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Redundancy Allocation Based on Weighted 

Mismatch-Rate Slope for Multiple Description 

Video Coding 

Mohammad Kazemi, Razib Iqbal, Shervin Shirmohammadi 

Abstract –Multiple Description Coding (MDC) is a robust coding technique for video transmission over error 

prone networks, whereby the video is encoded into multiple descriptions with some redundancy between the 

descriptions. This redundancy leads to error resiliency in the case of packet loss during the network 

transport. However, the amount of this redundancy has a critical role in MDC performance. Therefore, a 

crucial problem in MDC is to find what the optimum amount of redundancy budget is, and then how this 

redundancy budget can be optimally allocated to the frames.  To solve this problem, we propose a scheme in 

which the redundancy budget is allocated to the frames based on the weighted mismatch-rate slopes so that 

this additional bitrate can attain maximum distortion reduction. The redundancy is added gradually so that 

fine tuning of the utilized bitrate is achievable. We have verified our proposed scheme by implementing it in 

H.264/AVC reference software JM16.0, and running experiments against two representative reference 

methods. Our experiments show that our scheme not only minimizes the end-to-end distortion with a rate- 

distortion performance that is better than the reference methods, especially for high PLRs, but also entirely 

uses the available bandwidth, unlike the reference methods.  

Index Terms – Multiple description coding (MDC), redundancy allocation, rate-distortion optimization, video 

coding,  video transmission 
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I. INTRODUCTION 

Digital video transmission over lossy packet networks is a challenging problem due to the possible loss 

of synchronization and error propagation in the video signal. Multiple description coding (MDC) is a 

viable solution for graceful degradation of the reproduced content, especially at higher loss rate [1][2]. In 

MDC, the video signal is coded into multiple correlated descriptions, each transmitted separately. Each of 

these descriptions can be decoded independently and also, the descriptions can be merged when more 

than one description is available which is leading to higher video quality. If all descriptions are available, 

then they are decoded by the central decoder and the incurred distortion is called central distortion; on the 

other hand, if one or more descriptions are not received, then the side decoder is used and the resulting 

distortion is called side distortion [24].  
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Fig. 1. Multiple description coding technique with two descriptions 

In Fig. 1, the MDC technique with two descriptions (as an example) is illustrated. In this figure, both 

descriptions represent the same video content; however, they have different MDC parameters. The 

encoder can adjust these MDC parameters to make the descriptions similar or dissimilar.  
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More similarity will lead to better error resiliency, but will also lead to more redundancy and higher 

bitrate in the transmitted video. If two identical descriptions are sent over two different channels and are 

successfully received, then half of the received information has no value and is redundant. Therefore, in 

the cases that both descriptions will probably be received correctly, such similarity is not advantageous 

because bandwidth is wasted for no gain. On the other hand, the more different the descriptions, the more 

different the side and central decoder outputs. This mismatch of the side and central decoder outputs 

contributes to error propagation in MDC [24], because the reconstructed reference frames at the decoder 

need to be the same as the reference frames at the encoder, otherwise the frames predicted from these 

reference frames cannot be reconstructed correctly. The reference frames at the encoder are exactly 

matched with the central decoder outputs. Therefore, decoding a prediction reference frame by the side 

decoder causes error propagation. This error keeps propagating to the subsequent P or B-frames until a 

correct I-frame has arrived. Hence, with more different descriptions, we will have more destructive error 

propagation. Error propagation is not limited to MDC, it is also a challenge in single description coding 

when the video stream has been sent over noisy channels [3]-[6]. 

Therefore, finding the optimum similarity within the descriptions such that both resource usage and 

error propagation are considered, becomes a difficult problem. This similarity can be controlled by the 

redundancy budget: with more redundancy budget we can have more similar descriptions, and vice versa. 

Towards this, we need to determine the amount of this redundancy budget, and also we need to efficiently 

allocate this redundancy budget to the frames of the video. Video frames, based on their order in the 

Group Of Picture (GOP), have different impacts on error propagation; and this necessitates different 

redundancies [7]. Therefore to optimize MDCs, we must solve a constraint optimization problem for each 

GOP. A common solution for the constraint problems is the Lagrangian approach. This approach is 

usually computationally complex because it needs to solve a system of nonlinear equations (as large as 

the GOP size) several times until the rate constraint is met. It might also encounter convergence problems. 

To solve the objective function with less effort, some fast algorithms with simplifying assumptions have 
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been developed [13][14]. However, these assumptions eventually affect the optimization outputs, as we 

will show later in this paper.  

We propose a method, called maximum weighted mismatch-rate slope (WMRS), in which there is no 

need to solve the system of nonlinear equations commonly found in optimization algorithms. Therefore, 

our method does not have the convergence problem, and it has low complexity which is comparable with 

the fast algorithms developed in [13] and [14]. Allocating an amount of redundancy to every frame leads 

to distortion reduction, however, if the frame with maximum weighted mismatch-rate slope is selected 

then we will have the most reduction in distortion. After allocating this amount of redundancy, the slope 

of this frame is updated and then it competes again with the other frames for more redundancy. This 

procedure continues as long as the redundancy budget has not been exhausted. This redundancy budget is 

a portion of the total bitrate and its amount is determined taking into account the channel condition and 

the video content. In WMRS, we find the global optimum point with a sequence of locally optimum 

decisions. Furthermore, WMRS utilizes the available bandwidth efficiently because the redundancy rate is 

allocated in a step-by-step manner and with fine resolution. Therefore, compared to existing works, 

WMRS consumes the bitrate budget completely. 

A. Related Work 

In the literature, there is evidence of existing research addressing total redundancy calculation, e.g. [8], 

in which the total redundancy is equally divided among the frames; whereas in our work we allocate the 

redundancy to each frame in an optimum way. The optimization algorithms presented in [9][10] are based 

on Recursive Optimal Per-pixel Estimate (ROPE) algorithm [10]. In ROPE, in a recursive manner, the 

first and second moments of the reconstructed pixel value are computed, and then the expected distortion 

associated with that pixel is minimized. However, this method needs pixel-wise computations and hence 

is too complex. In [12], authors calculate the contribution of each Macroblock (MB) in motion 

compensation of the future frames which is then used to determine the importance of each MB in error 

propagation. Then, based on the MB’s importance, the redundancy to be allocated to each MB is 
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calculated. It is noteworthy that block-level motion path analysis is computationally complex and it also 

needs the motion information of the future frames. Therefore, the encoder either has to wait to capture the 

motion information of the next frames, or it needs to estimate them, which in most cases is not possible, 

for example in sport videos. An optimization technique based on conventional Lagrangian optimization 

has been presented in [15]. This technique is suitable for a specific MDC scheme in which the MDC 

parameters’ variation domain is naturally limited. But this MDC scheme is not compatible with the 

standard, and it does not provide enough redundancy tunability. Authors in [13] and [14] also solved the 

optimization problem with Lagrangian approach, but with some approximations in the modeling and/or in 

the optimization process. In particular, in [13], the mismatch model is for the case of low redundancy rate, 

and hence it is not accurate enough. In addition, the authors assumed a power transfer function for error 

propagation modeling which is only valid for low Packet Loss Rate (PLR). As a result, they formulated a 

very simple and straightforward solution for the Lagrange problem; however, their rate-distortion 

performance is not as promising as ours, as will be shown in Section VI. In [14], authors presented a more 

accurate modeling at a cost of higher complexity compared to [13]. However, in [14], authors did not take 

into account the variation of temporal error propagation factor with the redundancy rate; therefore, their 

rate-distortion curve is also lower than ours, as shown in Section VI. Finally, we show in Section IV that 

WMRS can optimally adjust the parameters so that the given bandwidth is utilized completely, which is 

not the case for [13] and [14].  

The rest of this paper is organized as follows. The objective function for our proposed MDC 

optimization method is described in Section II. In Section III, we describe the process to optimally 

determine the redundancy budget and allocate it among the frames. Bitrate tunability of the algorithm is 

presented in Section IV. The complexity and how to manage delay of the algorithm are discussed in 

Section V. Experimental results showing the performance of the proposed method are presented in 

Section VI, and finally, we present our concluding remarks in Section VII. 
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II. THE MDC SCHEME AND THE OBJECTIVE FUNCTION 

A. Preliminaries 

In the literature, there are various MDC schemes, especially in spatial [19][20], temporal [21][22], 

frequency [12]-[18] and compressed [23] domains. In [24], we have provided a comparative study of 

these schemes. The MDC under study in this paper is a frequency domain scheme originally proposed 

in [13]. This scheme is easily implementable and has some useful features such as standard compatibility 

and redundancy tunability. In this two-description MDC scheme, the DCT coefficients are coded twice 

using two different quantization parameters (𝑄𝑃). The coefficients quantized with lower 𝑄𝑃 are coded as 

Primary slices and the coefficients quantized with higher 𝑄𝑃 are coded as Redundant slices, named as 

Primary coefficients and Redundant coefficients, respectively. These primary and redundant slices are 

alternatively inserted into the descriptions when encoding. On the receiver side, when both descriptions 

are available, only primary coefficients are used and redundant coefficients are discarded. Otherwise, if 

the primary coefficients are not received correctly, the redundant coefficients are decoded. In this MDC 

scheme, the redundancy rate can be easily controlled by the quantization parameter of the redundant 

coefficients, 𝑄𝑃𝑟.  

