runs the deep learning algorithm on the 

image and further computes the calorie content based on the auto-calibration method. Processing the 

images inside the queue in parallel ensures that the queue is never stockpiled with many images, further 

ensuring the desired response time from the system.  

  



6. Implementation Results 

In this section, we report on the experimental setup and results. For the experimental setup, we had 

different cloud instances setups for the training and the testing the food images. We will also explain the 

simulations performed on the central cloud broker and the setup we used in order to test parallel 

processing of the intelligent cloud broker. 

Training Setup  

For GPU processing, we used the g2.2xlarge Amazon EC2 cloud instance wherein we installed CUDA 

SDK of version 6.5 on top of Ubuntu Server 14.04 LTS (HVM) [12]. After installing CUDA, we made 

sure to install Cudamat. For installing CUDA, we had to make sure of configuring the Nvidia driver on 

the cloud instance. We also installed Python 2.7, Numpy, and Scipy on top of our Ubuntu 14.04 cloud 

instance and further made it suitable to deploy the training models [12]. 

Testing Setup 

The tests were performed on multiple cloud instances, which were further integrated with the central 

cloud broker for improving the overall timing results for parallel processing of food images. For testing 

the deep learning models, we did not install CUDA on top of t2.micro Amazon EC2 cloud instance as we 

performed feature extraction for every test image [12]. We further installed HDF5 and OpenCV on 

t2.micro instance [12]. 

For running the systems shown in Figure 6 and Figure 9, we used t2.medium as the central cloud 

broker, which was further integrated to three other cloud instances (t2.micro) in the cloud provided by 

AWS. For achieving parallel processing from multiple mobile phones, we had established 5 virtual 

emulators, with Android x86 operating system, and 5 mobile devices running our EHSH application. We 

used the concept of cloud based virtualization (explained in [6]), for achieving multiple virtual Android 

emulators. As we known from [6], Android x86 emulator is faster compared to hardware assisted Android 

emulator. The smartphone that we used was the Samsung Galaxy S4, which has been upgraded to 

Android 4.4.2 KitKat. The Android x86 emulator used was an Android 4.4 KitKat image. The 

configuration of our physical device Samsung Galaxy S4 included an octa-core processor and a 1.6 GHz 

Quad + 1.2 GHz Quad PU speed with 2GB of RAM [22]. 

Results 

As shown in Figure 11, we initially compute the total time taken for each of the components described 

in Figure 6 and Figure 9. This includes the various components of EHSH: food recognition (deep learning 

feature extraction and deep learning classification) and calorie measurement (distance based auto-

calibrated calorie computation) along with different components of the intelligent cloud broker (Decision 

Algo.1 and Decision Algo.2 explained in sections 4.2 and 4.3). Based on Figure 11 we are able to note the 

overall time taken for each of the mentioned food categories (single food object, multiple food objects and 

mixed food object). We can observe that Deep Learning feature extraction for each food category 

consumes a maximum time of 42.92% of the overall time for processing single food objects. The same is 

applicable to other food categories wherein it takes, 44.84%, 43.32% and 47.80% of the overall time for 

Multiple Food Object (2 and 3 Food Objects) and Mixed Food Objects.  

 

 



 
Figure 11: Time Taken for each Food Category in various EHSH Components 

Decision Algo.1, which decides whether or not to process the food objects locally, consumes the least 

amount of time with as little as 3.29 % of the overall time taken in the case of Mixed Food object. From 

this, we can note that with the inclusion of Decision Algo.1 into the overall system, the time will not be 

significantly impacted. Instead, it helps in lowering the time during parallel processing, which can be seen 

in Figure 11. The same could be observed with Decision Algo.2, which also takes less time compared to 

the other components except for Decision Algo.1, which could be explained by the fact that Decision 

Algo.2 checks the viability of each and every cloud instance (including the cloud broker) and determines 

where to offload the food image for processing. It hence takes approximately twice as much time as 

Decision Algo. 1. Also from Figure 11, we can observe that the time taken for segmentation for multiple 

food objects increases with increasing number of food objects, which could be explained by the fact that 

additional ROIs have to be determined and further segmented by the segmentation algorithm. Also the 

time taken for the Mixed Food Objects is approximately twice taken by single food objects, due to the 

additional level explained in Section 3.2.  

Figure 12, describes the time taken by different Image sets, when processed in parallel in the cloud. 

With the integration of the central cloud broker into the system, we are able to test the scalability of the 

system. As shown in Figure 12, the time taken to process the initial 5 images in each case remained 

approximately similar with 14.9 seconds. With the addition of 15 more images, we observe an increase of 

16.67% in the average overall time consumption of each of the remaining images. The time further 

increased by 40% (as compared to 20 images in parallel) for 40 images running in parallel. For the last 60 

images processed in parallel, the increase was almost to 37.5 % over the previous images. 
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Figure 12: Average Time Consumption for Parallel Processing of Images by the Cloud Broker (without 

dynamic cloud allocation) 

Hence with the use of three t.micro cloud instances, the central cloud broker was able to efficiently 

maintain the average time of the food image processing, till 40 images, where the total time was 61.6 

seconds. However, with further increase in the number of images to be processed in parallel, the broker 

was unable to mitigate the time and instead got increased in a cumulative manner in a non-dynamic cloud 

allocation mechanism. But, comparing these results to the scenario where the cloud broker was not used 

at all, we see a difference of 45% faster overall time taken to process in the case of 20 images when 

processed in parallel. 

