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Introduction

• The use of multiple antennas at both transmitter and receiver (MIMO) significantly
increases the capacity and spectral efficiency of wireless communication systems.

• The sphere decoder provides optimal maximum-likelihood performance in MIMO
detection with reduced complexity compared to the maximum-likelihood detector.

• However, it has a variable complexity , depending on the noise level and the channel
conditions, that hinders its integration into a complete communication system.

• A fixed-sphere decoder is proposed to achieve quasi-ML performance with
fixed-complexity resulting in a fully-pipelined hardware implementation.

• Rapid prototyping is a design methodology where a system-level design, specified in
a high-level description language, is quickly translated to a hardware implementation.
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MIMO System

• Wireless communication system equipped with M transmit and N receive antennas,
denoted as M×N .

• Capacity increase compared to single-antenna systems if the different paths between
transmitter and receiver are independent .

– Improve link quality (BER) → Space-Time Coding

– Increase data rate (bps) → Spatial Multiplexing
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MIMO System Notation

• Assuming symbol-synchronous sampling and ideal timing at the receiver, the received
N -vector, using matrix notation, is given by

r = Hs + v

– s = (s1, s2, ..., sM )T : vector P -QAM transmitted symbols with E[|si|
2] = 1/M

– v = (v1, v2, ..., vN )T : vector i.i.d. complex Gaussian noise samples with σ2 = N0

– r = (r1, r2, ..., rN )T : vector received symbols

– H: N×M i.i.d. Rayleigh fading channel matrix

hij is the complex transfer function from transmitter j to receiver i with E[|hij |
2] = 1

– N ≥ M

– Number of possible transmitted M -vectors = P M (i.e. complex constellation C)
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Rapid Prototyping System

• Prototyping system that concentrates on the analysis of the MIMO algorithm.

• Analysis and hardware implementation of novel algorithms.

• Requirements:

– Reconfigurable hardware platform

– Methodology that does not require detailed knowledge of the underlying hardware.

– Uniform testing environment.

– Real-time testing → Hardware in the loop.

– Simple and flexible interface between the hardware platform and the host.
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Rapid Prototyping System

• Prototyping system that concentrates on the analysis of the MIMO algorithm.

• Analysis and hardware implementation of novel algorithms.

• Requirements:

– Reconfigurable hardware platform

– Methodology that does not require detailed knowledge of the underlying hardware.

– Uniform testing environment.

– Real-time testing → Hardware in the loop.

– Simple and flexible interface between the hardware platform and the host.

Hardware Platform

• Provided by Alpha Data Ltd. It consists of:
– PCI Adapter
– 2 FPGA boards: Xilinx Virtex II (XC2V4000) and

Xilinx Virtex II Pro (XC2VP70)
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Rapid Prototyping Methodology

• MATLAB MIMO system for algorithm evaluation.
• Simulink testbench for implementation and

debugging using Xilinx’s DSP System Generator.
• Xilinx’s Integrated Software Environment to

generate FPGA bitstream.
• Integration of the FPGA implementation into the

MATLAB MIMO system for real-time hardware
co-simulation (4×4).
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Sphere Decoder

• Sphere Decoder Algorithm

• Simulation Results

• FPGA Implementation

• FPGA Results

1. L. G. Barbero and J. S. Thompson, “Rapid prototyping of the sphere decoder for MIMO systems,” in Proc.
IEE/EURASIP Conference on DSP Enabled Radio (DSPeR ’05), vol. 1, Southampton, UK, Sept. 2005, pp. 41–47.

2. L. G. Barbero and J. S. Thompson, “Rapid prototyping system for the evaluation of MIMO receive algorithms,” in Proc.
IEEE International Conference on Computer as a Tool (EUROCON ’05), vol. 2, Belgrade, Serbia and Montenegro,
Nov. 2005, pp. 1779–1782.
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Sphere Decoder (SD)

• Maximum-likelihood performance with reduced complexity.
• Search over only the noiseless received points (defined as the lattice Hs) that lie

within a hypersphere of radius R around the received signal r.

ŝml = arg{min
s

‖r − Hs‖2 ≤ R2}

– Real SD: widely used, only for QAM constellations. Equivalent real decomposition
of the system.

⇒ Complex SD: more recent version, can be applied to any constellation. More
optimized hardware implementation.