Now, for a channel with the PLR of 𝑃0 , the expected end-to-end distortion for the 𝑖th frame of the GOP, 

as stated in [14], is: 

𝐷𝑖 = (1 − 𝑃0)𝐷𝑝,𝑖 +   𝑃0(1 − 𝑃0)𝐷𝑟,𝑖 +  𝑃0(1 − 𝑃0) ∑ 𝐷𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ,𝑗 𝑓[𝑖 − 𝑗]

𝑖−1

𝑗=1

 (1) 

Note that in (1), error concealment distortion has been removed because this distortion is highly related to 

the error concealment technique and the motion activity of the lost area, and it slightly affects the MDC 

optimization. In the above equation, 𝐷𝑝,𝑖  is the distortion resulting from decoding the primary 

coefficients, or simply, primary distortion, which is defined as follows: 

𝐷𝑝,𝑖 = 𝐸 [(𝑥𝑖 − 𝑥𝑝,𝑖)
2

] (2) 
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In (2), 𝑥𝑖 and 𝑥𝑝,𝑖 represent the original and reconstructed primary coefficients, respectively. Similarly, 

𝐷𝑟,𝑖 in (1) is the redundant distortion, which is defined by (3): 

𝐷𝑟,𝑖 = 𝐸 [(𝑥𝑖 − 𝑥𝑟,𝑖)
2

] (3) 

 in which 𝑥𝑟,𝑖 is the reconstructed redundant coefficient. 𝐷𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ in (1) originates from the difference 

between the decoded primary and redundant coefficients as defined by (4): 

𝐷𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ,𝑖 = 𝐸 [(𝑥̂𝑝,𝑖 −  𝑥𝑟,𝑖)
2

] (4) 

The last term of (1) can be denoted as: 

∑ 𝐷𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ,𝑗 𝑓[𝑖 − 𝑗]

𝑖−1

𝑗=1

=  𝛿𝑖 (5) 

where 𝛿𝑖 is the accumulated mismatch from all previously decoded reference frames, and this is the term 

that represents the error propagation in MDC. Error propagation has a decay factor which is modeled by a 

power transfer function in (5), 𝑓[𝑖 − 𝑗]. We compute this power transfer function as per equation (6):  

𝑓[𝑖 − 𝑗] =  𝑎(𝑖−𝑗) ∏ (1 − 𝛽𝑡)

𝑖

𝑡=𝑗+1

 (6) 

This function includes the mismatch attenuation due to intra-coded blocks, denoted as (1 − 𝛽𝑡), as well as 

attenuation due to the deblocking filter and sub-pixel motion compensation, denoted by parameter 𝑎, 

which is set to 0.92 [14]. Now, equation (1) can be rewritten as: 

𝐷𝑖 = (1 − 𝑃0)[𝐷𝑝,𝑖 +   𝑃0(𝐷𝑟,𝑖 + δ𝑖)] (7) 

By averaging the frames’ distortions given by (7), we can now obtain the end-to-end distortion of a GOP 

as: 

𝐷𝑒2𝑒 =  
(1 − 𝑃0)

𝑁
∑[𝐷𝑝,𝑖 +  𝑃0(𝐷𝑟,𝑖 + δ𝑖)]

𝑁

𝑖=1

 (8) 

and then the objective function as follows: 
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min
{𝑸𝑷𝒑,𝑸𝑷𝒓}

{𝐷𝑒2𝑒} = min
{𝑸𝑷𝒑,𝑸𝑷𝒓}

{
(1 − 𝑃0)

𝑁
∑[𝐷𝑝,𝑖 +   𝑃0(𝐷𝑟,𝑖 + δ𝑖)]

𝑁

𝑖=1

} 

𝑠. 𝑡.   ∑[𝑅𝑝,𝑖 +  𝑅𝑟,𝑖]

𝑁

𝑖=1

≤ 𝑅𝑡 

(9) 

In (9), 𝑁  is the size of GOP, 𝑸𝑷𝒑  and 𝑸𝑷𝒓  are 𝑁 -size vectors of quantization parameters used for 

primary and redundant coefficients of the frames, respectively, 𝑅𝑝,𝑖  and 𝑅𝑟,𝑖  are the primary and 

redundant rates of the 𝑖th frame, and 𝑅𝑡 is the total rate budget for the GOP under consideration. 

The basic solution for the above constrained problems is Lagrangian approach. For example, the 

Lagrangian function of (9) can be written as follows: 

min
{𝑸𝑷𝒑,𝑸𝑷𝒓}

{𝐽} =  min
{𝑸𝑷𝒑,𝑸𝑷𝒓}

{
(1 − 𝑃0)

𝑁
∑[𝐷𝑝,𝑖 +   𝑃0(𝐷𝑟,𝑖 +  δ𝑖)]

𝑁

𝑖=1

 

+  𝜆 (∑[𝑅𝑝,𝑖 +  𝑅𝑟,𝑖]

𝑁

𝑖=1

− 𝑅𝑟,𝑡)} 

(10) 

where 𝜆 > 0 is the Lagrange parameter. As shown in [34], the optimal point of problem (10) is the 

solution for (9), but the resultant constraint may not be 𝑅𝑟,𝑡 and it depends on the value of 𝜆. By properly 

adjusting the value of 𝜆 iteratively, the bitrate constraint can also be satisfied. For 𝑁 = 30, however, at 

each iteration of 𝜆 , we need to find two 30-size vectors 𝑸𝑷𝒑  and 𝑸𝑷𝒓  which minimize function 𝑱 . 

Therefore, for a sufficient number of 𝜆 values, as many as needed to meet the rate constraint, a system of 

nonlinear equations must be solved which makes this approach very complex and it might encounter a 

convergence problem. These issues will be more crucial for larger GOP sizes. Other approaches such as 

Sequential Quadratic Programming (SQP) [35] are also applicable, but as we will show later, SQP still 

suffers from extensive computational complexity.  

However, the underlying variables are actually discrete, and solving the continuous functions for this 

purpose in the above scenario is not efficient. Therefore, exploiting the discrete nature of the problem, we 

propose our method that does not need to solve the system of nonlinear equations, and does not have any 
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convergence problem, plus it has low complexity.  

B. Problem formulation for the quantization parameter of redundant coefficients  

We first assume that 𝑸𝑷𝒑 has been determined; therefore, the objective function of (9) can be reduced 

to: 

min
{𝑸𝑷𝒓}

{
1

𝑁
∑(𝐷𝑟,𝑖 +  δ𝑖)

𝑁

𝑖=1

} 

𝑠. 𝑡.   ∑ 𝑅𝑟,𝑖

𝑁

𝑖=1

≤ 𝑅𝑟,𝑡 

(11) 

where 𝑅𝑟,𝑡  represents the total rate budget allocated to redundant coefficients, which we refer to as 

redundancy budget in this paper. For simplicity, in (11), we removed the coefficient 𝑃0(1 − 𝑃0)  of 

equation (9) because it is a constant term and has no role in minimization. Therefore, as can be seen from 

(11), the optimal redundancy allocation does not depend on the PLR. We will discuss the role of PLR to 

determine the optimal redundancy budget in section III.B. Now, by substituting (5) in (11) and 

simplifying, we get: 

𝑚𝑖𝑛
{𝑸𝑷𝒓}

{
1

𝑁
∑(𝐷𝑟,𝑖 + 𝛤𝑖𝐷𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ,𝑖 )

𝑁

𝑖=1

} =  𝑚𝑖𝑛
{𝑸𝑷𝒓}

{
1

𝑁
∑ 𝛥𝑖

𝑁

𝑖=1

} = 𝑚𝑖𝑛
{𝑸𝑷𝒓}

{𝛥𝐺𝑂𝑃} 

𝑠. 𝑡  ∑ 𝑅𝑟,𝑖

𝑁

𝑖=1

≤ 𝑅𝑟,𝑡 

(12) 

where 

𝛥𝑖 = 𝐷𝑟,𝑖 +   𝛤𝑖𝐷𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ,𝑖  (13) 

𝛥𝑖  represents the contribution of the redundant and mismatch distortions of frame 𝑖  in the overall 

distortion of the GOP. 𝛤𝑖 in (13) denotes the weight of the mismatch distortion and is obtained  as follows: 

Γ𝑖 = ∑ 𝑓[𝑘 − 𝑖]

𝑁

𝑘=𝑖+1

= ∑ [𝑎(𝑘−𝑖) ∏ (1 − 𝛽𝑡)

𝑘

𝑡=𝑖+1

]

𝑁

𝑘=𝑖+1

 (14) 
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As per equation (14), 𝛤𝑖 represents this fact that the mismatch in frame 𝑖 (𝐷𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ,𝑖) will exist in the 

next 𝑁 − 𝑖 frames, frame 𝑖 + 1 to frame 𝑁. As we mentioned earlier, the weights are not the same for 

frames of  GOP. In the next section, we address this essential property for redundancy allocation. 

