The Secrecy Capacity of The Gaussian Wiretap Channel with Rate-Limited Help at the Encoder

Sergey Loyka, Neri Merhav University of Ottawa, Technion sergey.loyka@uottawa.ca, merhav@ee.technion.ac.il

2023 IEEE Information Theory Workshop (ITW 2023) Saint-Malo, France, 23 - 28 April 2023 (in-person)

- Physical layer security¹
- Wiretap channels² (WTC)
 - keep Ev ignorant of Tx message
 - widely-used model
 - key metric: secrecy capacity
 - well-known in many cases
 - including feedback, jamming

²A.D. Wyner, The Wire-Tap Channel, Bell Syst. Tech. J., Oct. 1975.

¹C. E. Shannon, Communication Theory of Secrecy Systems, Bell Syst. Tech. J., Oct. 1949.

- No boost for regular (no secrecy) capacity of memoryless channels
- But... boosts secrecy capacity, even if memoryless!
- However...
- Unrealistic assumptions
 - noiseless FB link (infinite capacity)
 - arbitrarily-low noise destroys achievability
 - perfect secrecy of FB link

- More realistic assumtions
- Rate-limited help at the Tx
 - Secure and non-secure
 - Causal and non-causal
- Boosts secrecy capacity
- ...even if not secure...
- "Free-lunch" theorem

New twist: help instead of feedback (no Ev yet)

- additive-noise channels
- helper: observes noise sequence
- rate-limited (!) help³⁴ instead of noiseless (infinite-rate) feedback

³S. I. Bross, A. Lapidoth, G. Marti, Decoder-assisted communications over additive noise channels, IEEE Trans. Commun., Jul. 2020.

⁴A. Lapidoth, G. Marti, Encoder-Assisted Communications Over Additive Noise Channels, IEEE Trans. Info. Theory, Nov. 2020.

New twist: help instead of feedback (no Ev yet)

the capacity: $+R_h$ rate boost

$$C = C_0 + R_h \tag{1}$$

optimal signaling: 2-phase flash signaling

New twist: help instead of feedback (no Ev yet)

- key advantage: no infinite-capacity (noiseless) feedback links
- applications
 - cloud radio access
 - cellular
 - WiFi

- additive-noise WTC + Tx/Rx help (no jamming)
 - degraded
 - reversely-degraded
 - non-degraded
- help: rate-limited, secure or not, causal or not
- $+R_h$ boost in secrecy rates, even if
 - help is not secure
 - channel is reversely degraded
 - help is causal
- "free lunch" theorem

Degraded Wiretap Channel (no help yet)

- $M \to X^n \to Y^n \to Z^n$
- additive noise: $Y_i = X_i + W_i$, $Z_i = Y_i + V_i$

- weak secrecy (Ev): $R_I = n^{-1}I(M; Z^n) \le \epsilon$
- reliability (Rx): $\Pr{\{M \neq \hat{M}\} \le \varepsilon}$
- power (Tx): $\frac{1}{n} \sum_{i=1}^{n} \mathbb{E} |X_i|^2 \le P$

Degraded Wiretap AWGN Channel

- secrecy capacity: $C_{s0} = C_1 C_2 = \log \frac{1+\gamma_1}{1+\gamma_2}$
- C₁, C₂: Tx-Rx and Tx-Ev capacities

Degraded Wiretap Channel with Rx Help⁵

- ... and **rate-limited** Rx help: $n^{-1}H(T) \leq R_h$
- Rx decoding: based on Y^n and T
- Ev: arbitrary-low leakage rate $R_I = n^{-1}I(M; Z^nT) \le \epsilon$

⁵S. Loyka, N. Merhav, The Secrecy Capacity of Gaussian Wiretap Channels with Rate-Limited Help at the Decoder, ISIT 2022.

Degraded Wiretap Channel with Rx Help⁷

• secrecy capacity:

$$C_s = C_{s0} + R_h \tag{2}$$

- i.e. $+R_h$ boost due to help
- the same as in the no-secrecy case⁶
- i.e. the boost comes with secrecy for free
- extends to reversely-degraded case, where $C_{s0} = 0$ (no help), even if help is not secure:

$$C_s = R_h \tag{3}$$

no wiretap coding is needed to achieve it

⁶S. I. Bross, A. Lapidoth, G. Marti, Decoder-assisted communications over additive noise channels, IEEE Trans. Commun., Jul. 2020.

⁷S. Loyka, N. Merhav, The Secrecy Capacity of Gaussian Wiretap Channels with Rate-Limited Help at the Decoder, ISIT 2022.

This Paper: Tx Help

- in addition to or instead of Rx help
- secure or not
- causal or not

This Paper: Tx Help

- degraded Gaussian WTC
- Tx or/and Rx help of rate R_h
- causal or not
- secure or not

Theorem

Lower bound on secrecy capacity C_s :

$$C_s \geq C_{s0} + R_h$$

Holds with equality if help is not secure.