R
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Sphere Decoder (SD)

• Maximum-likelihood performance with reduced complexity.
• Search over only the noiseless received points (defined as the lattice Hs) that lie

within a hypersphere of radius R around the received signal r.

ŝml = arg{min
s

‖r − Hs‖2 ≤ R2}

– Real SD: widely used, only for QAM constellations. Equivalent real decomposition
of the system.

⇒ Complex SD: more recent version, can be applied to any constellation. More
optimized hardware implementation.

• Initial radius R is selected according to
the noise variance per antenna σ2.

• The complexity of the algorithm depends
on the noise level and the channel
conditions.

R
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Sphere Decoder Algorithm (1)

• The sphere constraint (SC) can be written as

ŝml = arg{min
s

‖U(s − ŝ)‖2 ≤ R2}

– U: M×M upper triangular matrix, Cholesky decomposition of Gram matrix G = HHH

– ŝ = H†r: least squares estimate of s
– H† = (HHH)−1HH : pseudoinverse of H

XX
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Sphere Decoder Algorithm (1)

• The sphere constraint (SC) can be written as

ŝml = arg{min
s

‖U(s − ŝ)‖2 ≤ R2}

– U: M×M upper triangular matrix, Cholesky decomposition of Gram matrix G = HHH

– ŝ = H†r: least squares estimate of s
– H† = (HHH)−1HH : pseudoinverse of H

• Solution is obtained recursively for i = M, ..., 1. For each level, the points si selected
as candidates satisfy

|si − zi|2 ≤ Ti

u2
ii

where

zi = ŝi −
MX

j=i+1

uij

uii

(sj − ŝj)

Ti = R2 −
MX

j=i+1

u2
jj |sj − zj |2
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Sphere Decoder Algorithm (2)

• The algorithm can be seen as a tree search through M levels with a metric constraint
R2. Each node on the tree has P branches.

Di = u2
ii|si − zi|2| {z }

di

+

MX
j=i+1

u2
jj |sj − zj |2| {z }
Di+1

≤ R2

– Di+1: accumulated (squared) Euclidean distance from the root down to level i + 1

– di: partial (squared) Euclidean distance from level i

root

D4 = d4+D5

R
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d4 D5 = 0

D3 = d3+D4

D2 = d2+D3
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Branch Enumeration

• The order in which we follow the branches from one particular node on any level
affects the final complexity.

– Accumulated distance Di+1 on level i + 1

– P values Dp
i = dp

i + Di+1 (p = 1, ..., P )
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4Di

3Di
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Branch Enumeration

• The order in which we follow the branches from one particular node on any level
affects the final complexity.

– Accumulated distance Di+1 on level i + 1

– P values Dp
i = dp

i + Di+1 (p = 1, ..., P )

Di+1

Di
4Di

3Di
2Di

1

di1

• Pohst enumeration: the different branches are visited in an arbitrary constellation
order.

• Schnorr-Euchner enumeration: the different branches are visited in increasing order
of Dp

i (i.e. increasing distance between sp
i and zi).

• Advantages of the Schnorr-Euchner enumeration:

– It reduces the complexity.

– The complexity is independent of the initial radius.
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Channel Matrix Ordering

• Ordering of the columns of the channel matrix H, resulting in a complexity reduction
of the search stage of the sphere decoder.

• Increase in complexity due to the preprocessing could be considered negligible for
packet-based communications.

• Two iterative methods suitable for hardware implementation:

1. V-BLAST-ZF : the signals (i.e. levels i) are detected according to increasing order
of the noise amplification (i.e. Euclidean norm of the rows of H†).

2. V-BLAST-MMSE : the signals (i.e. levels i) are detected according to decreasing
order of the SINR.

SINRi =
|h̃†

ihi|2
|h̃†

i |2σ2M +

P
∀j 6=i,ipre

|h̃†
ihj |2

V-BLAST-MMSE largest complexity reduction but performance degradation.
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Sphere Decoder Performance
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Sphere Decoder Complexity

• Schnorr-Euchner enumeration
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FPGA Implementation (SD)

• FPGA performs the tree search of the sphere decoder.

• MATLAB performs parts of the algorithm that are required once per frame:

– Ordering of the channel matrix

– Pseudoinverse

– Cholesky decomposition

• MATLAB and FPGA are synchronized through a Simulink memory interface.