III. PROPOSED METHOD 

In this section, the proposed method for optimal redundancy allocation is presented. In the first 

subsection, given the redundancy budget, the optimum redundancy for each frame is determined using 

WMRS. In the second subsection, at the given PLR, the optimum redundancy budget in order to have 

minimum end-to-end distortion is obtained.  

A. Redundancy allocation based on weighted mismatch-rate slope (WMRS) 

We first analyze the behavior of 𝛥𝑖 (defined in (13)) with redundancy. For this purpose, we obtain the 

variation of 𝛥𝑖 for two frames of Mobile and Foreman sequences where GOP size = 30,  𝑄𝑃𝑝 = 20 and 

the same  𝑄𝑃𝑟  is used for all frames which varies from 𝑄𝑃𝑝 to 𝑄𝑃𝑝 + 10. Fig. 2 shows the variation of 𝛥 

with redundancy for 5th  and 25th  frames as well as Δ𝐺𝑂𝑃 (the average of Δ𝑖‘s, as defined in (12)). The 

absolute amount of redundancy does not make sense and hence we use normalized redundancy as the 

horizontal axis of the figures. The normalized redundancy is defined as follows: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 =
𝑅𝑟 ,𝑡

𝑅𝑝 ,𝑡

 
(15) 

where 𝑅𝑝 ,𝑡 is the total rate needed for coding the primary coefficients. As mentioned earlier, in this sub-

section we assumed that 𝑸𝑷𝒑 is known and fixed, and therefore, 𝑅𝑝 ,𝑡 is constant. 
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(a) (b) 

Fig. 2.  Variation of Δ𝑖  when equal 𝑄𝑃𝑟 is used for all frames for (a) Mobile and (b) Foreman sequences 

From Fig. 2 we can observe that: 

a) As the normalized redundancy increases, 𝛥𝑖 decreases because at higher redundancies 𝑄𝑃𝑝 and 𝑄𝑃𝑟 

are more similar. At a normalized redundancy equal to 1 ,𝑄𝑃𝑝 = 𝑄𝑃𝑟  ,  𝐷𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ,𝑖 = 0, and  𝛥𝑖 

reaches its minimum value which is  𝐷𝑟,𝑖. 

b) 𝛥𝑖 is relatively larger for the initial frames of the GOP.  Mathematically, the main reason is the larger 

weights ( 𝛤𝑖 ) for those frames. It can be explained intuitively also –any mismatch in the 5th frame 

propagates to the next 25 frames of the GOP (with GOP size of 30), while any mismatch in the 25th 

frame propagates to the next 5 frames only.  

c) The variables 𝑄𝑃𝑟 are integers and cannot be varied continuously. Therefore, we cannot continuously 

change the normalized redundancy and hence 𝛥. This means that there are a limited number of 

feasible 𝛥-redundancy points, which is an important factor in deciding the optimization algorithm. 

d) 𝛥𝑖 is larger for Mobile than for Foreman sequence because Mobile video has more content. 

After analyzing the behavior of 𝛥 with variation in redundancy, we now explain our WMRS method. In 

this method, we do not solve any equation such as that given by (10); rather, we gradually increase the 

redundancy of the frames so that the average distortion is minimized. The redundancy, part by part, is 

allocated to the most effective point of the end-to-end distortion function. At first, we assign the 

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250


 (
M

S
E

)

Normalized Redundancy

 

 


5


25


GOP

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70


 (

M
S

E
)

Normalized Redundancy

 

 


5


25


GOP



12 
 

minimum acceptable redundancy for all frames; i.e., 𝑄𝑃𝑟 is set to its maximum value. At this point, since 

the redundancy budget is higher than this minimum redundancy, we can decrease 𝑄𝑃𝑟 by one for frame 𝑖. 

By doing this, we start utilizing one portion of the redundancy budget. Now, if the total consumed 

redundancy is still lower than the redundancy budget, then we can decrease 𝑄𝑃𝑟  by one again for frame 𝑖, 

or for another frame. The key point here is to select the best frame whose 𝑄𝑃𝑟 must be decreased in each 

step. Based on WMRS, the best candidate frame is the frame that, at the current 𝑄𝑃𝑝 and  𝑄𝑃𝑟, has the 

steepest 𝛥𝑖 − 𝑅𝑟,𝑖 slope. In other words, the frame whose  –
𝜕∆𝑖

𝜕𝑅𝑟,𝑖
 is maximum is the best choice for 𝑄𝑃𝑟 

decreasing or redundancy allocation. Using this policy for selecting the target frame of the redundancy 

allocation, the allocation continues until the whole redundancy budget is utilized. By derivation from 

(13),   –
𝜕∆

𝜕𝑅𝑟
 is obtained as follows: 

–
𝜕∆𝑖

𝜕𝑅𝑟,𝑖

= −
𝜕𝐷𝑟,𝑖

𝜕𝑅𝑟,𝑖

−  𝛤𝑖

𝜕𝐷𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ,𝑖 

𝜕𝑅𝑟,𝑖

 (16) 

In Fig. 3, we show the slopes order for the first three frames of Mobile, with GOP size of 4 frames. This 

small GOP size is chosen so that the difference of the slopes can be visible. When GOP = 30, the frames’ 

𝛤𝑖 are very close to each other, and hence, 𝛥𝑖 curves for sequential frames are too similar to be  easily 

distinguishable in the figure. The order of redundancy allocation is determined by the order of the slopes. 

We decrease 𝑄𝑃𝑟’s in this order until the whole redundancy budget is utilized. 

 
Fig.3.  The order of redundancy allocation in WMRS 
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The pseudocode for the WMRS method is given in  Algorithm1. 

 

Algorithm 1: WMRS method 

Step 1: Set initial point as 𝑄𝑃𝑟,1 = 𝑄𝑃𝑟𝑚𝑎𝑥
 , 𝑄𝑃𝑟,2 = 𝑄𝑃𝑟𝑚𝑎𝑥

 ,  𝑄𝑃𝑟,3 = 𝑄𝑃𝑟𝑚𝑎𝑥
  , …  𝑄𝑃𝑟,𝑁 = 𝑄𝑃𝑟𝑚𝑎𝑥

 

Step 2: Calculate the slopes , –
𝜕∆

𝜕𝑅𝑟
 , for all frames at the current 𝑸𝑷𝒓 

Step 3 find the frame 𝑗 which has maximum slope  ( 𝑗 = arg max {–
𝜕∆1

𝜕𝑅𝑟,1
 , –

𝜕∆2

𝜕𝑅𝑟,2
 , –

𝜕∆3

𝜕𝑅𝑟,3
… }) 

Step 4: Set 𝑄𝑃𝑟,𝑗 = 𝑄𝑃𝑟,𝑗 −  1 

Step 5: Calculate the utilized redundancy up to now, 𝑅𝑟 

Step 6: 

If  ( 𝑅𝑟 < 𝑅𝑟,𝑡 ) then calculate –
𝜕∆𝑗

𝜕𝑅𝑟,𝑗
 at the new 𝑄𝑃𝑟,𝑗 and goto step 3 

Else If ( 𝑅𝑟 > 𝑅𝑟,𝑡 ) then  𝑄𝑃𝑟,𝑗 = 𝑄𝑃𝑟,𝑗 +  1 and goto step 7 

Else  goto step7 

Step 7: End 

  

As can be seen from Algorithm 1,  𝑄𝑃𝑟 of the best frame is decreased by one only, even if we had 

enough redundancy budget to spare. The reason is that the slopes in Fig. 3 are not constant and vary with 

redundancy. Therefore, for each value of redundancy (i.e. updated 𝑸𝑷𝒓), we are searching again for the 

frame with maximum  –
𝜕∆

𝜕𝑅𝑟
. Actually, in WMRS method, the redundancy is allocated part by part with a 

sequence of locally optimum decisions. It is noteworthy that when 𝑄𝑃𝑟,𝑗 changes, only 𝛥𝑗 is affected and 

must be recomputed; and the other slopes remain valid. 

