ELG3175 Introduction to Communication Systems

Lecture 16

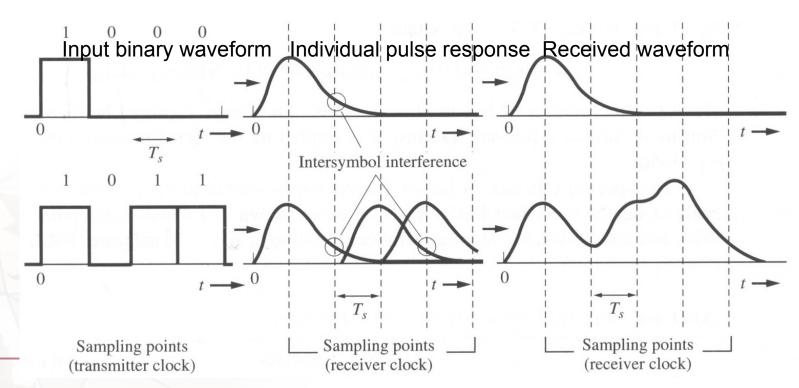
Bandlimiting and Nyquist Criterion

Bandlimiting and ISI

- Real systems are usually bandlimited.
- When a signal is bandlimited in the frequency domain, it is usually smeared in the time domain. This smearing results in intersymbol interference (ISI).
- The only way to avoid ISI is to satisfy the 1st Nyquist criterion.
- For an impulse response this means at sampling instants having only one nonzero sample.

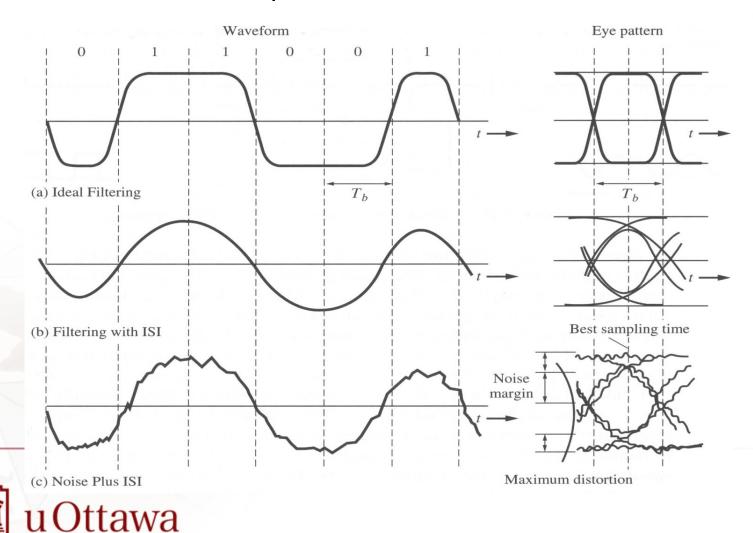
Band-limited Channels and Intersymbol Interference

- Rectangular pulses are suitable for infinite-bandwidth channels (practically – wideband).
- Practical channels are band-limited -> pulses spread in time and are smeared into adjacent slots. This is intersymbol interference (ISI).



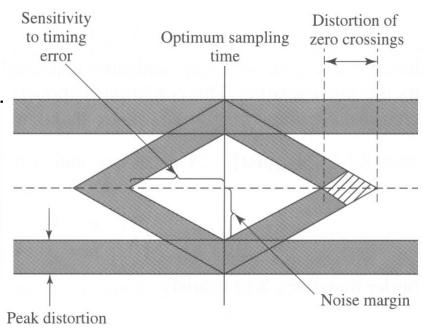
Eye Diagram

 Convenient way to observe the effect of ISI and channel noise on an oscilloscope.



Eye Diagram

- Oscilloscope presentations of a signal with multiple sweeps (triggered by a clock signal!), each is slightly larger than symbol interval.
- Quality of a received signal may be estimated.
- Normal operating conditions (no ISI, no noise) -> eye is open.
- Large ISI or noise -> eye is closed.
 - Timing error allowed width of the eye,
 called eye opening (preferred sampling
 time at the largest vertical eye opening).
 - Sensitivity to timing error -> slope of the open eye evaluated at the zero crossing point.
 - Noise margin -> the height of the eye opening.



Pulse shapes and bandwidth

For PAM:

$$s_{PAM}(t) = \sum_{i=0}^{L} a_i p(t - iT_s) = p(t) * \sum_{i=0}^{L} a_i \delta(t - iT_s)$$

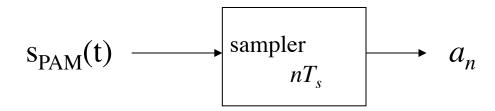
Let
$$\sum_{i=0}^{L} a_i \delta(t - iT_s) = y(t)$$

Then
$$S_{PAM}(f) = P(f)Y(f)$$

$$B_{PAM} = B_p$$
.