MATLAB (Executed once per frame) FPGA (Executed once per MIMO symbol)

Channel
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FPGA Architecture (SD)

PCU

SCU DU

CU

ZFU

Internal
Memory

PDU

• ZFU: Zero Forcing Unit

• PDU: Partial Distance Unit

• PCU: Partial Candidates Unit

• SCU: Sphere Constraint Unit

• CU: Control Unit

• DU: Demapper Unit
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Sphere Decoder Flowchart
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FPGA Scheduling (SD)

SCU

CU

PDUi SCU
PCUi+1

CU
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DU
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t
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• Light grey: blocks executed in every iteration.

• Dark grey: blocks not executed in every iteration.

• White spaces: unused hardware resources of the design.

• Critical path formed by PDU + SCU → determines the throughput.

• Sphere decoder can not be fully pipelined → suboptimum use of the resources.
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FPGA Results (SD)

• 4 sphere decoders in parallel.

XC2VP70 Use Percentage

Number of slices 21,467 / 33,088 64%

Number of flip-flops 17,691 / 66,176 26%

Number of 4-input LUTs 36,249 / 66,176 54%

Number of 18x18 multipliers 156 / 328 47%

Number of 18Kb block RAM 183 / 328 55%

• Block RAM: synchronization buffers and internal
buffers of the sphere decoder.

• Embedded multipliers: computational complexity.

– 39 per sphere decoder: 16 (ZFU) + 23 (PDU)

• LUTs: adders and control logic of the sphere decoder.

• Flip-flops: delay nets in the sphere decoder.
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FPGA BER Performance (SD)

• Monte Carlo simulations with real-time hardware co-simulation.
• 16 bits used for real and imaginary components quantization.

• R2 set to end of scale.
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FPGA Throughput Performance (SD)

• Average throughput depends on the clock frequency and the number of cycles per
detection.

Qavg = 4 · M · log2 P · fclock / Cavg (Mbps)

• fclock = 50 MHz, Cmin = 25 cycles → Qmax = 128 Mbps
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Fixed-Sphere Decoder (FSD)

• Fixed-Sphere Decoder Algorithm

• Simulation Results

• FPGA Implementation

• FPGA Results

1. L. G. Barbero and J. S. Thompson, “A Fixed-Complexity MIMO Detector Based on the Complex Sphere Decoder,” to appear in IEEE
Workshop on Signal Processing Advances for Wireless Communications (SPAWC ’06), Cannes, France, July 2006.

2. L. G. Barbero and J. S. Thompson, “Performance Analysis of a Fixed-Complexity Sphere Decoder for MIMO Systems,” in Proc. IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP ’06), vol. 4, Toulouse, France, May 2006, pp.
557–560.

3. L. G. Barbero and J. S. Thompson, “Rapid prototyping of a Fixed-Throughput Sphere Decoder for MIMO Systems,” in Proc. IEEE
International Conference on Communications (ICC ’06), Istanbul, Turkey, June 2006.

4. L. G. Barbero and J. S. Thompson, “FPGA Design Considerations in the Implementation of a Fixed-Throughput Sphere Decoder for
MIMO Systems,” to appear in Proc. IEEE International Conference on Field Programmable Logic and Applications (FPL ’06), Madrid,
Spain, August 2006.
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Fixed-Sphere Decoder Motivation

• Disadvantages of the sphere decoder:

⇒ Its variable complexity poses a problem in actual communication systems where
data needs to be processed in a fixed number of operations.

⇒ Its sequential search results in a hardware implementation that is not fully
pipelined, affecting the achievable throughput.
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Fixed-Sphere Decoder Motivation

• Disadvantages of the sphere decoder:

⇒ Its variable complexity poses a problem in actual communication systems where
data needs to be processed in a fixed number of operations.

⇒ Its sequential search results in a hardware implementation that is not fully
pipelined, affecting the achievable throughput.

• Modifications of the sphere decoder to marginally reduce the average complexity
require additional operations or calculation of limiting thresholds.

⇒ It results in a more complex hardware implementation without achieving a fixed
complexity.

• The K-best lattice decoder (based on the sequential M-algorithm) provides a fixed
complexity.

⇒ It does not take into consideration the MIMO system model resulting in a
considerably high complexity.
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Fixed-Sphere Decoder

• Approximate maximum-likelihood performance with fixed complexity.