We calculated the optimal 𝑸𝑷𝒓  and 𝛥 using the proposed WMRS algorithm for two test video 

sequences (Mobile and Foreman) and present the results in Fig. 4. In order to show the WMRS 

optimization performance, the same settings like those of Fig. 2 (𝑄𝑃𝑝 = 20 and  𝑄𝑃𝑟𝑚𝑎𝑥
= 𝑄𝑃𝑝 + 10) are 

used in this experiment. For ease of comparison, the corresponding curves (for non-optimal  𝑸𝑷𝒓) from 

Fig. 2 are plotted in this figure with dotted lines. 

From Fig. 4, we can see a wide range of redundancy at which optimum  𝛥5 is smaller than the non-

optimum  𝛥5. On the other hand, it can be seen that 𝛥25 for optimal 𝑸𝑷𝒓 is not smaller than that for non-

optimum parameters except for very high redundancies. However, this actually does not matter because 

the aim of optimal allocation is not to minimize each frame’s 𝛥 individually; but to minimize  Δ𝐺𝑂𝑃 

(equation (12)), and as per figures 4(a) and 4(b), it is lower for optimal case in all redundancies. 
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(a) (b) 

Fig. 4.  Variation of Δ𝑖  when optimal 𝑸𝑷𝒓 is applied for (a) Mobile and (b) Foreman sequences 

Our proposed method follows a pattern similar to Greedy algorithm [26][27]. In Greedy algorithms, the 

global solution of an optimization problem is approximated by a solution achieved by a sequence of 

locally optimum decisions. Advantages of Greedy algorithms are their low complexity and ease of 

implementation without convergence problem. Examples of applications using Greedy algorithms can be 

found in [28]-[33]. However, the output of these algorithms may not be the global optimum point of the 

objective functions, and they are known as approximations methods. In particular, for our specific 

application, adding an amount of redundancy based on WMRS is a locally optimum strategy, and the 

output may not be the optimum solution. However, we have shown in the appendix that for the convex 

problems, WMRS method gives the exact optimum points. We have also shown there that our redundancy 

allocation problem has a small deviation from a convex problem. 

Finally, as per equation (16),  –
𝜕∆𝑖

𝜕𝑅𝑟,𝑖
  which is the decision criterion in our method, has two terms. 

However, except for the last few frames of the GOP, the second term (i.e. the weighted mismatch) is the 

dominant term. Hence we used weighted mismatch-rate slope in our nomination, even though the first 

term is not ignored in our calculations. 

B. The optimal value for redundancy budget 

In subsection A, we explained how the given redundancy budget is optimally divided among the frames. 

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250


 (
M

S
E

)

Normalized Redundancy

 

 


5
 opt


5
 non-opt


25

 opt


25

 non-opt


GOP

 opt


GOP

 non-opt

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70


 (

M
S

E
)

Normalized Redundancy

 

 


5
 opt


5
 non-opt


25

 opt


25

 non-opt


GOP

 opt


GOP

 non-opt



15 
 

In this subsection, we discuss how to find the optimal amount of redundancy budget at the given PLR. 

As mentioned earlier, with more amount of redundancy, 𝑄𝑃𝑟’s can be closer to 𝑄𝑃𝑝’s resulting in more 

similar descriptions, lower mismatch and less error propagation. On the other hand, the higher amount of 

redundancy leads to lower primary rate budget at the given bandwidth, and hence higher primary (central) 

distortion will be incurred. Therefore, the optimal value of the redundancy depends on the impact factors 

of error propagation and primary distortion in the end-to-end distortion expressed in (8). It is evident from 

(8) that for low enough PLR, primary distortion becomes dominant and hence the optimizer must allocate 

more rate to the primary rate. In contrast, for high PLRs the redundancy rate should be increased. 

Now, to calculate the primary distortion, we need to have the primary quantization parameter, 𝑸𝑷𝒑. In 

order to determine  𝑸𝑷𝒑, we follow the algorithm presented in [14]. If 𝑄𝑃𝑝,1 is the quantization parameter 

for the first frame, then 𝑄𝑃𝑝,𝑖 of the 𝑖th frame of the GOP is obtained by solving the following equation: 

𝑄𝑃𝑝,𝑖 = 𝑄𝑃𝑝,1 +  3 log2

𝜓1

𝜓𝑖
 

(17) 

where 𝜓𝑖 is the temporal propagation factor for the primary slices and its definition and derivation can be 

found in [14]. Therefore, 𝑄𝑃  of the primary coefficients can be obtained independent of the coding 

parameters of the redundant coefficients. We solved these equations for our test videos with the GOP size 

of 30 and 60 frames. We changed PLRs from 0.02 to 0.15, and it is observed that almost all 𝑄𝑃s are the 

same and equal to 𝑄𝑃𝑝,1. In exceptional cases, for the last two or three frames of the GOP, the resulting 

𝑄𝑃 might be 𝑄𝑃𝑝,1 + 1. Therefore, with a good approximation, all frames can have the same 𝑄𝑃𝑝. Now, 

the problem is to find the optimum value for 𝑄𝑃𝑝,1 which has a closer relation to the optimal redundancy 

budget. 

If 𝑄𝑃𝑝,1  is known, we can find 𝑸𝑷𝒑  using (17), and therefore the primary rate, 𝑅𝑝,𝑡 , is directly 

determined. Then, at the given total rate, the redundancy rate budget is obtained by calculating 𝑅𝑟,𝑡 = 𝑅𝑡 – 

𝑅𝑝,𝑡 and this amount of redundancy can be optimally allocated to the frames using WMRS. We now solve 

the optimization problem for different values of  𝑄𝑃𝑝,1 and study the behavior of end-to-end distortion. In 
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Fig. 5, we show the end-to-end distortion curves versus normalized redundancy for Mobile and Foreman 

video sequences where 𝑅𝑡 = 4 Mb/s and PLR = [0.02 , 0.05 , 0.10] and GOP size = 30. We can now find 

the optimum value for the redundancy budget, the point at which the minimum end-to-end distortion is 

achieved. 

  
(a) (b) 

Fig. 5.  End-to-end distortion with 𝑅𝑡 = 4 Mb/s and various PLRs for (a) Mobile and (b) Foreman sequences 
 

From Fig. 5 we see that for PLR = 0.02, the end-to-end distortion increases with the normalized 

redundancy. This means that for this value of PLR, the minimum distortion is achieved at minimum 

redundancy. On the other hand, for PLR = 0.10, the minimum distortion is obtained at maximum 

redundancy. Therefore, the optimum strategy is to have same values for primary and redundancy rates 

which results in completely similar descriptions. For PLR = 0.05, the curve is not monotonic and the best 

point is something in between minimum and maximum possible redundancies.  

In order to find the minimal point of the curves in Fig. 5, we use the procedure described in Algorithm 

2. Starting with an initial value, we first find the smallest 𝑄𝑃𝑝,1 that provides the minimum redundancy. 

The redundancy budget is then allocated to the frames using WMRS. With larger 𝑄𝑃𝑝,1, we have more 

redundancy rate budget and move to the right hand side of the curves in Fig. 5. As long as the end-to-end 

distortion keeps decreasing, we can enlarge 𝑄𝑃𝑝,1. The first 𝑄𝑃𝑝,1 that leads to the higher end-to-end 

distortion terminates the iteration. Since the problem has one minimum, and we start from the minimum 
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acceptable redundancy, the first increase in the end-to-end distortion means that we just left the global 

minimum of the problem, and thereby, we stop the iteration at this point. This way, for a given PLR and a 

video content, the optimal redundancy budge is obtained.  