We can show that the same is true for PPM

Detection of data



$$s_{PAM}(nT_s) = \sum_{i=0}^{L} a_i p(nT_s - iT_s) = \sum_{i=0}^{L} a_i p[(n-i)T_s] = a_n + \sum_{\substack{i=0\\i \neq n}}^{L} a_i p[(n-i)T_s]$$

The second term is Intersymbol interference (ISI)

Nyquist criterion for zero ISI

$$p(t) = \begin{cases} 1 & t = 0 \\ 0 & t = nT_s \ (n \neq 0) \end{cases}$$

$$p_{S}(t) = \sum_{n=-\infty}^{\infty} p(nT_{S})\delta(t - nT_{S}) = \delta(t)$$

$$P_S(f) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} P\left(f - \frac{n}{T_s}\right) = 1$$

Therefore

$$\sum_{n=-\infty}^{\infty} P\left(f - \frac{n}{T_s}\right) = T_s$$

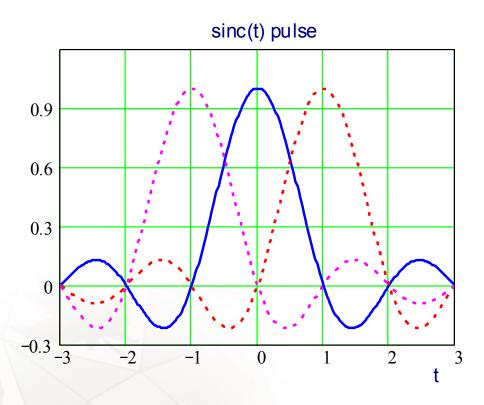
Minimum bandwidth of PAM signal

			T_s			
•••						
			$1/(2T_s)$			
		4				

$$P_{min}(f) = T_s \Pi(fT_s)$$

$$P_{min}(t) = \operatorname{sinc}(t/T_s)$$

Zero ISI: sinc Pulse



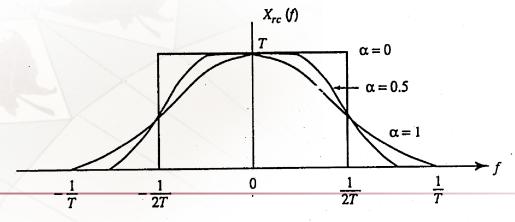
- Example: $s(t) = \operatorname{sinc}(f_0 t) \Rightarrow s(nT) = \operatorname{sinc}(n) = 0, n \neq 0$
- Hence, sinc pulse allows to eliminate ISI at sampling instants.
 However, it has some (2) serious drawbacks.

Pulses that satisfy Nyquist's Zero ISI Criterion

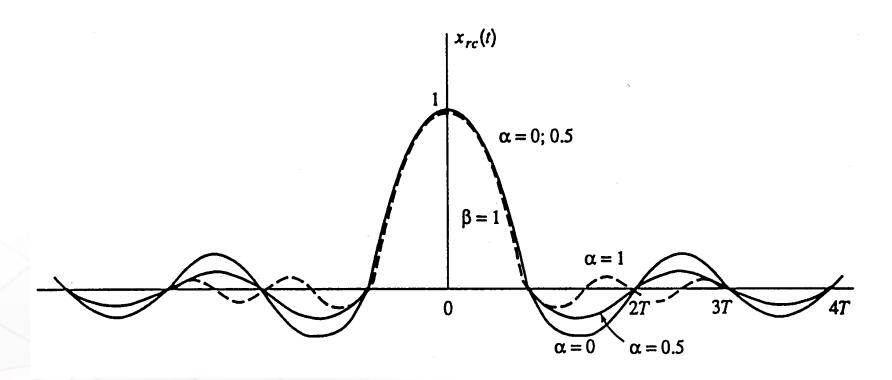
- A minimum bandwidth system satisfying the Nyquist criterion has a rectangular shape from -1/2T to 1/2T.
- Any filter that has an excess bandwidth with oddsymmetry around Nyquist frequency (1/2T) also satisfies the requirement.
- A family of such filters is known as raised cosine filters. Raised cosine pulse produces signal with bandwidth $(1/2T_s)(1+\alpha)$, where α is the roll-off factor.

Raised cosine filter transfer function

$$X_{rc}(f) = \begin{cases} T & 0 \le |f| \le \frac{1-\alpha}{2T} \\ \frac{T}{2} \left[1 + \cos \frac{\pi T}{\alpha} \left(|f| - \frac{1-\alpha}{2T}\right), & \frac{1-\alpha}{2T} \le |f| \le \frac{1+\alpha}{2T} \\ 0 & |f| \ge \frac{1+\alpha}{2T} \end{cases}$$



Raised cosine filter impulse response



Equal splitting of raised-cosine characteristics