• Search, independently of the noise level, over only a fixed number of lattice points Hs,
generated by a subset S ⊂ C, around the received point r.

ŝfsd = arg{min
s∈S

‖r − Hs‖2}

R

21
3

4
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Fixed-Sphere Decoder

• Approximate maximum-likelihood performance with fixed complexity.

• Search, independently of the noise level, over only a fixed number of lattice points Hs,
generated by a subset S ⊂ C, around the received point r.

ŝfsd = arg{min
s∈S

‖r − Hs‖2}

• In order not to have the complexity of the
maximum-likelihood detector, S needs to
be a very small subset of C.

• How do we select the M -dimensional
points to be checked?

R

21
3

4
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Fixed-Sphere Decoder Algorithm (1)

• From the sphere decoder, the points to be considered per level (i = M, . . . , 1) are
determined by

|si − zi|2 ≤ Ti

u2
ii

where

Ti = R2 −
MX

j=i+1

u2
jj |sj − zj |2
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Fixed-Sphere Decoder Algorithm (1)

• From the sphere decoder, the points to be considered per level (i = M, . . . , 1) are
determined by

|si − zi|2 ≤ Ti

u2
ii

where

Ti = R2 −
MX

j=i+1

u2
jj |sj − zj |2

• From the definition of Ti, we have

TM ≥ TM−1 ≥ · · · ≥ T1

• The diagonal elements of U, uii, are such that 2u2
ii are real-valued and have a

Chi-square (χ2) distribution with 2(N − i + 1) degrees of freedom and
E[u2

ii] = N − i + 1, with i = 1, . . . , M .

E[u2
MM ] < E[u2

M−1M−1] < · · · < E[u2
11]
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Fixed-Sphere Decoder Algorithm (2)

• Therefore, we can write

E[
TM

u2
MM

] > E[
TM−1

u2
M−1M−1

] > · · · > E[
T1

u2
11

]

• If we define ni as the number of points (i.e. candidates) si at level i that satisfy
|si − zi|2 ≤ Ti

u2
ii

, from the previous equation, we obtain

E[nM ] ≥ E[nM−1] ≥ · · · ≥ E[n1]

Q
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Fixed-Sphere Decoder Algorithm (2)

• Therefore, we can write

E[
TM

u2
MM

] > E[
TM−1

u2
M−1M−1

] > · · · > E[
T1

u2
11

]

• If we define ni as the number of points (i.e. candidates) si at level i that satisfy
|si − zi|2 ≤ Ti

u2
ii

, from the previous equation, we obtain

E[nM ] ≥ E[nM−1] ≥ · · · ≥ E[n1]

⇒ The FSD assigns a fixed number of candidates, ni with 1 ≤ ni ≤ P , to be searched
per level.

– More candidates in the first levels due to interference from the other levels.

– The decision-feedback equalization performed on zi and the increase in E[u2
ii]

reduce the number of candidates in the last levels.

⇒ The total number of M -dimensional points checked is NS =

QM

i=1 ni.

– Objective: approximate ML performance with NS ≪ P M .
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Parallelism with a Tree Search

• Conceptually, the FSD is equivalent to performing a tree search following predefined
paths and selecting the path with the smallest metric as the solution.

• The ni candidates on each level i are selected according to increasing distance to zi,
following the Schnorr-Euchner enumeration.

root

i=4  n4 = 3

i=3  n3 = 2

i=2  n2 = 1

i=1  n1 = 1
N  = 1·1·2·3 = 6 << 256

-1-j -1+j 1-j 1+j

d4

d3

d2

d1
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Parallelism with a Tree Search

• Conceptually, the FSD is equivalent to performing a tree search following predefined
paths and selecting the path with the smallest metric as the solution.

• The ni candidates on each level i are selected according to increasing distance to zi,
following the Schnorr-Euchner enumeration.

• Hypothetical example: 4×4 system with 4-QAM modulation (P M = 256) where the
number of points per level nS = (n1, n2, n3, n4)

T = (1, 1, 2, 3)T .

root

i=4  n4 = 3

i=3  n3 = 2

i=2  n2 = 1

i=1  n1 = 1
N

s
 = 1·1·2·3 = 6 << 256

-1-j -1+j 1-j 1+j

d4

d3

d2

d1
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FSD Ordering of the Channel Matrix

• Determine the detection ordering of ŝi according to the distribution of candidates, nS .