Algorithm 2: Optimal end-to-end distortion at different redundancy budgets and constant total rate 

Step 1: Set 𝑄𝑃𝑝,1  =  𝑄𝑃𝑝0, 𝑸𝑷𝒓−𝒊𝒏𝒊𝒕  =   𝑸𝑷𝒓−𝒎𝒂𝒙 , 𝐷𝑒2𝑒−𝑚𝑖𝑛 = 𝑀𝐴𝑋_𝐼𝑁𝑇𝐸𝐺𝐸𝑅 

Step 2: Obtain 𝑸𝑷𝒑 for frames of the GOP using (17) 

Step 3: Obtain 𝑅𝑝,𝑡(𝑸𝑷𝒑)  and then 𝑅𝑟,𝑡 = 𝑅𝑡 − 𝑅𝑝,𝑡 

Step 4: If ( 𝑅𝑟,𝑡 <  𝑅𝑟,𝑚𝑖𝑛 )  then 𝑄𝑃𝑝,1 =  𝑄𝑃𝑝,1 +  1 and goto Step 2   (in order to have the minimum redundancy ) 

Step 5: If ( 𝑅𝑟,𝑡 > 𝑅𝑝,𝑡  ) then goto Step 11  (the redundancy rate must not be more than primary rate) 

Step 6: Find 𝑸𝑷𝒓−𝒕𝒎𝒑by the procedure described in Algorithm 1 (WMRS) 

Step 7: Calculate 𝐷𝑒2𝑒  using (8) 

Step 8: If  (𝐷𝑒2𝑒 ≥ 𝐷𝑒2𝑒−𝑚𝑖𝑛) then goto Step 11 

Step 9: If  (𝐷𝑒2𝑒 < 𝐷𝑒2𝑒−𝑚𝑖𝑛) then  𝐷𝑒2𝑒−𝑚𝑖𝑛 = 𝐷𝑒2𝑒 , 𝑸𝑷𝒓−𝒐𝒑𝒕 =  𝑸𝑷𝒓−𝒕𝒎𝒑 

Step 10: 𝑄𝑃𝑝,1 =  𝑄𝑃𝑝,1 + 1  and goto Step 2 

Step 11: End 

  

IV. BITRATE TUNABILITY 

The basic optimization problem for the MDC under study is the equation given by (9); i.e., 𝑸𝑷𝒓 and 

𝑸𝑷𝒑  vectors along with the rate constraint must be solved simultaneously. However, this fact is not 

considered in the solutions proposed in [13] and [14]. In particular, in [14], 𝑸𝑷𝒑 is obtained solving 

equation (17) and 𝑸𝑷𝒓 using the following equation: 

𝑄𝑃𝑟,𝑖 = 𝑄𝑃𝑝,1 + 3 log2 (
1

𝑃0(1 − 𝑃0)

𝜓1

𝜙𝑖

) 

𝑖 = 1 … 𝑁 

(18) 

And the following two equations are used in [13] in order to find 𝑸𝑷𝒓: 

𝑄𝑃𝑟,1 = 𝑄𝑃𝑝 −  3 log2(𝑝𝜙1) (19) 

 

𝑄𝑃𝑟,𝑖  =  𝑄𝑃𝑟,1 +  3 log2(
𝜙1

𝜙𝑖

) 

𝑖 = 1 … 𝑁 

(20) 

The definition of 𝜙𝑖 in these two papers is not identical. The only parameter that can be used to control 

the total coding rate and satisfy ∑ [𝑅𝑝,𝑖 +  𝑅𝑟,𝑖]𝑁
𝑖=1 ≤ 𝑅𝑡  is 𝑄𝑃𝑝,1 in [14] and 𝑄𝑃𝑝  in [13]. When this 
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parameter has minimum variation, all elements of 𝑸𝑷𝒓 vectors vary accordingly, and therefore the change 

in redundant coding rates is significant. As a result, these algorithms fail to adjust the rate precisely. On 

the other hand, in our method, even though 𝑸𝑷𝒑 and 𝑸𝑷𝒓 are found independently, each elements of 𝑸𝑷𝒓 

is tuned considering the bitrate budget as well as the end-to-end distortion. As long as the redundancy rate 

budget (and hence the rate budget) is not exhausted, we can still find the maximum slope and decrease 

one 𝑄𝑃𝑟 such that the optimality of the distortion is retained while not exceeding the bitrate budget. To 

show this fact with illustration, we solve the redundancy allocation problem using WMRS and the 

algorithms proposed in [13] and [14] for various rate constraints and two PLRs. The bitrates for [13] 

and [14] are tuned by Algorithm 3. Starting from minimum 𝑄𝑃𝑝0 guarantees that the first quantity of 

𝑄𝑃𝑝0 that meets the rate constraint is the optimum point. 

Algorithm 3: To adjust the total bitrate in [13] and [14] 

Step 1: Set 𝑄𝑃𝑝0  =  𝑄𝑃𝑚𝑖𝑛 

Step 2: for [13] : set 𝑄𝑃𝑝 =  𝑄𝑃𝑝0 , 𝑸𝑷𝒑 = [𝑄𝑃𝑝] , obtain 𝑄𝑃𝑟,1 using equation (19) 

for [14]: set 𝑄𝑃𝑝,1 =  𝑄𝑃𝑝0 and obtain 𝑸𝑷𝒑 using (17) 

Step 3: for [13] : Obtain 𝑄𝑃𝑟,𝑖 (𝑖 = 1 . . . 𝑁) using equation (20) 

for [14]: Obtain 𝑄𝑃𝑟,𝑖  (𝑖 = 1 . . . 𝑁) using equation (18) 

Step 4: Find the total rate 𝑅𝑡−𝑡𝑚𝑝 = 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑠𝑙𝑖𝑐𝑒𝑠 + 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 𝑠𝑙𝑖𝑐𝑒𝑠 

Step 5: If 𝑅𝑡−𝑡𝑚𝑝 ≤  𝑅𝑡  then save 𝑄𝑃𝑟,𝑖s  as optimal 𝑸𝑷𝒓 and goto Step 7 

Step 6: If 𝑅𝑡−𝑡𝑚𝑝 > 𝑅𝑡  then 𝑄𝑃𝑝0 =  𝑄𝑃𝑝0 +  1 and goto Step 2 

Step 7: End 

  

The vertical axis of Fig. 6 is the percentage of the given bandwidth that can be optimally utilized by the 

three methods. As we can see from this figure, the bitrate constraint is perfectly utilized by WMRS. 

However, for the other two methods, depending on the bitrate, the bandwidth usage sometimes reaches 

65%. As we described earlier, this is due to this fact that in [13] and [14] there is only one discrete 

variable for tuning the rate of a GOP, and therefore precise bitrate adjustment is not possible.  
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(a) (b) 

Fig. 6.   Bandwidth usage in three methods for (a) Mobile and (b) Foreman sequences 

V. COMPLEXITY AND DELAY ISSUES 

One of the important issues for any optimization algorithm is its computational complexity. In WMRS 

for a GOP of 30 frames and 𝑄𝑃𝑟𝑚𝑎𝑥
= 𝑄𝑃𝑝 + 15, if we assume that 𝑸𝑷𝒑 is known, we need to obtain an 

array with the size of at least 30 slopes (if lowest redundancy is needed) and at most 30*15 = 450 slopes 

(if highest redundancy is needed). For computing these slopes, we need to calculate the redundant and 

mismatch distortions as well as the rates along with some divisions. Details of the procedure are given 

below.  

We assume that DCT coefficients (residual signals after DCT transform) follow the Laplacian 

distribution [25]: 

𝑓(𝑥) =
𝜂

2
𝑒−𝜂  |𝑥| (21) 

where 𝜂  is the Laplacian distribution parameter. For each frame, the distribution parameters of the 

coefficients are obtained, and then the quantization distortion (𝐷𝑟,𝑖) is calculated using the equation given 

by (22) [36]: 

𝐷𝑟,𝑖 =
𝜂𝑄𝑠𝑠𝑒𝑓𝜂𝑄𝑠𝑠(2 + 𝜂𝑄𝑠𝑠 − 2𝑓𝜂𝑄𝑠𝑠) + 2 − 2𝑒𝜂𝑄𝑠𝑠

𝜂2(1 − 𝑒𝜂𝑄𝑠𝑠)
 (22) 
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where 𝑄𝑠𝑠 is the quantization step size (it is simply obtained from 𝑄𝑃), and 𝑓 is the quantization rounding 

offset. We calculate the mismatch distortion (𝐷𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ,𝑖 ) by (23) [14]: 

𝐷𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ,𝑖 = ∫ [𝑄−1(𝑄(𝑥𝑖  , 𝑄𝑃𝑟,𝑖), 𝑄𝑃𝑟,𝑖) − 𝑄−1(𝑄(𝑥𝑖  , 𝑄𝑃𝑝,𝑖), 𝑄𝑃𝑝,𝑖)]
∞

−∞

2

𝑓(𝑥𝑖)𝑑𝑥𝑖 (23) 

 

where 𝑥𝑖 is the DCT coefficient of frame 𝑖 in a specific frequency and 𝑓(𝑥𝑖) is its Laplacian distribution. 