- same Rx help, in addition to Tx help: no extra boost in C_s
- non-causal Tx help: no extra boost over the causal one

(4)

Reversely-Degraded Wiretap Channel

• $M \to X^n \to Z^n \to Y^n$

• No help: $C_{s0} = 0$ (no secrecy)

Reversely-Degraded Gaussian WTC

- no-help secrecy capacity $C_{s0} = 0$
- ...but not so with help

Theorem

Lower bound on secrecy capacity C_s:

$$C_s \geq R_h$$

Holds with equality if help is not secure.

• positive secrecy rates, ... even if help is not secure

(5)

Theorem

Lower bound on secrecy capacity C_s:

$$C_s \geq R_h$$

Holds with equality if help is not secure.

- \bullet extra noise at $\mathsf{Rx} \to \mathsf{higher}$ sec. capacity !
- $C_s > 0$ is possible, even if help is not secure!
- but why?
 - Rx is degraded w.r.t. Ev
 - help is not secure
 - if Rx recovers secret message \rightarrow so does Ev ?!

(6)

- slight difference in noise can be exploited
- even if Rx noise > Ev noise
- even if help is not secure
 - $T = Q(W^n) =$ public key
 - only Rx has the exact lock $(Z^n \neq W^n)$

Achievability:

- burst signaling, phase 2 only (no phase 1)
- no wiretap coding at all !
- $\bullet\,$ burst transmission $\rightarrow\,$ secrecy

• well-known in the spying world⁸ :)

⁸E. Shannon, Death of The Perfect Spy, Time, June 24, 2001.

Achievability:

- burst signaling, phase 2 only (no phase 1)
- no wiretap coding at all !
- $\bullet\,$ burst transmission $\rightarrow\,$ secrecy
- well-known in the spying world 8 :)

⁸E. Shannon, Death of The Perfect Spy, Time, June 24, 2001.

- Wiretap channel + Tx help of rate R_h
- $+R_h$ boost in secrecy rates, even if help is not secure
 - degraded
 - reversely-degraded ($C_s > 0$)
 - non-degraded
- open problem: secure Tx help, non-degraded WTC

'free lunch'' theorem:

• Rx/Tx help: $+R_h$ boost comes with secrecy for free

- Wiretap channel + Tx help of rate R_h
- $+R_h$ boost in secrecy rates, even if help is not secure
 - degraded
 - reversely-degraded ($C_s > 0$)
 - non-degraded
- **open problem**: secure Tx help, non-degraded WTC "free lunch" theorem:
 - Rx/Tx help: $+R_h$ boost comes with secrecy for free

Role of Feedback (FB)

- Memoryless channels (e.g. AWGN): no impact on capacity C₀
- WTC: FB boosts secrecy capacity C_s in many cases
- AWGN WTC, noseless FB to Tx but noisy to Ev⁹

$$C_s = C_0 > C_{s0} \tag{7}$$

- i.e. secrecy comes for free!
- Extended to colored (ARMA) noise¹⁰
- But...
 - noisy FB to Ev, i.e. (partially) secret FB
 - noiseless FB to Tx: rate-unlimited (impossible in practice)

⁹D. Gunduz et al, Secret Communication With Feedback, Dec. 2008. ¹⁰C. Li at al, Secrecy Capacity of Colored Gaussian Noise Channels With Feedback, IEEE Trans. Info. Theory, Sep. 2019.

Role of Feedback (FB)

- Memoryless channels (e.g. AWGN): no impact on capacity C_0
- WTC: FB boosts secrecy capacity C_s in many cases
- AWGN WTC, noseless FB to Tx but noisy to Ev^9

$$C_s = C_0 > C_{s0} \tag{7}$$

- i.e. secrecy comes for free!
- Extended to colored (ARMA) noise¹⁰
- But...
 - noisy FB to Ev, i.e. (partially) secret FB
 - noiseless FB to Tx: rate-unlimited (impossible in practice)

⁹D. Gunduz et al, Secret Communication With Feedback, Dec. 2008. ¹⁰C. Li at al, Secrecy Capacity of Colored Gaussian Noise Channels With Feedback, IEEE Trans. Info. Theory, Sep. 2019.

Role of Feedback (FB)

- Memoryless channels (e.g. AWGN): no impact on capacity C_0
- WTC: FB boosts secrecy capacity C_s in many cases
- AWGN WTC, noseless FB to Tx but noisy to Ev^9

$$C_s = C_0 > C_{s0} \tag{7}$$

- i.e. secrecy comes for free!
- Extended to colored (ARMA) noise¹⁰
- But...
 - noisy FB to Ev, i.e. (partially) secret FB
 - noiseless FB to Tx: rate-unlimited (impossible in practice)

⁹D. Gunduz et al, Secret Communication With Feedback, Dec. 2008.

¹⁰C. Li at al, Secrecy Capacity of Colored Gaussian Noise Channels With Feedback, IEEE Trans. Info. Theory, Sep. 2019.

• Rate-limited secure FB¹¹

$$C_{sf} = \min\{C_0, C_{s0} + R_f\}$$
(8)

• But...

- secure FB to Tx
- does not work if non-secure FB

¹¹E. Ardestanizadeh et al, Wiretap Channel With Secure Rate-Limited Feedback, IEEE Trans. Info. Theory, Dec. 2009.