E[nM ] ≥ E[nM−1] ≥ · · · ≥ E[n1]

where at any level
max{ni} = P
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FSD Ordering of the Channel Matrix

• Determine the detection ordering of ŝi according to the distribution of candidates, nS .

E[nM ] ≥ E[nM−1] ≥ · · · ≥ E[n1]

where at any level
max{ni} = P

FSD ordering

• The columns of the channel matrix are ordered according to the norm of the rows of
the pseudoinverse (post-detection noise amplification), in an iterative fashion, as
follows;

– If ni = P , the signal ŝk with the largest noise amplification is selected.

– If ni < P , the signal ŝk with the smallest noise amplification is selected.

• The SINR could also be used as a metric → it would require an estimate of the noise
level at the receiver.
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FSD Distribution of Points

• The FSD ordering has a determinant effect in the distribution of points nS .

• Crucial to understand the effect the FSD ordering has on the channel matrix.

• No analytical study of the FSD ordering seems to be feasible when M > 2.
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FSD Distribution of Points

• The FSD ordering has a determinant effect in the distribution of points nS .

• Crucial to understand the effect the FSD ordering has on the channel matrix.

• No analytical study of the FSD ordering seems to be feasible when M > 2.

• Effect of the FSD ordering on the outage probability of the signals ŝi
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Fixed-Sphere Decoder Performance
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Fixed-Sphere Decoder Complexity

• 90-percentile to indicate the number of operations required in 90% of the cases.
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FPGA Implementation (FSD)

• FPGA performs the tree search of the fixed-sphere decoder.

• MATLAB performs parts of the algorithm that are required once per frame:

– FSD ordering of the channel matrix

– Pseudoinverse

– Cholesky decomposition

• MATLAB and FPGA are synchronized through a Simulink memory interface.

MATLAB (Executed once per frame) FPGA (Executed once per MIMO symbol)

FSD
Ordering

Pseudoinverse

Cholesky
Decomposition

ZF
Equalization

Fixed-
Sphere

Decoder

r

H

sfsd^

U

ŝ
H†
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FPGA Architecture (FSD)

• 4×4 system with 16-QAM modulation

ZFU

Internal
Memory

PDU 4

PDU 3

PDU 2
PDU 1

MSU DU

• ZFU: Zero Forcing Unit

• PDU i: Partial Distance Unit for level i

• MSU: Minimum Search Unit

• DU: Demapper Unit
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FPGA Scheduling (FSD)

Pipeline stages
ZFU

PDU 4
PDU 3

PDU 2
PDU 1

MSU
DU

r(t1)

ZFU
PDU 4

PDU 3
PDU 2

PDU 1
MSU

DU

ZFU
PDU 4

PDU 3
PDU 2

PDU 1
MSU

DU

t

r(t2)
r(t3)

sfsd(t1)
sfsd(t2)
sfsd(t3)

^
^
^

• The fixed structure of the FSD can be fully pipelined.

1. Optimized use of the hardware resources.
2. A MIMO symbol could be detected in every clock cycle.
3. Throughput ∝ clock frequency.
4. Pipeline registers can be introduced between blocks:

increase in clock frequency → higher throughput.
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FPGA Results (FSD)

Xilinx XC2VP70 FPGA 4-SDs FSD Diff.

Number of slices (33,088) 64% (21,467) 38% (12,721) -40.7%

Number of flip-flops (66,176) 26% (17,691) 23% (15,332) -13.3%

Number of 4-input LUT (66,176) 54% (36,249) 24% (16,119) -55.5%

Number of multipliers (328) 47% (156) 48% (160) +2.6%

Number of block RAM (328) 55% (183) 25% (82) -55.2%

• Similar computational complexity (although better use of the multipliers).

• Flip-flops required to synchronize the different pipeline stages.

• LUTs considerably reduced given that the FSD requires less control logic.

• The FSD requires much less memory space for intermediate data storage.
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Floorplan Comparison

4-SDs FSD
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FPGA BER Performance (FSD)

• Monte Carlo simulations with real-time hardware co-simulation.
• 16 bits used for real and imaginary components quantization.
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FPGA Throughput Performance (FSD)

• Throughput depends on the clock frequency and the number of cycles per detection.