𝑄(. ) and 𝑄−1(. ) represent the quantization and inverse quantization operations respectively, both are 

functions of the used 𝑄𝑃. This integration is calculated and saved as a look up table (similar to [14]). We 

also used Entropy function for rate calculation (Entropy rate is closely matched with the Context-

Adaptive Binary Arithmetic Coding (CABAC) output of the encoder [37]). Eventually, to calculate the 

partial derivations, we use the following differentiations: 

𝜕𝐷𝑟,𝑖

𝜕𝑅𝑟,𝑖

 ≈
𝐷𝑟,𝑖(𝑄𝑃𝑟,𝑖) − 𝐷𝑟,𝑖(𝑄𝑃𝑟,𝑖 + 1)

𝑅𝑟(𝑄𝑃𝑟,𝑖) − 𝑅𝑟(𝑄𝑃𝑟,𝑖 + 1)
 (24) 

 

𝜕𝐷𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ,𝑖

𝜕𝑅𝑟,𝑖

 ≈
𝐷𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ,𝑖(𝑄𝑃𝑝 , 𝑄𝑃𝑟,𝑖) −  𝐷𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ,𝑖(𝑄𝑃𝑝  , 𝑄𝑃𝑟,𝑖 + 1)

𝑅𝑟(𝑄𝑃𝑟,𝑖) −  𝑅𝑟(𝑄𝑃𝑟,𝑖 + 1)
 (25) 

Having the above values, we can calculate the slopes using equation (16).  

As we previously mentioned, [13] and [14] are simplified and fast algorithms based on Lagrangian 

approach. For the given 𝑸𝑷𝒑, equations (20) and (18) must be solved in [13] and [14] respectively. 

Equation (20) is very straightforward because there is no unknown variable at the right hand side of the 

equation. In equation (18), 𝜙𝑖  is a function of 𝑄𝑃𝑟,𝑖 , and cannot be solved analytically. Therefore a 

numerical method is needed and we used Bisection method for this purpose.  

However, the above mentioned computations are for the case that 𝑸𝑷𝒑 is known. Actually, instead of 

𝑸𝑷𝒑, the total bitrate budget is given and we have to find optimal 𝑸𝑷𝒑 and 𝑸𝑷𝒓 satisfying the bitrate 

constraint. For this reason, we executed Algorithm 2 for our method and Algorithm 3 for [13] and [14] in 

order to compare the complexity. These algorithms are written with the same approach and the same 
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iterations step-size.  

In Table 1, we present the processing time profile of the three works, based on our test machine: Core 

i5 , 2.2 GHz CPU and 4 GB of RAM. For all these algorithms, the time counter starts when 𝑄𝑃𝑝 satisfies 

the minimum redundancy, and terminates when optimal 𝑸𝑷𝒑 and 𝑸𝑷𝒓 meet the total rate constraint. The 

processing time needed to solve (17) is excluded here because this equation finds the variation of 𝑄𝑃𝑝 

among the frames of the GOP, which is not related to the redundancy allocation. PLR changes the 

redundancy rate, and bitrate is the constraint of the problem, therefore the processing time is PLR and 

bitrate dependent, since they affect how many times Algorithm 2 or Algorithm 3 must be executed. In this 

table, the maximum times for each case are reported. In Table 1, we also added the processing time to 

solve (9) using the SQP technique. In SQP, a quadratic approximation of the problem is iteratively solved, 

and then the approximation is updated and solved again. This procedure continues until the global 

minimum is obtained. The advantage of this technique is converting the nonlinear problem into a 

quadratic problem which is relatively easier to solve. We utilized the built-in “fmincon” function in 

MATLAB and selected SQP as the solver algorithm. We set the tolerance and iteration step-size large 

enough so as not to affect the optimal results. During this experiment, we found that the results are almost 

similar to those of WMRS but the computation times are significantly longer. It is noteworthy that the 

MATLAB functions are general purpose which can be made faster if it is rewritten in C language and as 

an application specific program; however, as described in [35], SQP inherently has extensive 

computations.  

Table 1.  Processing time (in second) per frame for WMRS method and two other works 

 Mobile Foreman Flower Bus 

 GOP = 30 GOP = 60 GOP = 30 GOP = 60 GOP = 30 GOP = 60 GOP = 30 GOP = 60 

WMRS 0.102 0.103 0.107 0.108 0.096 0.116 0.130 0.097 

[14] 0.138 0.143 0.088 0.109 0.142 0.127 0.147 0.145 

[13] 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002 

MATLAB-SQP 13.942 27.071 13.059 26.229 12.977 26.222 13.744 27.373 
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As can be seen in Table 1, [13] has the fastest performance, and WMRS (with the exception of 

Foreman and GOP=30) stands in second place. Moreover, complexity of [13],[14] and WMRS is 

significantly less than the computations needed to solve equation (9) using SQP. The reason is that 

finding 𝑸𝑷𝒑  and 𝑸𝑷𝒓  in [13],[14] (and in our approach) are decoupled and the vector variables are 

reduced to scalar variables, as can be seen in (17)-(20). However, this assumption affects the performance 

of [13] and [14] in terms of bitrate tunability and rate-distortion performance as we discussed in Section 

IV and VI, respectively. 

We now discuss the delay issue. As per equation (9), in order to minimize the error propagation, we 

need to have DCT coefficients distribution of all frames in the GOP. Therefore, the encoder must wait for 

buffering of all frames from the GOP and then run the optimization process. This delay is natural and it is 

common in all GOP-wise optimization algorithms, e.g.[8][12]-[14]. The commonly used solution is to 

predict the distribution parameters of the DCT coefficients of the future frames [14][15]. One safe 

assumption is that the next frames will have coefficients distribution similar to the ones presently under 

processing. For example, if we are encoding the 3rd frame, then we assume that 4th , 5th , 6th  and other 

frames of the GOP will have the distribution parameters like those of the 3rd frame. We gave a detailed 

explanation of this procedure in our previous work [15].  

The above-mentioned assumption is effective because the distribution of residual signals do not change 

suddenly, due to the various motion estimation block-sizes and sub-pixel estimation techniques in 

H.264/AVC. Therefore, as long as the background of the sequence is steady, the coefficients distribution 

changes are smooth and our assumption remains valid. As mentioned, the DCT coefficients distribution 

can be modeled by Laplacian function of (21). In Fig. 7, we show the variation of  𝜂 for all 16 output 

coefficients of the 4x4 DCT transform for the first 60 frames of Mobile and Foreman video sequences 

with 𝑄𝑃 = 20. As expected, 𝜂 is usually larger for higher frequencies; however, for a specific frequency, 

its changes through the sequential frames are smooth. The first frame is an I-frame and therefore has the 

lowest 𝜂 in all frequencies because all blocks are coded in intra mode in this frame. 
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(a) 

  
(b) 

Fig. 7.  Variation of Laplacian distribution parameter (𝜂) for frames of (a) Mobile and (b) Foreman sequences 
 

In Fig. 8, we show the optimal end-to-end distortion with the parameters corresponding to those of Fig. 

5 but using 𝜂 estimation discussed above. It can be seen that even without using the actual  𝜂, the optimal 

end-to-end distortion and hence the optimal 𝑸𝑷𝒓 do not change significantly. However, since the data 

distribution parameters are updated after each frame encoding, WMRS allocation must be recomputed on 

a frame-by-frame basis for each GOP. In other words, when encoding of frame 𝑖  is finished, the 

distribution parameters are updated and WMRS is run again for the remaining frames. Therefore, this data 

extension policy triggers an increase in the computational complexity with an order of 𝐺𝑂𝑃 2⁄  times.  

However, this increase in processing time is common for WMRS, [13] and [14]. But, the encoding time in 

our system; e.g. for Mobile CIF sequence (with all possible block-sizes available, sub-pixel and fast full 
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search algorithm for motion estimation, Rate Distortion Optimization (RDO) enabled, 𝑄𝑃 = 16  and 

without rate control) is about 15 seconds for P-frames, and 30 seconds for B-frames. Therefore, the 

additional time needed for optimization is still much less than the encoding time.  