Based on these results, we can interpret that the intelligent cloud broker was essential in achieving a 

45% gain in the overall time taken to process the images in parallel in the cloud. However, without the 

dynamic cloud allocation model, the cloud broker doesn’t optimally perform in case of parallel images 

greater than 60, wherein the overall time increases. Hence, as discussed in section 4.6 (Scheduling and 

Queue Management), we have introduced the dynamic cloud allocation mechanism which allows the 

system to intelligently add the cloud instances when the system gauges that the average time consumption 

for processing parallel images will be greater than 70 seconds. Also, in order to address the issue of 

under-utilization of these cloud resources, the system also decides on removing the cloud instances, when 

not in use. The graph (Figure 13) below compares the total parallel image requests with the average time 

consumption (sec.), with and without the dynamic cloud allocation mechanism. The results obtained from 

without dynamic cloud allocation model is based on Figure 12 (Average time consumption for parallel 

processing of images by cloud broker) in our paper. The time taken to process parallel 5 images took 14.9 

seconds in both the scenarios (with and without dynamic cloud allocation). 



 

Figure 13: Parallel Images v/s Average Time Consumption (sec.) 

The time again remains the same to process 40 images wherein it took 61.6 seconds to process 40 images. 

Based on our requirements, our goal was to ensure the overall time to process the image, calorie 

computation of the food image and returning the result back to user’s mobile should be less than 70 

seconds. With the use of dynamic cloud allocation mechanism, we were able to bring down the average 

time consumption by 77.21 % when 60 images were processed in parallel.  The overall time average 

further improved for 80 images, wherein the 135.93% improvement was observed when compared to non-

dynamic cloud allocation system. 

Also, in order to ensure efficient utilization of cloud resources and at the same time ensure the overall 

response time of the processing the image remains less than 70 seconds, the cloud nodes had to be 

strategically increased and even decreased when not in use. The graph Figure 14 below specifies the cloud 

nodes required for the processing a set of parallel image requests. For processing 5 to 40 parallel image 

requests we observed that system used 1 Cloud Broker and 3 Micro Cloud instances making it 4 cloud 

nodes to ensure the time remains less than 70 seconds. However the cloud nodes had to be increased to 5 

and 6 respectively to process 50 and 60 images. 
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  Figure 14: Comparison between the number of cloud nodes and the parallel image request (Avg. time < 70 sec.). 

As shown in Table 2, in [32] which is also a food based image recognitions system, they build a Hadoop 

based cloud model and observed 77.38% improvement in response time when processing the image 

requests in parallel. In our proposed EHSH system, we observed an improvement of 77.21% and 135.93% 

while processing 40 and 60 images in parallel. These improvements are a result of our dynamic cloud 

allocation model combined with the efficient queue management algorithm that intelligently handled the 

incoming request reducing the overall response time.  

Table 2: Comparisons with e-health Models 

e_Health 

Models 

Cloud 

Computing 

Model 

Processing 

Time 

Improvements 

Improvement 

Observed 

Food Image 

Recognition 

[32] 

Pervasive Cloud 

Computing, 

hadoop 

77.38% Parallel Images 

processing 

EHSH Food 

Recognition 

Decision Making, 

Dynamic Cloud 

77.21%, 

135.93% 

Parallel Image 

Processing 

 

7. Conclusions and Future Work 

In this paper, we have introduced an intelligent cloud broker for EHSH, supporting different food 

categories of Single Food Object, Multiple Food Object and Mixed Food Object. We have further 

introduced a 2 level ingredient testing approach for the mixed food category. We then introduced two 

decision algorithms (Decision Algo. 1 and Decision Algo. 2) that enabled the cloud broker to make 

decisions of whether or not to offload to other cloud instances and if so to which cloud instance in 

particular. We discussed the various components of the intelligent cloud broker, including the food 

recognition components (deep learning feature extraction and deep learning classification model), calorie 

measurement, indexing the food images, scheduling and queue management. Finally, scalability, 

consistency, and the performance of the system in terms of response time was studied and presented. The 

proposed model helped us achieve an improved performance and efficient utilization of the cloud 

resources on one hand and also to address the scalability aspect of the system, wherein the system was 
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able to process parallel requests coming from different users. For processing parallel requests, if the 

system continuously adds more cloud instances it would lead to increased cost and under-utilization of 

resources. Hence, we introduced dynamic resource allocation mechanism, wherein the system will 

strategically add and remove the cloud instances depending on the resource requirement. This will ensure 

that the system will not add additional resources exponentially, but rather gauge the requirement and 

accordingly take decision to add and remove the cloud resources. 

As part of the future work, we would like to evaluate the proposed dynamic cloud allocation mechanism 

for improving the overall accuracy of the system and the the impact of adding more GPU as against CPU 

cores in cloud environment, as the deep learning algorithm is severely impacted by the GPU processing, 

which we used in the training phase. Although our cloud broker model is specifically designed for the 

various food categories and is the first of its kind, we would however like to compare it to other models 

for non-food categories on common metrics.  
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