Q = M · log2 P · fclock / C (Mbps)

• fclock = 100 MHz, C = 4 cycles → Q = 400 Mbps
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FSD / SD Comparison

K-Best SD 1 SD 2 SD FSD

Hardware platform ASIC ASIC ASIC FPGA FPGA

MIMO system 4×4 4×4 4×4 4×4 4×4

Modulation 16-QAM 16-QAM 16-QAM 16-QAM 16-QAM

Floating-point
quasi-ML ML close to ML ML quasi-ML

BER perfomance

Clock frequency 100 MHz 51 MHz 71 MHz 50 MHz 100 (150) MHz

Throughput at 53.3 Mbps 126 Mbps 253 Mbps 114.5 Mbps 400 (600) Mbps

Eb/N0 = 20dB (constant) (constant)
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Conclusion

• Sphere decoder is a promising algorithm for MIMO detection that can be implemented
in real-time.

• However, the nature of the sphere decoder makes it difficult to achieve a
high-throughput, highly-pipelined design.

• Fixed-sphere decoder that overcomes the two problems of the sphere decoder: its
sequential nature and its variable complexity.

• FPGA rapid prototyping allows us to quickly analyze both algorithms from an
implementation point of view.

• FPGA implementation of the FSD:

– It uses less resources and achieves higher (constant) throughput that an
equivalent SD on the same FPGA.

– It has a considerably better performance than existing ASIC implementations of the
SD.
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Present Work

• Analytical study of the FSD ordering to better understand the effect the ordering has
on the outage probability of the post-detection signals.

• Extension of the FSD to obtain soft-information for iterative detection and decoding in
turbo-MIMO systems

• FPGA implementation of a so-called list-FSD.

• Collaboration with the University of Mondragon (Spain) to initially integrate the original
sphere decoder in a complete real-time MIMO transceiver (invited paper to special
session in MIMO testbeds in EUSIPCO 06).
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Thank you!
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FPGA Clock Frequency (SD)

• Increasing the clock frequency fclock does not result in a direct increment in the
throughput.

• Due to the sequential nature of the sphere decoder, the number of cycles C also
increases.

fclock (MHz) Cmin (cycles) Qmax (Mbps)

50 25 128

54.18 25 138.70

68.46 37 118.41

99.39 53 120.02
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Effect of the FSD Ordering

• Squared-diagonal elements of the upper-triangular matrix U in a 4×4 system where
H ∼ CN (0, IN ⊗ IM ).
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FSD / K-Best Decoder

• They both achieve quasi-ML performance with fixed complexity.

• Performance degradation compared to ML at BER = 10−3 in a 4×4 system when
NS = K = P .

Modulation FSD K-Best

16-QAM 0.06 dB 0.015 dB

64-QAM 0.03 dB 0.05 dB
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Reducing the Number of Multipliers

• The FSD for a 4×4 system with 16-QAM uses 160 multipliers (limiting factor).

• Reduce the number of multipliers without affecting the performance (only in
fully-pipelined designs):

– A complex multiplication requires 4 multipliers and 2 adders (latency = 2 cycles)

(a + jb)(c + jd) = (ac − bd) + j(bc + ad)

– It can be rewritten to require 3 multipliers and 5 adders (latency = 3 cycles)

(a + jb)(c + jd) = [a(c − d) + d(a − b)] + j[b(c + d) + d(a − b)]

• A different metric can be used to further reduce the number of multipliers with a
non-negligible effect on the performance (Manhattan distance).

• Applying those two methods to the FSD:

160 mult. → 132 mult. → 100 mult.
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FPGA Results (FSD-16 and FSD-64)

Xilinx XC2VP70 FPGA FSD-16 FSD-64

MIMO system 4×4 4×4

Modulation 16-QAM 64-QAM

Number of slices (33,088) 38% (12,721) 62% (20,580)

Number of flip-flops (66,176) 23% (15,332) 40% (26,372)

Number of 4-input LUT (66,176) 24% (16,119) 41% (27,643)

Number of multipliers (328) 48% (160) 92% (304)

Number of block RAM (328) 25% (82) 26% (88)

Number of cycles C 4 8

Clock frequency fclock(MHz) 100 100

Throughput Q (Mbps) 400 300
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Design Optimizations (FSD-64)