  
(a) (b) 

Fig. 8. End-to-End distortion with WMRS redundancy allocation, when actual 𝜂  (solid lines) and estimated 𝜂 

(dashed lines) are used, for (a) Mobile and (b) Foreman sequences 

VI. EXPERIMENTAL RESULTS 

In order to show the performance of the proposed algorithm, we implemented the optimized MDC 

scheme in the H.264/AVC reference software, JM 16.0 [38]. In the encoder, CABAC is used for the 

entropy encoder and rate control is off. Without loss of generality, we intentionally skip the B-frames in 

the GOP structure, because B-frames produce delay and they are not used in delay sensitive applications. 

In our testbed, each video packet contains an integer number of slices and is smaller than the Maximum 

Transmission Unit (MTU) of the network in order to avoid fragmentation. For the typical MTU size of 

1500 bytes, the payload size is set to be 1460 bytes where 40 bytes are reserved for RTP/UDP/IP header 

information. For each value of PLR, 20 random packet loss patterns with Bernoulli distribution are 

generated and applied on each channel. The channels are assumed to be independent. 

We carried out the optimization procedure described in Algorithm 2 for four values of PLR and two 

GOP sizes, and applied the optimal 𝑄𝑃𝑝s and 𝑄𝑃𝑟s during the MDC encoding of the test videos. By 

measuring the average video quality at the receiver’s side, the RD performance of the MDC optimized by 
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WMRS is investigated. In order to compare the performance of our method, we also implemented the 

algorithms presented in [13] and [14] as reference methods. As we discussed in Section IV, their 

performance is affected by the coding rate constraint, and therefore in order to get the best performance 

out of those approaches, we did not apply the limitation discussed in that section. We only set several 

suitable values for 𝑄𝑃𝑝0 and then find the optimal 𝑸𝑷𝒑 and 𝑸𝑷𝒓 using equations (17)-(20) which are then 

applied when MDC encoding.  

We used the Foreman, Mobile, Flower and Bus video sequences with CIF size and FourPeople and 

Vidyo1 with HD (1280x720) size for our experiments. The average PSNR for luminance component 

versus total rate of both descriptions, for four values of PLR, are shown in figures 9-14.  

  
(a) (b) 

  
(c) (d) 

Fig. 9.   Rate-Quality performance comparison for Foreman sequence for (a) PLR = 0.02 , (b) PLR = 0.05 , (c) PLR 

= 0.10 and (d) PLR = 0.15 
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(a) (b) 

  
(c) (d) 

Fig. 10.   Rate-Quality performance comparison for Mobile sequence for (a) PLR = 0.02 , (b) PLR = 0.05 , (c) PLR 

= 0.10 and (d) PLR = 0.15 

From figures 9-14, we can see that the rate-distortion performance of the WMRS algorithm is better 

than the schemes presented in [13] and [14], especially for high PLRs and high rates. This is true for both 

GOP sizes. At low rates, due to the strong quantization, the sensitivity of 𝛥𝑖 to redundancy is lower. As 

can be seen from figures 16.a and 16.b, when normalized redundancy varies from 0.1 to 0.8 for frame 10 

and 𝑄𝑃𝑝 = 16  (high rate case), 𝛥𝑖  changes from 250 to 40, i.e. it becomes about 6 times smaller. 

However, this variation is from 500 to 150, i.e. 3.3 times smaller when 𝑄𝑃𝑝 = 32 (lower rate case). 

Besides the lower dynamic range of 𝛥𝑖 , its contribution in end-to-end distortion is lower at low rates 

because quantization distortions are larger. Therefore, optimality of redundancy allocation becomes less 

effective, and as a result we can see that the three methods have close performance at low rates. 
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Note that the curves of figures 9-14 compare the average PSNR taken over a GOP (30 or 60 frames). 

For the first frames of the GOP, the difference of the algorithms is not too much, but going forward to the 

end of the GOP, the difference becomes more distinguishable. This is due to the error propagation that is 

larger for last frames of the GOP. Actually the difference for the last frame of the GOP might be as large 

as about 3 dB in our experiments. In Fig. 15, we show the MDC decoder outputs for the 60th frame of 

Foreman sequence for all three methods.  

  
(a) (b) 

  
(c) (d) 

Fig. 11.   Rate-Quality performance comparison for Flower sequence for (a) PLR = 0.02 , (b) PLR = 0.05 , (c) PLR 

= 0.10 and (d) PLR = 0.15 
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VII. CONCLUSION 

In this paper, we presented our new method WMRS for redundancy allocation in multiple description 

video coding. Our proposed method solves the optimal redundancy allocation problem in two phases: 

first, it allocates the given redundancy budget to the frames of the GOP and second, it determines the 

optimal value of the redundancy budget. In WMRS, a portion of the redundancy budget is allocated to the 

frame that currently has maximum weighted mismatch-rate slope. This procedure continues until the 

whole redundancy budget is consumed. Depending on the packet loss rate and the video content, the end-

to-end distortion is minimized in a specific and optimal redundancy budget. Our method is naturally a low 

complexity optimization algorithm comparable with the fast algorithms proposed in [13] and [14]. Due to 

the step-wise redundancy allocation, the bitrate tunability of our method is nearly perfect, while this is not 

the case for [13] and [14]. Our experimental results reveal that our optimizer achieves better performance 

than its competitors, especially for higher packet loss rates and higher bitrates.  
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(c) (d) 

Fig. 12.   Rate-Quality performance comparison for Bus sequence for (a) PLR = 0.02 , (b) PLR = 0.05 , (c) PLR = 

0.10 and (d) PLR = 0.15 
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Fig. 13.  Rate-Quality performance comparison for FourPeople sequence for (a) PLR = 0.02 , (b) PLR = 0.05 , (c) 

PLR = 0.10 and (d) PLR = 0.15 
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(a) (b) 

  
(c) (d) 

Fig. 14.  Rate-Quality performance comparison for Vidyo1 sequence for (a) PLR = 0.02 , (b) PLR = 0.05 , (c) PLR = 

0.10 and (d) PLR = 0.15 

 

   
(a) (b) (c) 

Fig. 15.  The receiver side reconstructed 60th frame of Foreman sequence, MDC coding rate is 1.5 Mb/s and PLR = 

0.15,for (a) WMRS (b) work of [14] and (c) work of [13] 
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APPENDIX 

In this appendix, we first prove that if Δ𝑖 ( 1 ≤ 𝑖 ≤ 𝑁 ) is a convex function of 𝑅𝑟,𝑖 , then the WMRS 

solution is exactly the optimum solution. The objective function of (12) can be rewritten in a simple form 

as follows: 

min
{𝑸𝑷𝒓}

{∑ Δ𝑖

𝑁

𝑖=1

} 

𝑠. 𝑡  ∑ 𝑅𝑟,𝑖

𝑁

𝑖=1

≤ 𝑅𝑟,𝑡 

(26) 

Assume that the global optimum redundancies are denoted by 𝑅𝑟,𝑖
∗  and those of WMRS output by 𝑅𝑟,𝑖

𝑤  . 

Due to the discrete nature of the problem, we can write that: 

𝑅𝑟,𝑖
∗ = 𝑅𝑖,𝑚𝑖𝑛 +  Δ𝑅𝑖,1 +  Δ𝑅𝑖,2 + ⋯ +  Δ𝑅𝑖,𝑛𝑖

∗ 

𝑅𝑟,𝑖
𝑤 = 𝑅𝑖,𝑚𝑖𝑛 +  Δ𝑅𝑖,1 +  Δ𝑅𝑖,2 + ⋯ +  Δ𝑅𝑖,𝑛𝑖

𝑤 
(27) 

where 𝑅𝑖,𝑚𝑖𝑛 is the redundancy achieved when 𝑄𝑃𝑟 is at its maximum value (𝑄𝑃𝑟 =  𝑄𝑃𝑟,𝑚𝑎𝑥) , and 𝛥𝑅𝑖,1 

is the increase in rate when we have one unit decrease in 𝑄𝑃𝑟; i.e., 𝑄𝑃𝑟 =  𝑄𝑃𝑟,𝑚𝑎𝑥 − 1. For  𝛥𝑅𝑖,𝑘 , the 

change in 𝑄𝑃𝑟 is from 𝑄𝑃𝑟,𝑚𝑎𝑥 − (𝑘 − 1) to 𝑄𝑃𝑟,𝑚𝑎𝑥 −  𝑘. Accordingly, we can write that: 

𝛥𝑖
∗ = 𝛥𝑖,𝑚𝑎𝑥 − (𝑆𝑖,1𝛥𝑅𝑖,1 +  𝑆𝑖,2𝛥𝑅𝑖,2 + ⋯ +  𝑆𝑖,𝑛𝑖

∗𝛥𝑅𝑖,𝑛𝑖
∗) 