Xilinx XC2VP70 FPGA FSD-64A FSD-64B FSD-64C optimized FSD-64B

Number of slices 62% 65% 65% 74%

Number of flip-flops 40% 47% 48% 60%

Number of 4-input LUT 41% 45% 48% 47%

Number of multipliers 92% 76% 57% 76%

Number of block RAM 26% 26% 26% 26%

fclock (MHz) 100 100 100 150

Q (Mbps) 300 300 300 450

Initial latency (cycles) 62 66 66 78
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V-BLAST-MMSE Ordering

• The performance degradation is due to the fact that the ML solution obtained is the
solution to

min
s

‖r̃ − H̃s‖2

where

H̃ =

"
H

σ
√

MIM

#
, r̃ =

"
r

0M1

#
with IM the M×M identity matrix and 0M1 the M×1 0-vector.

• The (SC) is written as

ŝml−mmse = arg{min
s

‖Ũ(s − ŝmmse)‖2 ≤ R2}

– Ũ: M×M upper triangular matrix, Cholesky decomposition of Gram matrix G̃ = H̃HH̃

– ŝmmse = H̃†r

– H̃† = (H̃HH̃)−1H̃H : pseudoinverse of H̃
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Transmitter Architecture
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Receiver Architecture

Soft-MIMO
Detector

+
L-value

Calculation

b1
^

r1
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• L-value: log-likelihood ratio (LLR)

LD1(bk|r)| {z }
a−posteriori info

= ln
P [bk = +1|r]
P [bk = −1|r] = LA1(bk)| {z }

a−priori info

+ LE1(bk|r)| {z }

extrinsic info
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List Fixed-Sphere Decoder

• The LFSD is based on the original FSD and is denoted as LFSD-NSe/NL.

1. Search stage : search through lattice points generated by an extended subset
Se ⊂ C.

2. Sort and select stage : it generates a list L of the NL candidates with the smallest
metric (NL ≤ NSe ).

LE1(bk|r) ≈ 1

2
max

b∈L∩Bk,+1

�−‖r − Hs‖2

σ2
+ b

T
[k]LA1,[k]

�
−1

2
max

b∈L∩Bk,−1

�−‖r − Hs‖2

σ2
+ b

T
[k]LA1,[k]

�
L ∩ Bk,+1 denotes the subgroup of vectors of L that have bk = +1

• The subset Se is an extension of S to improve the quality of the candidates from a
soft-output perspective.
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LFSD Distribution of Points

• The distribution of points nSe is obtained taking as a starting point the distribution of
points nS (equivalent uncoded FSD).

• Gradually increase the number of points ni on the levels {i |ni < P} until we reach
NSe .

n
(k+1)
i = 2 · n(k)

i

root

i=4  n4 = 4

i=3  n3 = 1

i=2  n2 = 1

i=1  n1 = 1
N

s
 = 1·1·1·4 = 4 << 256

-1-j -1+j 1-j 1+j

d4

d3

d2

d1

n4 = 4
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N
s 
 = 1·2·2·4 = 16 << 256�
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LFSD Performance

• 4×4 system with 16-QAM modulation.

• Parallel concatenated turbo code r = 1/2 of memory 2 (G1(D) = 1 + D + D2,
G2(D) = 1 + D2).

• Frames of Kb = 8192 bits with Kch = 16 symbols transmitted per antenna and
channel realization.

• LFSD-64/16 with distribution of points nSe = (1, 2, 2, 16)T .
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LFSD Performance (2)
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FPGA Implementation (LFSD)
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FPGA Results (LFSD)

• 4×4 system with 16-QAM modulation.

Xilinx XC2VP70 FPGA FSD-16 LFSD-64/16

Number of slices (33,088) 38% (12,721) 96% (31,960)

Number of flip-flops (66,176) 23% (15,332) 79% (52,719)

Number of 4-input LUT (66,176) 24% (16,119) 58% (38,995)

Number of multipliers (328) 48% (160) 54% (180)

Number of block RAM (328) 25% (82) 15% (52)

Number of cycles C 4 8

Clock frequency fclock(MHz) 100 (150) 100 (150)

Throughput Q (Mbps) 400 (600) 200 (300)
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FPGA BER Performance (LFSD)

• Monte Carlo simulations with real-time hardware co-simulation.
• 16 bits used for real and imaginary components quantization.
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