𝛥𝑖
𝑤 = 𝛥𝑖,𝑚𝑎𝑥 − (𝑆𝑖,1𝛥𝑅𝑖,1 +  𝑆𝑖,2𝛥𝑅𝑖,2 + ⋯ +  𝑆𝑖,𝑛𝑖

𝑤𝛥𝑅𝑖,𝑛𝑖
𝑤) 

(28) 

where 𝛥𝑖,𝑚𝑎𝑥 is the 𝛥𝑖 at the minimum redundancy (𝑄𝑃𝑟 =  𝑄𝑃𝑟,𝑚𝑎𝑥), and  𝑆𝑖,1 is the weighted mismatch-

rate slope, i.e.: 

𝑆𝑖,1 = −
𝜕Δ𝑖

𝜕𝑅𝑟,𝑖
𝑄𝑃𝑟  ∶  𝑄𝑃𝑟,𝑚𝑎𝑥 ⟶ 𝑄𝑃𝑟,𝑚𝑎𝑥 − 1 (29) 

The other 𝑆𝑖,𝑘 ‘s are defined in a similar manner. If the problem is convex (i.e.,  𝛥𝑖 is a convex function of 

𝑅𝑟,𝑖), we have a decreasing order in 𝑆𝑖,𝑘 ‘s , 1 ≤ 𝑘 ≤ 𝑛𝑖  for frame 𝑖. That is: 

𝑆𝑖,1 ≥ 𝑆𝑖,2 ≥ ⋯ ≥ 𝑆𝑖,𝑛𝑖
 (30) 
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Now, we assume that the solution of WMRS is not matched with the optimum solution, that is 𝑛𝑖
∗ ≠ 𝑛𝑖

𝑤 . 

If  𝑛𝑖
∗ > 𝑛𝑖

𝑤 , due to the redundancy constraint of the problem, there exists (at least) one frame 𝑗 for which 

𝑛𝑗
∗ < 𝑛𝑗

𝑤.  Then we can write that: 

(𝛥𝑖
∗ +  𝛥𝑗

∗) − (𝛥𝑖
𝑤 +  𝛥𝑗

𝑤) = (𝛥𝑖
∗ − 𝛥𝑖

𝑤) + (𝛥𝑗
∗ − 𝛥𝑗

𝑤)  

=  − (𝑆𝑖,𝑛𝑖
𝑤+1𝛥𝑅𝑖,𝑛𝑖

𝑤+1 + 𝑆𝑖,𝑛𝑖
𝑤+2𝛥𝑅𝑖,𝑛𝑖

𝑤+2 + … + 𝑆𝑖,𝑛𝑖
∗𝛥𝑅𝑖,𝑛𝑖

∗)

+  (𝑆𝑗,𝑛𝑗
∗+1𝛥𝑅𝑗,𝑛𝑗

∗+1 +  𝑆𝑗,𝑛𝑗
∗+2𝛥𝑅𝑗,𝑛𝑗

∗+2 +  … + 𝑆𝑗,𝑛𝑗
𝑤𝛥𝑅𝑗,𝑛𝑗

𝑤) 
(31) 

Using the inequality of (30), we have: 

𝑆𝑖,𝑛𝑖
𝑤+1𝛥𝑅𝑖,𝑛𝑖

𝑤+1 +  𝑆𝑖,𝑛𝑖
𝑤+2𝛥𝑅𝑖,𝑛𝑖

𝑤+2 +  … + 𝑆𝑖,𝑛𝑖
∗𝛥𝑅𝑖,𝑛𝑖

∗

≤ 𝑆𝑖,𝑛𝑖
𝑤+1 (Δ𝑅𝑖,𝑛𝑖

𝑤+1 + 𝛥𝑅𝑖,𝑛𝑖
𝑤+2 +  … + 𝛥𝑅𝑖,𝑛𝑖

∗) (32) 

and also 

𝑆𝑗,𝑛𝑗
∗+1𝛥𝑅𝑗,𝑛𝑗

∗+1 +  𝑆𝑗,𝑛𝑗
∗+2𝛥𝑅𝑗,𝑛𝑗

∗+2 +  … + 𝑆𝑗,𝑛𝑗
𝑤𝛥𝑅𝑗,𝑛𝑗

𝑤

≥ 𝑆𝑗,𝑛𝑗
𝑤 (𝛥𝑅𝑗,𝑛𝑗

∗+1 + 𝛥𝑅𝑗,𝑛𝑗
∗+2 +  … + 𝛥𝑅𝑗,𝑛𝑗

𝑤) 
(33) 

Substitution of (32) and (33) into (31) gives us (34): 

(𝛥𝑖
∗ +  𝛥𝑗

∗) − (𝛥𝑖
𝑤 + 𝛥𝑗

𝑤)

≥ −𝑆𝑖,𝑛𝑖
𝑤+1 (Δ𝑅𝑖,𝑛𝑖

𝑤+1 + 𝛥𝑅𝑖,𝑛𝑖
𝑤+2 +  … + 𝛥𝑅𝑖,𝑛𝑖

∗)

+ 𝑆𝑗,𝑛𝑗
𝑤 (𝛥𝑅𝑗,𝑛𝑗

∗+1 + 𝛥𝑅𝑗,𝑛𝑗
∗+2 + … + 𝛥𝑅𝑗,𝑛𝑗

𝑤) 
(34) 

Now, since both WMRS and global optimum solutions meet the same redundancy rate constraint, we 

should have: 

(Δ𝑅𝑖,𝑛𝑖
𝑤+1 + 𝛥𝑅𝑖,𝑛𝑖

𝑤+2 +  … + 𝛥𝑅𝑖,𝑛𝑖
∗) =  (𝛥𝑅𝑗,𝑛𝑗

∗+1 + 𝛥𝑅𝑗,𝑛𝑗
∗+2 +  … + 𝛥𝑅𝑗,𝑛𝑗

𝑤) = 𝐴 (35) 

Now, equation (34) can be simplified as: 

(𝛥𝑖
∗ + 𝛥𝑗

∗) − (𝛥𝑖
𝑤 +  𝛥𝑗

𝑤) ≥ 𝐴 (𝑆𝑗,𝑛𝑗
𝑤 − 𝑆𝑖,𝑛𝑖

𝑤+1) (36) 

We can say that 𝑆𝑗,𝑛𝑗
𝑤 ≥ 𝑆𝑖,𝑛𝑖

𝑤+1  since based on the WMRS method, we select the slopes in descending 

order; 𝑆𝑗,𝑛𝑗
𝑤 is selected while 𝑆𝑖,𝑛𝑖

𝑤+1 is not selected, therefore 𝑆𝑖,𝑛𝑖
𝑤+1is smaller than 𝑆𝑗,𝑛𝑗

𝑤.  Therefore: 



33 
 

(𝛥𝑖
∗ +  𝛥𝑗

∗) − (𝛥𝑖
𝑤 + 𝛥𝑗

𝑤) ≥ 0 (37) 

The above equation denotes that the output of WMRS gives a smaller distortion than the global optimum, 

which is impossible. Therefore, the assumption of 𝑛𝑖
∗ > 𝑛𝑖

𝑤 is not valid. Similarly, we can show that the 

assumption of 𝑛𝑖
∗ < 𝑛𝑖

𝑤 leads to the same conflict as well.  

The above discussion can be extended for the case of having multiple frames for which  𝑛𝑖
∗ ≠ 𝑛𝑖

𝑤 . 

Therefore, it is proven that for the convex problems, WMRS converges to the global optimal points. 

Now, we check the convexity of the function 𝛥𝑖 with respect to 𝑅𝑟,𝑖. Fig. 16 shows the behavior of 𝛥𝑖 

with variation in the normalized redundancy, for two typically low and high values of 𝑄𝑃𝑝, and four test 

videos. It can be seen that this function is either convex or linear most of the times. In some cases, it is 

concave but its concavity is not significant. This figure is for GOP = 60, and the curves for GOP = 30 can 

be found in Fig. 2. 

  
(a) Mobile , 𝑄𝑃𝑝 = 16 (b) Mobile , 𝑄𝑃𝑝 = 32 
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(c) Foreman , 𝑄𝑃𝑝 = 16 (d) Foreman , 𝑄𝑃𝑝 = 32 

  
(e) Flower , 𝑄𝑃𝑝 = 16 (f) Flower , 𝑄𝑃𝑝 = 32 

Fig. 12. Convexity of Δ𝑖  with normalized redundancy for some frames of the test sequences with GOP = 60 and two 

values of 𝑄𝑃𝑝 
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